Skip to main content

Pathophysiology of Brain Death and Effects of Hormonal Therapy in Large Animal Models

  • Chapter
  • First Online:
The Brain-Dead Organ Donor

Abstract

In large animal experimental models, two major pathophysiologic effects of brain death have been described. (1) Tissue and vascular injury can result from the hemodynamic consequences of the autonomic “storm”. (2) A generalized inhibition of mitochondrial function that is associated with loss of energy stores and diminished organ function; this is associated particularly with the rapid loss of circulating free triiodothyronine (T3) and can be reversed by hormonal replacement therapy, in which T3 plays a critical role, although insulin and cortisol are also important. Replacement of energy stores and recovery of organ function in the potential donor results in an increased number of organs being functionally acceptable for transplantation. Although some studies did not detect abnormally low levels of thyroid hormones and/or question the advisability of administering T3 to the brain-dead animal, the preponderance of experimental data indicate that hormonal replacement therapy can be beneficial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Novitzky D, Cooper DKC, Rose AG. Wicomb W, Becerra E, Reichart B. Early donor heart failure following transplantation—the possible role of myocardial injury sustained during brain death. Clin Transplant. 1987;1:108–13.

    Google Scholar 

  2. Barnard CN, Losman JG. Left ventricular bypass. S Afr Med J. 1975;49:303–12.

    PubMed  CAS  Google Scholar 

  3. Losman JG, Levine H, Campbell CD, et al. Changes in indications for heart transplantation. An additional argument for the preservation of the recipient’s own heart. J Thorac Cardiovasc Surg. 1982;84:716–26.

    PubMed  CAS  Google Scholar 

  4. Cooper DKC, Novitzky D, Becerra E, Reichart B. Are there indications for heterotopic heart transplantation in 1986? A 2- to 11-year follow-up of 49 consecutive patients undergoing heterotopic heart transplantation. Thorac Cardiovasc Surg. 1986;34:300–4.

    Article  PubMed  CAS  Google Scholar 

  5. Cooper DKC, De Villiers JC, Smith LS, et al. Medical, legal and administrative aspects of cadaveric organ donation in the RSA. S Afr Med J. 1982;62:933–8.

    PubMed  CAS  Google Scholar 

  6. Novitzky D, Wicomb WN, Cooper DKC, Rose AG, Fraser RC, Barnard CN. Electrocardiographic, haemodynamic and endocrine changes occurring during experimental brain death in the Chacma baboon. J Heart Transplant. 1984;4:63–9.

    Google Scholar 

  7. Wicomb WN, Cooper DKC, Lanza RP, Novitzky D, Isaacs S. The effects of brain death and 24 hours’ storage by hypothermic perfusion on donor heart function in the pig. J Thorac Cardiovasc Surg. 1986;91: 896–909.

    PubMed  CAS  Google Scholar 

  8. Wicomb WN, Cooper DKC, Novitzky D. Impairment of renal slice function following brain death, with reversibility of injury by hormonal therapy. Transplantation. 1986;41:29–33.

    Article  PubMed  CAS  Google Scholar 

  9. Novitzky D, Horak A, Cooper DKC, Rose AG. Electrocardiographic and histopathologic changes developing during experimental brain death in the baboon. Transplant Proc. 1989;21:2567–9.

    PubMed  CAS  Google Scholar 

  10. Cooper DKC, Novitzky D, Wicomb WN. The pathophysiological effects of brain death on potential donor organs, with particular reference to the heart. Ann R Coll Surg Engl. 1989;71:261–6.

    PubMed  CAS  Google Scholar 

  11. Cushing H. Some experimental and clinical observations concerning states of increased intracranial tension. Am J Med Sci. 1902;124:373–400.

    Article  Google Scholar 

  12. McClellan G, Weisberg A, Winegrad S. Energy transport from mitochondria to myofibril by a creatine phosphate shuttle in cardiac cells. Am J Physiol. 1983;245:C423–7.

    PubMed  CAS  Google Scholar 

  13. Arnold G, Fischer R. Myocardial “contraction bands”. Hum Pathol. 1987;18:99–101.

    Article  PubMed  CAS  Google Scholar 

  14. Novitzky D, Rose AG, Cooper DKC, Reichart B. Interpretation of endomyocardial biopsy after heart transplantation. Potentially confusing factors. S Afr Med J. 1986;70:789–92.

    Google Scholar 

  15. Novitzky D, Wicomb WN, Rose AG, Cooper DKC, Reichart B. Pathophysiology of pulmonary edema following experimental brain death in the chacma baboon. Ann Thorac Surg. 1987;43:288–94.

    Article  PubMed  CAS  Google Scholar 

  16. Rona G. Catecholamine cardiotoxicity. J Mol Cell Cardiol. 1985;17:291–306.

    Article  PubMed  CAS  Google Scholar 

  17. Boor PJ. Amines and the heart. Arch Pathol Lab Med. 1987;111:930–2.

    PubMed  CAS  Google Scholar 

  18. Kline IK. Myocardial alterations associated with pheochromocytomas. Am J Pathol. 1961;38:539–51.

    PubMed  CAS  Google Scholar 

  19. Rose AG. Catecholamine-induced myocardial damage associated with phaeochromocytomas and tetanus. S Afr Med J. 1974;48:1285–9.

    PubMed  CAS  Google Scholar 

  20. Offerhaus L, van Gool J. Electrocardiographic changes and tissue catecholamines in experimental subarachnoid haemorrhage. Cardiovasc Res. 1969;3:433–40.

    Article  PubMed  CAS  Google Scholar 

  21. Tazellar HD, Karch SB, Stephens BG, Billingham ME. Cocaine and the heart. Hum Pathol. 1987;18:195–9.

    Article  Google Scholar 

  22. Karch SB. Pathology of the heart in drowning. Arch Pathol Lab Med. 1985;109:176–8.

    PubMed  CAS  Google Scholar 

  23. Lunt DW, Rose AG. Pathology of the human heart in drowning. Arch Pathol Lab Med. 1987;111:939–42.

    PubMed  CAS  Google Scholar 

  24. Factor SM, Cho S. Smooth muscle contraction bands in the media of coronary arteries: a postmortem marker of antemortem coronary spasm? J Am Coll Cardiol. 1985;6:1329–37.

    Article  PubMed  CAS  Google Scholar 

  25. Novitzky D, Wicomb WN, Cooper DKC, Rose AG, Reichart B. Prevention of myocardial injury during brain death by total cardiac sympathectomy in the Chacma baboon. Ann Thorac Surg. 1986;41:520–4.

    Article  PubMed  CAS  Google Scholar 

  26. Novitzky D, Cooper DKC, Rose AG, Reichart B. Prevention of myocardial injury by pretreatment with verapamil hydrochloride prior to experimental brain death: efficacy in a baboon model. Am J Emerg Med. 1987;5:11–8.

    Article  PubMed  CAS  Google Scholar 

  27. Novitzky D, Rose AG, Cooper DKC. Injury of myocardial conduction tissue and coronary artery smooth muscle following brain death in the baboon. Transplantation. 1988;45:964–6.

    Article  PubMed  CAS  Google Scholar 

  28. Novitzky D, Cooper DKC, Morrell D, Isaacs S. Change from aerobic to anaerobic metabolism after brain death, and reversal following triiodothyronine (T3) therapy. Transplantation. 1988;45:32–6.

    Article  PubMed  CAS  Google Scholar 

  29. Pratschke J, Wilhelm MJ, Kusaka M, et al. Brain death and its influence on donor organ quality and outcome after transplantation. Transplantation. 1999;67:343–8.

    Article  PubMed  CAS  Google Scholar 

  30. Huber TS, Kluger MJ, Harris SP, D’Alecy LG. Plasma profiles of IL-6-like and TNF-like activities in brain-dead dogs. Am J Physiol. 1991;261(5 Pt 2): R1133–1140.

    PubMed  CAS  Google Scholar 

  31. Novitzky D, Wicomb WN, Cooper DKC, Tjaalgard MA. Improved cardiac function following hormonal therapy in brain dead pigs: relevance to organ donation. Cryobiology. 1987;24:1–10.

    Article  PubMed  CAS  Google Scholar 

  32. Wicomb W, Boyd ST, Cooper DKC, Rose AG, Barnard CN. Ex vivo functional evaluation of pig hearts subjected to 24 hours’ preservation by hypothermic perfusion. S Afr Med J. 1981;60:245–8.

    PubMed  CAS  Google Scholar 

  33. Wicomb WN, Cooper DKC, Barnard CN. Twenty-four-hour preservation of the pig heart by a portable hypothermic perfusion system. Transplantation. 1982;34:246–50.

    Article  PubMed  CAS  Google Scholar 

  34. Wicomb W, Cooper DKC, Hassoulas J, Rose AG, Barnard CN. Orthotopic transplantation of the baboon heart after 20 to 24 hours’ preservation by continuous hypothermic perfusion with an oxygenated hyperosmolar solution. J Thorac Cardiovasc Surg. 1982;83: 133–40.

    PubMed  CAS  Google Scholar 

  35. Wicomb WN, Novitzky D, Cooper DKC, Rose AG. Forty-eight hours hypothermic perfusion storage of pig and baboon hearts. J Surg Res. 1986;40:276–84.

    Article  PubMed  CAS  Google Scholar 

  36. Cooper DKC, Wicomb WN, Barnard CN. Storage of the donor heart by a portable hypothermic perfusion system: experimental development and clinical experience. Heart Transplant. 1983;2:104–10.

    Google Scholar 

  37. Novitzky D. Heart transplantation, euthyroid sick syndrome, and triiodothyronine replacement. J Heart Lung Transplant. 1992;11:196–8.

    Google Scholar 

  38. Novitzky D, Cooper DKC, Reichart B. Hemodynamic and metabolic responses to hormonal therapy in brain-dead potential organ donors. Transplantation. 1987;43:852–4.

    PubMed  CAS  Google Scholar 

  39. Shivalkar B, Van Loon J, Wieland W, et al. Variable effects of explosive or gradual increase of intracranial pressure on myocardial structure and function. Circulation. 1993;87:230–9.

    Article  PubMed  CAS  Google Scholar 

  40. Schrader H, Krogness K, Aakvaag A, Sortland O, Purvis K. Changes of pituitary hormones in brain death. Acta Neurochir (Wien). 1980;52:239–48.

    Article  CAS  Google Scholar 

  41. Finkelstein I, Toledo-Pereyra LH, Castellanos J. Physiologic and hormonal changes in experimentally induced brain dead dogs. Transplant Proc. 1987;19:4156–8.

    PubMed  CAS  Google Scholar 

  42. Lin H, Okamoto R, Yamamoto Y, et al. Hepatic tolerance to hypotension as assessed by the changes in arterial ketone body ratio in the state of brain death. Transplantation. 1989;47:444–8.

    Article  PubMed  CAS  Google Scholar 

  43. Okamoto K, Kinoshita Y, Yushioka T, Kawaguchi N, Onishi S, Sugimoto T. Myocardial preservation in brain-dead patients maintained with vasopressin and catecholamine. Clin Transplant. 1992;6:294–300.

    Google Scholar 

  44. Pienaar H, Schwartz I, Roncone A, Lotz Z, Hickman R. Function of kidney grafts from brain-dead donor pigs. The influence of dopamine and triiodothyronine. Transplantation. 1990;50:580–2.

    Article  PubMed  CAS  Google Scholar 

  45. Tixier D, Matheis G, Buckberg GD, Young HH. Donor hearts with impaired hemodynamics. Benefit of warm substrate-enriched blood cardioplegic solution for induction of cardioplegia during cardiac harvesting. J Thorac Cardiovasc Surg. 1991;102: 207–13.

    PubMed  CAS  Google Scholar 

  46. Huber TS, Groh MA, Gallagher KP, D’Alecy LG. Myocardial contractility in a canine model of the brain-dead organ donor. Crit Care Med. 1993;21: 1731–9.

    Article  PubMed  CAS  Google Scholar 

  47. Huber TS, Nachreiner R, D’Alecy LG. Hormonal profiles in a canine model of the brain-dead organ donor. J Crit Care. 1994;9:7–17.

    Article  PubMed  CAS  Google Scholar 

  48. Kitai T, Tanaka A, Terasaki M, et al. Energy metabolism of the heart and the liver in brain-dead dogs as assessed by 31P NMR spectroscopy. J Surg Res. 1993;55:599–606.

    Article  PubMed  CAS  Google Scholar 

  49. Meyers CH, D’Amico TA, Peterseim DS, et al. Effects of triiodothyronine and vasopressin on cardiac function and myocardial blood flow after brain death. J Heart Lung Transplant. 1993;12:68–79.

    PubMed  CAS  Google Scholar 

  50. Schwartz I, Bird S, Lotz Z, Innes CR, Hickman R. The influence of thyroid hormone replacement in a porcine brain death model. Transplantation. 1993;55:474–6.

    Article  PubMed  CAS  Google Scholar 

  51. Mertes PM, Carteaux JP, Jaboin Y, et al. Estimation of myocardial interstitial norepinephrine release after brain death using cardiac microdialysis. Transplantation. 1994;57:371–7.

    Article  PubMed  CAS  Google Scholar 

  52. Mertes PM, Burtin P, Carteaux JP, et al. Brain death and myocardial injury: role of cardiac sympathetic innervation evaluated by in vivo interstitial microdialysis. Transplant Proc. 1994;26:231–2.

    PubMed  CAS  Google Scholar 

  53. Pinelli G, Mertes PM, Carteaux JP, et al. Myocardial effects of experimental acute brain death: evaluation by hemodynamic and biological studies. Ann Thorac Surg. 1995;60:1729–34.

    Article  PubMed  CAS  Google Scholar 

  54. Pinelli G, Mertes PM, Carteaux JP, Jaboin Y, Villemot JP. Consequences of brain death on myocardial metabolism: experimental study using 31P-nuclear magnetic resonance spectroscopy. Transplant Proc. 1995;27:1650–1.

    PubMed  CAS  Google Scholar 

  55. Bittner HB, Kendall SW, Campbell KA, Montine TJ, Van Trigt P. A valid experimental brain death organ donor model. J Heart Lung Transplant. 1995;14:308–17.

    PubMed  CAS  Google Scholar 

  56. Bittner HB, Kendall SW, Chen EP, Davis RD, Van Trigt PIII. Myocardial performance after graft preservation and subsequent cardiac transplantation from brain-dead donors. Ann Thorac Surg. 1995;60:47–54.

    PubMed  CAS  Google Scholar 

  57. Bittner HB, Chen EP, Milano CA, et al. Myocardial beta-adrenergic receptor function and high-energy phosphates in brain death-related cardiac dysfunction. Circulation. 1995;92(9 Suppl):472–8.

    Article  CAS  Google Scholar 

  58. Bittner HB, Kendall SW, Chen EP, Craig D, Van Trigt P. The effects of brain death on cardiopulmonary hemodynamics and pulmonary blood flow characteristics. Chest. 1995;108:1358–63.

    Article  PubMed  CAS  Google Scholar 

  59. Bittner HB, Kendall SW, Chen EP, Van Trigt P. Endocrine changes and metabolic responses in a validated canine brain death model. J Crit Care. 1995;10:56–63.

    Article  PubMed  CAS  Google Scholar 

  60. Bittner HB, Kendall SW, Chen EP, Van Trigt P. The combined effects of brain death and cardiac graft preservation on cardiopulmonary hemodynamics and function before and after subsequent heart transplantation. J Heart Lung Transplant. 1996;15:764–77.

    PubMed  CAS  Google Scholar 

  61. Bittner HB, Chen EP, Craid D, Van Trigt P. Preload-recruitable stroke ships and diastolic dysfunction in the brain-dead organ donor. Circulation. 1996;94 (suppl II):II-320–5.

    Google Scholar 

  62. Chen EP, Bittner HB, Kendall SW, Van Trigt P. Hormonal and hemodynamic changes in a validated animal model of brain death. Crit Care Med. 1996;24:1352–9.

    Article  PubMed  CAS  Google Scholar 

  63. Kendall SW, Bittner HB, Peterseim DS, Campbell KA, Van Trigt P. Right ventricular function in the donor heart. Eur J Cardiothorac Surg. 1997;11: 609–15.

    Article  PubMed  CAS  Google Scholar 

  64. Chiari P, Hadour G, Michel P, et al. Biphasic response after brain death induction: prominent part of catecholamines release in this phenomenon. J Heart Lung Transplant. 2000;19:675–82.

    Article  PubMed  CAS  Google Scholar 

  65. Seguin C, Devaux Y, Grosjean S, et al. Evidence of functional myocardial ischemia associated with myocardial dysfunction in brain-dead pigs. Circulation. 2001;104:197–201.

    Article  Google Scholar 

  66. Ryan JB, Hicks M, Cropper JR, et al. Functional evidence of reversible ischemic injury immediately after the sympathetic storm associated with experimental brain death. J Heart Lung Transplant. 2003;22: 922–8.

    Article  PubMed  Google Scholar 

  67. Hing AJ, Hicks M, Garlick SR, et al. The effects of hormone resuscitation on cardiac function and hemodynamics in a porcine brain-dead organ donor model. Am J Transplant. 2007;7:809–17.

    Article  PubMed  CAS  Google Scholar 

  68. Kondo T, Okada Y, Hirikoshi A, et al. Experimental study of lung transplantation from non-heart-beating donor following brain death in canine model of left lung allotransplantation. Acta Biomed Ateneo Parmense. 1994;65:133–45.

    PubMed  CAS  Google Scholar 

  69. Mertes PM, el Abassi K, Jaboin Y, et al. Changes in hemodynamic and metabolic parameters following induced brain death in the pig. Transplantation. 1994;58:414–8.

    Google Scholar 

  70. Sakagoshi N, Shirakura R, Nakano S, Taniguchi K, Miyamoto Y, Matsuda H. Serial changes in myocardial beta-adrenergic receptor after experimental brain death in dogs. J Heart Lung Transplant. 1992;11: 1054–8.

    PubMed  CAS  Google Scholar 

  71. D’Amico TA, Schwinn DA, Meyers CH, Sabiston Jr DC, van Trigt P. Desensitization of myocardial β[beta]-adrenergic receptors after brain death. Surg Forum. 1992;43:249–51.

    Google Scholar 

  72. D’Amico TA, Meyers CH, Koutlas TC, et al. Desensitization of myocardial beta-adrenergic receptors and deterioration of left ventricular function after brain death. J Thorac Cardiovasc Surg. 1995;110: 746–51.

    Article  PubMed  Google Scholar 

  73. Bittner HB, Chen EP, Kendall SW, Van Trigt P. Brain death alters cardiopulmonary hemodynamics and impairs right ventricular power reserve against an elevation of pulmonary vascular resistance. Chest. 1997;111:706–11.

    Article  PubMed  CAS  Google Scholar 

  74. Peterseim DS, Meyers CH, Craig DM, et al. Improved tolerance of the pediatric myocardium to brain death. J Heart Lung Transplant. 1993;12:S236–40.

    PubMed  CAS  Google Scholar 

  75. Peterseim DS, Chesnut LC, Meyers CH, D’Amico TA, Van Trigt P, Schwinn DA. Stability of the β-adrenergic receptor/adenyl cyclase pathway of pediatric myocardium after brain death. J Heart Lung Transplant. 1994;13:635–40.

    PubMed  CAS  Google Scholar 

  76. Bruinsma GJ, Nederhoff MG, Geertman HJ, et al. Acute increase of myocardial workload, hemodynamic instability, and myocardial histological changes induced by brain death in the cat. J Surg Res. 1997;68:7–15.

    Article  PubMed  CAS  Google Scholar 

  77. Bruinsma GJ, Nederhoff MG, van de Kolk CW, et al. Bio-energetic response of the heart to dopamine ­following brain death-related reduced myocardial workload: a phosphorus-31 magnetic resonance spectroscopy study in the cat. J Heart Lung Transplant. 1999;18:1189–97.

    Article  PubMed  CAS  Google Scholar 

  78. Bruinsma GJ, Van de Kolk CW, Nederhoff MG, Bredée JJ, Ruigrok TJ, Van Echteld CJ. Brain death-related energetic failure of the donor heart becomes apparent only during storage and reperfusion: an ex vivo phosphorus-31 magnetic resonance spectroscopy study on the feline heart. J Heart Lung Transplant. 2001;20:996–1004.

    Article  PubMed  CAS  Google Scholar 

  79. Brandon Bravo Bruinsma GJ, Nederhoff MG, te Boekhorst BC, Bredée JJ, Ruigrok TJ, van Echteld CJ. Brain death-induced alterations in myocardial workload and high-energy phosphates: a phosphorus 31 magnetic resonance spectroscopy study in the cat. J Heart Lung Transplant. 1998;17:984–90.

    Google Scholar 

  80. Sebening C, Hagl C, Szabo G, et al. Cardiocirculatory effects of acutely increased intracranial pressure and subsequent brain death. Eur J Cardiothorac Surg. 1995;9:360–72.

    Article  PubMed  CAS  Google Scholar 

  81. Hagl C, Szabo G, Sebening C, et al. is the brain death related endocrine dysfunction an indication for hormonal substitution therapy in the early period? Eur J Med Res. 1997;2:437–40.

    PubMed  CAS  Google Scholar 

  82. Szabó G, Sebening C, Hagl C, Tochtermann U, Vahl CF, Hagl S. Right ventricular function after brain death: response to an increased afterload. Eur J Cardiothorac Surg. 1998;13:449–58.

    Article  PubMed  Google Scholar 

  83. Szabó G, Sebening C, Hackert T, et al. Effects of brain death on myocardial function and ischemic tolerance of potential donor hearts. J Heart Lung Transplant. 1998;17:921–30.

    PubMed  Google Scholar 

  84. Szabó G, Sebening C, Hackert T, et al. The role of coronary perfusion changes in cardiac dysfunction associated with brain death. Thorac Cardiovasc Surg. 1998;46:339–43.

    Article  PubMed  Google Scholar 

  85. Szabó G, Sebening C, Hackert T, et al. Influence of brain death and cardiac preservation on systolic and diastolic function and coronary circulation in the cross-circulated canine heart. World J Surg. 1999;23:36–43.

    Article  PubMed  Google Scholar 

  86. Szabó G, Hackert T, Sebening C, Vahl CF, Hagl S. Modulation of coronary perfusion pressure can reverse cardiac dysfunction after brain death. Ann Thorac Surg. 1999;67:18–25.

    Article  PubMed  Google Scholar 

  87. Szabó G, Hackert T, Buhmann V, Sebening C, Vahl CF, Hagl S. Myocardial performance after brain death: studies in isolated hearts. Ann Transplant. 2000;5:45–50.

    PubMed  Google Scholar 

  88. Szabó G, Hackert T, Sebening C, Melnitchuk S, Vahl CF, Hagl S. Role of neural and humoral factors in hyperdynamic reaction and cardiac dysfunction following brain death. J Heart Lung Transplant. 2000;19:683–93.

    Article  PubMed  Google Scholar 

  89. Szabo G, Hackert T, Buhman V, et al. Downregulation of myocardial contractility via intact ventriculo-arterial coupling in the brain dead organ donor. Eur J Cardiothorac Surg. 2001;20:170–6.

    Article  PubMed  CAS  Google Scholar 

  90. Szabo G, Buhmann V, Vahl CF, Sebening C, Hagl S. Endothelial function after brain death. J Heart Lung Transplant. 2001;20:153.

    Article  PubMed  Google Scholar 

  91. Timek T, Bonz A, Dillmann R, Vahl CF, Hagl S. The effect of triiodothyronine on myocardial contractile performance after epinephrine exposure: implications for donor heart management. J Heart Lung Transplant. 1998;17:931–40.

    PubMed  CAS  Google Scholar 

  92. Timek T, Vahl CF, Bonz A, Schäffer L, Rosenberg M, Hagl S. Triiodothyronine reverses depressed contractile performance after excessive catecholamine stimulation. Ann Thorac Surg. 1998;66:1618–25.

    Article  PubMed  CAS  Google Scholar 

  93. Blaine EM, Tallman Jr RD, Frolicher D, Jordan MA, Bluth LL, Howie MB. Vasopressin supplementation in a porcine model of brain-dead potential organ donors. Transplantation. 1984;38:459–64.

    Article  PubMed  CAS  Google Scholar 

  94. De Luca FA, Cruz RJ Jr, Garrido Adel P, Prist R, Rocha-E-Silva M. Initial hepatosplanchnic blood flow distribution and oxygen metabolism in experimental model of hypotensive brain death. Ann Transplant. 2009;14:38–46.

    Google Scholar 

  95. Rosengard BR, Feng S, Alfrey EJ, et al. Report of the Crystal City meeting to maximize the use of organs recovered from the cadaver donor. Am J Transplant. 2002;2:701–11.

    Article  PubMed  Google Scholar 

  96. Zaroff JG, Rosengard BR, Armstrong WF, et al. Consensus conference report: maximizing use of organs recovered from the cadaver donor: cardiac recommendations, March 28–29, 2001, Crystal City, VA. Circulation. 2002;106:836–41.

    Google Scholar 

  97. Zaroff JG, Rosengard BR, Armstrong WF, et al. Maximizing use of organs recovered from the cadaver donor: cardiac recommendations. J Heart Lung Transplant. 2002;21:1153–60.

    Article  Google Scholar 

  98. Gøtzsche LB. Acute increase in cardiac performance after triiodothyronine: blunted response in amiodarone-treated pigs. J Cardiovasc Pharmacol. 1994;23:141–8.

    Article  PubMed  Google Scholar 

  99. Lyons JM, Pearl JM, McLean KM, et al. Glucocorticoid administration reduces cardiac dysfunction after brain death in pigs. J Heart Lung Transplant. 2005;24:2249–54.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

DN, WNW, and DKCC thank their many former colleagues in Cape Town and Oklahoma City who contributed to the studies reviewed here. The histopathological studies were largely carried out by our late good friend and colleague, Alan Rose, of the Department of Pathology of the University of Cape Town, in whose memory we dedicate this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David K. C. Cooper M.A., Ph.D., M.D., M.S., D.Sc.(Med), F.R.C.S., F.A.C.S. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Novitzky, D., Wicomb, W.N., Cooper, D.K.C. (2013). Pathophysiology of Brain Death and Effects of Hormonal Therapy in Large Animal Models. In: Novitzky, D., Cooper, D. (eds) The Brain-Dead Organ Donor. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4304-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4304-9_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4303-2

  • Online ISBN: 978-1-4614-4304-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics