Skip to main content

Brain Death-Induced Inflammation: Possible Role of the Cholinergic Anti-inflammatory Pathway

  • Chapter
  • First Online:
The Brain-Dead Organ Donor

Abstract

Brain death is accompanied by a systemic inflammatory response leading to inflammation in end-organs. Experimental studies in rats have demonstrated that brain death per se has adverse effects on immediate renal function in recipients. This points out that brain death-induced inflammation is an undesired event, affecting organ function and therefore should be prevented or limited in brain-dead donors. Apart from tissue ischemia, cytokine release from the brain and increased intestinal permeability leading to systemic immune activation may explain brain death-induced inflammation. Although not thoroughly studied, failure of the cholinergic anti-inflammatory pathway during brain death represents a further alternative to explain excessive inflammation in brain-dead donors. In this chapter, we discuss the inflammatory reflex, show the beneficial effect of activating the cholinergic anti-inflammatory pathway in a variety of experimental models including brain death, and finally we discuss the different modalities for activating the cholinergic anti-inflammatory pathway as therapeutic interventions. We conclude that stimulation of the anti-inflammatory pathway in brain-dead donors has the potential to reduce the proinflammatory status of the graft and thus to improve organ quality. Hence, more preclinical studies are warranted to assess the benefits, or adverse effect of this modality on organ function before its implementation as new donor management strategy into clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pratschke J, Neuhaus P, Tullius SG. What can be learned from brain-death models? Transpl Int. 2005;18(1):15–21.

    Article  PubMed  CAS  Google Scholar 

  2. Schuurs TA, Gerbens F, van der Hoeven JA, et al. Distinct transcriptional changes in donor kidneys upon brain death induction in rats: insights in the processes of brain death. Am J Transplant. 2004;4(12):1972–81.

    Article  PubMed  CAS  Google Scholar 

  3. Skrabal CA, Thompson LO, Potapov EV, et al. Organ-specific regulation of pro-inflammatory molecules in heart, lung, and kidney following brain death. J Surg Res. 2005;123(1):118–25.

    Article  PubMed  CAS  Google Scholar 

  4. Takada M, Nadeau KC, Hancock WW, et al. Effects of explosive brain death on cytokine activation of peripheral organs in the rat. Transplantation. 1998;65(12):1533–42.

    Article  PubMed  CAS  Google Scholar 

  5. Nijboer WN, Schuurs TA, van der Hoeven JA, et al. Effect of brain death on gene expression and tissue activation in human donor kidneys. Transplantation. 2004;78(7):978–86.

    Article  PubMed  Google Scholar 

  6. Kotsch K, Ulrich F, Reutzel-Selke A, et al. Methylprednisolone therapy in deceased donors reduces inflammation in the donor liver and improves outcome after liver transplantation: a prospective randomized controlled trial. Ann Surg. 2008;248(6): 1042–50.

    Article  PubMed  Google Scholar 

  7. Schnuelle P, Gottmann U, Hoeger S, et al. Effects of donor pretreatment with dopamine on graft function after kidney transplantation: a randomized controlled trial. JAMA. 2009;302(10):1067–75.

    Article  PubMed  CAS  Google Scholar 

  8. Koudstaal LG, Ottens PJ, Uges DR, Ploeg RJ, van Goor H, Leuvenink HG. Increased intestinal permeability in deceased brain dead rats. Transplantation. 2009;88(3):444–6.

    Article  PubMed  Google Scholar 

  9. Obermaier R, von Dobschuetz E, Keck T, et al. Brain death impairs pancreatic microcirculation. Am J Transplant. 2004;4(2):210–5.

    Article  PubMed  Google Scholar 

  10. Tracey KJ. The inflammatory reflex. Nature. 2002;420(6917):853–9.

    Article  PubMed  CAS  Google Scholar 

  11. Sternberg EM, Hill JM, Chrousos GP, et al. Inflammatory mediator-induced hypothalamic-pituitary-adrenal axis activation is defective in streptococcal cell wall arthritis-susceptible Lewis rats. Proc Natl Acad Sci USA. 1989;86(7):2374–8.

    Article  PubMed  CAS  Google Scholar 

  12. Watkins LR, Maier SF. Implications of immune-to-brain communication for sickness and pain. Proc Natl Acad Sci USA. 1999;96(14):7710–3.

    Article  PubMed  CAS  Google Scholar 

  13. Wang H, Yu M, Ochani M, et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature. 2003;421(6921):384–8.

    Article  PubMed  CAS  Google Scholar 

  14. Parrish WR, Rosas-Ballina M, Gallowitsch-Puerta M, et al. Modulation of TNF release by choline requires Alpha7 subunit nicotinic acetylcholine receptor-mediated signaling. Mol Med. 2008;14(9–10): 567–74.

    PubMed  CAS  Google Scholar 

  15. Wang H, Liao H, Ochani M, et al. Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nat Med. 2004;10(11):1216–21.

    Article  PubMed  CAS  Google Scholar 

  16. de Jonge WJ, van der Zanden EP, The FO, et al. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nat Immunol. 2005;6(8):844–51.

    Article  PubMed  Google Scholar 

  17. Takeda K, Clausen BE, Kaisho T, et al. Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity. 1999;10(1):39–49.

    Article  PubMed  CAS  Google Scholar 

  18. van Westerloo DJ, Giebelen IA, Florquin S, et al. The cholinergic anti-inflammatory pathway regulates the host response during septic peritonitis. J Infect Dis. 2005;191(12):2138–48.

    Article  PubMed  Google Scholar 

  19. Saeed RW, Varma S, Peng-Nemeroff T, et al. Cholinergic stimulation blocks endothelial cell activation and leukocyte recruitment during inflammation. J Exp Med. 2005;201(7):1113–23.

    Article  PubMed  CAS  Google Scholar 

  20. Ghia JE, Blennerhassett P, Collins SM. Vagus nerve integrity and experimental colitis. Am J Physiol Gastrointest Liver Physiol. 2007;293(3):G560–7.

    Article  PubMed  CAS  Google Scholar 

  21. Ghia JE, Blennerhassett P, El-Sharkawy RT, Collins SM. The protective effect of the vagus nerve in a murine model of chronic relapsing colitis. Am J Physiol Gastrointest Liver Physiol. 2007;293(4):G711–8.

    Article  PubMed  CAS  Google Scholar 

  22. Ghia JE, Blennerhassett P, Collins SM. Impaired parasympathetic function increases susceptibility to inflammatory bowel disease in a mouse model of depression. J Clin Invest. 2008;118(6):2209–18.

    PubMed  CAS  Google Scholar 

  23. van Maanen MA, Stoof SP, van der Zanden EP, et al. The alpha7 nicotinic acetylcholine receptor on fibroblast-like synoviocytes and in synovial tissue from rheumatoid arthritis patients: a possible role for a key neurotransmitter in synovial inflammation. Arthritis Rheum. 2009;60(5):1272–81.

    Article  PubMed  Google Scholar 

  24. van Westerloo DJ, Giebelen IA, Florquin S, et al. The vagus nerve and nicotinic receptors modulate experimental pancreatitis severity in mice. Gastroenterology. 2006;130(6):1822–30.

    Article  PubMed  Google Scholar 

  25. Yeboah MM, Xue X, Duan B, et al. Cholinergic agonists attenuate renal ischemia-reperfusion injury in rats. Kidney Int. 2008;74(1):62–9.

    Article  PubMed  CAS  Google Scholar 

  26. Huston JM, Ochani M, Rosas-Ballina M, et al. Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis. J Exp Med. 2006;203(7): 1623–8.

    Article  PubMed  CAS  Google Scholar 

  27. Berthoud HR, Powley TL. Characterization of vagal innervation to the rat celiac, suprarenal and mesenteric ganglia. J Auton Nerv Syst. 1993;42(2): 153–69.

    Article  PubMed  CAS  Google Scholar 

  28. Bellinger DL, Lorton D, Hamill RW, Felten SY, Felten DL. Acetylcholinesterase staining and choline acetyltransferase activity in the young adult rat spleen: lack of evidence for cholinergic innervation. Brain Behav Immun. 1993;7(3):191–204.

    Article  PubMed  CAS  Google Scholar 

  29. Vida G, Pena G, Deitch EA, Ulloa L. Alpha7-Cholinergic receptor mediates vagal induction of splenic norepinephrine. J Immunol. 2011;186(7): 4340–6.

    Article  PubMed  CAS  Google Scholar 

  30. Koedel U, Merbt UM, Schmidt C, et al. Acute brain injury triggers MyD88-dependent, TLR2/4-independent inflammatory responses. Am J Pathol. 2007;171(1):200–13.

    Article  PubMed  CAS  Google Scholar 

  31. Hietbrink F, Koenderman L, Rijkers G, Leenen L. Trauma: the role of the innate immune system. World J Emerg Surg. 2006;1:15.

    Article  PubMed  CAS  Google Scholar 

  32. O’Sullivan ST, Lederer JA, Horgan AF, Chin DH, Mannick JA, Rodrick ML. Major injury leads to predominance of the T helper-2 lymphocyte phenotype and diminished interleukin-12 production associated with decreased resistance to infection. Ann Surg. 1995;222(4):482–90; discussion 490–2.

    Google Scholar 

  33. Woiciechowsky C, Asadullah K, Nestler D, et al. Sympathetic activation triggers systemic interleukin-10 release in immunodepression induced by brain injury. Nat Med. 1998;4(7):808–13.

    Article  PubMed  CAS  Google Scholar 

  34. Elenkov IJ, Kvetnansky R, Hashiramoto A, et al. Low- versus high-baseline epinephrine output shapes opposite innate cytokine profiles: presence of Lewis- and Fischer-like neurohormonal immune phenotypes in humans? J Immunol. 2008;181(3):1737–45.

    PubMed  CAS  Google Scholar 

  35. Szabo C, Hasko G, Zingarelli B, et al. Isoproterenol regulates tumour necrosis factor, interleukin-10, interleukin-6 and nitric oxide production and protects against the development of vascular hyporeactivity in endotoxaemia. Immunology. 1997;90(1):95–100.

    Article  PubMed  CAS  Google Scholar 

  36. Riese U, Brenner S, Docke WD, et al. Catecholamines induce IL-10 release in patients suffering from acute myocardial infarction by transactivating its promoter in monocytic but not in T-cells. Mol Cell Biochem. 2000;212(1–2):45–50.

    Article  PubMed  CAS  Google Scholar 

  37. Kox M, Pompe JC, Pickkers P, Hoedemaekers CW, van Vugt AB, van der Hoeven JG. Increased vagal tone accounts for the observed immune paralysis in patients with traumatic brain injury. Neurology. 2008;70(6):480–5.

    Article  PubMed  CAS  Google Scholar 

  38. Homsi S, Federico F, Croci N, et al. Minocycline effects on cerebral edema: relations with inflammatory and oxidative stress markers following traumatic brain injury in mice. Brain Res. 2009;1291:122–32.

    Article  PubMed  CAS  Google Scholar 

  39. Ziebell JM, Morganti-Kossmann MC. Involvement of pro- and anti-inflammatory cytokines and chemokines in the pathophysiology of traumatic brain injury. Neurotherapeutics. 2010;7(1):22–30.

    Article  PubMed  CAS  Google Scholar 

  40. Norman GJ, Morris JS, Karelina K, et al. Cardiopulmonary arrest and resuscitation disrupts cholinergic anti-inflammatory processes: a role for cholinergic alpha7 nicotinic receptors. J Neurosci. 2011;31(9):3446–52.

    Article  PubMed  CAS  Google Scholar 

  41. Biswas AK, Scott WA, Sommerauer JF, Luckett PM. Heart rate variability after acute traumatic brain injury in children. Crit Care Med. 2000;28(12):3907–12.

    Article  PubMed  CAS  Google Scholar 

  42. Su CF, Kuo TB, Kuo JS, Lai HY, Chen HI. Sympathetic and parasympathetic activities evaluated by heart-rate variability in head injury of various severities. Clin Neurophysiol. 2005;116(6):1273–9.

    Article  PubMed  Google Scholar 

  43. Sloan RP, McCreath H, Tracey KJ, Sidney S, Liu K, Seeman T. RR interval variability is inversely related to inflammatory markers: the CARDIA study. Mol Med. 2007;13(3–4):178–84.

    PubMed  Google Scholar 

  44. Chiou CW, Zipes DP. Selective vagal denervation of the atria eliminates heart rate variability and baroreflex sensitivity while preserving ventricular innervation. Circulation. 1998;98(4):360–8.

    Article  PubMed  CAS  Google Scholar 

  45. Hoeger S, Bergstraesser C, Selhorst J, et al. Modulation of brain dead induced inflammation by vagus nerve stimulation. Am J Transplant. 2010;10(3):477–89.

    Article  PubMed  CAS  Google Scholar 

  46. Huber TS, Kluger MJ, Harris SP, D’Alecy LG. Plasma profiles of IL-6-like and TNF-like activities in brain-dead dogs. Am J Physiol. 1991;261(5 Pt 2): R1133–40.

    PubMed  CAS  Google Scholar 

  47. van der Hoeven JA, Ploeg RJ, Postema F, et al. Induction of organ dysfunction and activation of inflammatory markers in donor liver and kidney during hypotensive brain death. Transplant Proc. 1999;31(1–2):1006–7.

    Article  PubMed  Google Scholar 

  48. Chatterjee PK, Al-Abed Y, Sherry B, Metz CN. Cholinergic agonists regulate JAK2/STAT3 signaling to suppress endothelial cell activation. Am J Physiol Cell Physiol. 2009;297(5):C1294–306.

    Article  PubMed  CAS  Google Scholar 

  49. Huston JM, Rosas-Ballina M, Xue X, et al. Cholinergic neural signals to the spleen down-regulate leukocyte trafficking via CD11b. J Immunol. 2009;183(1): 552–9.

    Article  PubMed  CAS  Google Scholar 

  50. Huston JM, Gallowitsch-Puerta M, Ochani M, et al. Transcutaneous vagus nerve stimulation reduces serum high mobility group box 1 levels and improves survival in murine sepsis. Crit Care Med. 2007;35(12):2762–8.

    Article  PubMed  Google Scholar 

  51. Fodale V, Santamaria LB. Cholinesterase inhibitors improve survival in experimental sepsis: a new way to activate the cholinergic anti-inflammatory pathway. Crit Care Med. 2008;36(2):622–3.

    Article  PubMed  Google Scholar 

  52. Pavlov VA, Parrish WR, Rosas-Ballina M, et al. Brain acetylcholinesterase activity controls systemic cytokine levels through the cholinergic anti-inflammatory pathway. Brain Behav Immun. 2009; 23(1):41–5.

    Article  PubMed  CAS  Google Scholar 

  53. van Maanen MA, Vervoordeldonk MJ, Tak PP. The cholinergic anti-inflammatory pathway: towards innovative treatment of rheumatoid arthritis. Nat Rev Rheumatol. 2009;5(4):229–32.

    Article  PubMed  Google Scholar 

  54. Pascual M, Theruvath T, Kawai T, Tolkoff-Rubin N, Cosimi AB. Strategies to improve long-term outcomes after renal transplantation. N Engl J Med. 2002;346(8):580–90.

    Article  PubMed  Google Scholar 

  55. Hing A, Hicks M, Gao L, Wilson M, Mackie F, Macdonald PS. The case for a standardised protocol that includes hormone resuscitation for the management of the cadaveric multi-organ donor. Crit Care Resusc. 2005;7(1):43–50.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Hoeger Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hoeger, S., Yard, B.A. (2013). Brain Death-Induced Inflammation: Possible Role of the Cholinergic Anti-inflammatory Pathway. In: Novitzky, D., Cooper, D. (eds) The Brain-Dead Organ Donor. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4304-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4304-9_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4303-2

  • Online ISBN: 978-1-4614-4304-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics