Magnetic Reconnection and Turbulence

  • Boris V. Somov
Part of the Astrophysics and Space Science Library book series (ASSL, volume 392)


The open issues focused on in this chapter presumably will determine the nearest future as well as the most interesting perspectives of plasma astrophysics. Magnetic energy release due to reconnection in the very complex systems of magnetic flux tubes (for example, a cosmic MHD turbulent plasma) is one of these issues.


Solar Flare Flux Tube Magnetic Helicity Toroidal Field Coronal Heating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abbasi, R., Ackermann, M., Adams, J., et al.: Solar energetic particle spectrum on 2006 December 13 determined by IceTop. Astrophys. J. 689(1), L65–L68 (2008) [Sect.  11.4.3]Google Scholar
  2. Acton, L.: Coronal structures, local and global. In: Uchida, Y., Kosugi, T., Hudson, H. (eds.) Magnetohydrodynamic Phenomena in the Solar Atmosphere: Prototypes of Stellar Magnetic Activity, pp. 3–11. Kluwer, Dordrecht (1996) [Sect.  14.4]
  3. Acton, L., Tsuneta, S., Ogawara, Y., et al.: The Yohkohmission for high-energy solar physics. Science 258(5082), 618–625 (1992) [Intr., Sects.  4.3.5 and 6.1]Google Scholar
  4. Akimov, V.V., Ambroz, P., Belov, A.V., et al.: Evidence for prolongated acceleration in the solar flare of June 15, 1991. Sol. Phys. 166(1), 107–134 (1996) [Sect. 11.4]Google Scholar
  5. Alfvén, H., Carlqvist, P.: Currents in the solar atmosphere and a theory of flares. Sol. Phys. 1(2), 220–228 (1967) [Sects. 5.2.4 and 16.2]Google Scholar
  6. Alfvén, H., Fälthammar, C.-G.: Cosmic Electrodynamics, Fundamental Principles, 2nd edn., p. 228. Clarendon Press, Oxford (1963)Google Scholar
  7. Allred, J.C., Hawley, S.L., Abbett, W.P., Carlsson, M.: Radiative hydrodynamic models of the optical and ultraviolet emission from solar flares. Astrophys. J. 630(1), 573–586 (2005) [Sect. 17.4.1]Google Scholar
  8. Altyntsev, A.T., Krasov, V.I., Tomozov V.M.: Magnetic field dissipation in neutral current sheets. Sol. Phys. 55(1), 69–81 (1977) [Sect. 5.1.2]Google Scholar
  9. Aly, J.J.: On some properties of force-free fields in infinite regions of space. Astrophys. J. 283(1), 349–362 (1984) [Sect. 16.2]Google Scholar
  10. Aly, J.J.: How much energy can be stored in a force-free field? Astrophys. J. 375(1), L61–L64 (1991) [Sect. 16.2]Google Scholar
  11. Anderson, J.E.: Magnetohydrodynamic Shock Waves, p. 226. M.I.T. Press, Cambridge (1963) [Sect. 12.2]Google Scholar
  12. Anosov, D.V.: Geodesic Flows on Closed Riemannian Manifolds with Negative Curvature, p. 235 American Mathematical Society, Providence (1969) [Sect. 11.2]Google Scholar
  13. Antiochos, S.K.: The magnetic topology of solar eruptions. Astrophys. J. 502, L181–L184 (1998) [Sects. 4.3.4, 5.3.2 and 8.6]Google Scholar
  14. Antiochos, S.K., Karpen, J.T., DeVore, C.R.: The nature of magnetic reconnection in the corona. In: Bentley, R.D., Mariska, J.T. (eds.) Magnetic Reconnection in the Solar Atmosphere. Astronomical Society of the Pacific Conference Series, vol. 111, p. 79–81. Astronomical Society of the Pacific, San Francisco (1997) [Sects. 5.1.2 and 12.1]Google Scholar
  15. Antiochos, S.K., DeVore, C.R., Klimchuk, J.A.: A model for solar coronal mass ejections. Astrophys. J. 510(1), 485–493 (1999) [Sects. 7.6 and 16.5.2]Google Scholar
  16. Antonova, E.E., Tverskoi, B.A.: On the nature of electric fields in the Earth’s inner magnetosphere (A review). Geomagn. Aeron. Int. 1(1), 9–21 (1998) [Sect. 10.2.2]Google Scholar
  17. Antonucci, E., Benna, C., Somov, B.V.: Interpretation of the observed plasma ‘turbulent’ velocities as a result of reconnection in solar flares. Astrophys. J. 456(2), 833–839 (1996) [Sects. 8.5.5 and 14.1]Google Scholar
  18. Anwar, B., Acton, L.W., Hudson, H.S., et al.: Rapid sunspot motion during a major solar flare. Sol. Phys. 147(2), 287–303 (1993) [Sect. 7.1.2]Google Scholar
  19. Apatenkov, S.V., Sergeev, V.A., Kubyshkina, M.V., et al.: Multi-spacecraft observation of plasma dipolarization/injection in the inner magnetosphere. Ann. Geophys. 25(3), 801–814 (2007) [Sect. 9.8]Google Scholar
  20. Archontis, V., Moreno-Insertis, F., Galsgaard, K., et al.: The three-dimensional interaction between emerging magnetic flux and a large-scale coronal field: reconnection, current sheets, and jets. Astrophys. J. 635(2), 1299–1318 (2005) [Sect. 5.2.1]Google Scholar
  21. Arge, C.N., Mullan, D.J.: Modeling of magnetic interactions in partially-ionized gas. Sol. Phys. 182(2), 293–332 (1998) [Sect. 15.4]Google Scholar
  22. Artsimovich, L.A., Sagdeev, R.Z.: Plasma Physics for Physicists, p. 320. Atomizdat, Moscow (1979) [Sect. 8.4.1]Google Scholar
  23. Asai, A., Ishii, T.T., Kurokawa, H., et al.:Evolution of conjugate footpoints inside flare ribbons during a great two-ribbon flare on 2001 April 10. Astrophys. J. 586, 624–629 (2003) [Sect. 7.4.1]Google Scholar
  24. Aschwanden, M.J., Alexander, D.: Flare plasma cooling from 30 MK down to 1 MK modeled from Yohkoh, GOES, and TRACE observations during the Bastille day event (14 July 2000). Sol. Phys. 204(1), 93–121 (2001) [Sects. 6.2.3, 6.2.4 and 7.1.1]Google Scholar
  25. Aschwanden, M.J., Kliem, B., Schwarz, U., et al.: Wavelet analysis of solar flare hard X-rays. Astrophys. J. 505(2), 941–956 (1998) [Sect. 9.2.3]Google Scholar
  26. Aschwanden, M.J., Kosugi, T., Hanaoka, Y., et al.: Quadrupole magnetic reconnection in solar flares. I. Three-dimensional geometry inferred from Yohkohobservations. Astrophys. J. 526, 1026–1045 (1999) [Sects. 8.6 and 9.1.3]Google Scholar
  27. Aulanier, G., DeLuca, E.E., Antiochos, S.K., et al.: The topology and evolution of the Bastille day 1998 flare. Astrophys. J. 540(2), 1126–1142 (2000) [Sects. 5.3.2 and 7.6]Google Scholar
  28. Ayres, T.R.: Thermal bifurcation of the solar chromosphere. In: Strassmeier, K.G., Linsky, J.L. (eds.) Stellar Surface Structure. IAU Symposium, vol. 176, p. 371–384. Kluwer, Dordrecht (1996) [Sect. 15.5]Google Scholar
  29. Bagalá, L.G., Mandrini, C.H., Rovira, M.G., et al.: A topological approach to understand a multi-loop flare. Sol. Phys. 161(1), 103–121 (1995) [Intr., Sects. 5.3.2, 8.6 and 16.2]Google Scholar
  30. Bai, T., Sturrock, P.A.: Classification of solar flares. Ann. Rev. Astron. Astrophys. 27, 421–467 (1989) [Sects. 11.1 and 11.4]Google Scholar
  31. Bai, T., Hudson, H.S., Pelling, R.M., et al.: First-order Fermi acceleration in solar flares as a mechanism for the second-step acceleration of protons and electrons. Astrophys. J. 267(1), 433–441 (1983) [Sect. 9.2.3]Google Scholar
  32. Barnes, G.: On the relationship between coronal magnetic null points and solar eruptive events. Astrophys. J. 670(1), L53–L56 (2007) [Sects. 6.3.1, 7.1.3 and 8.6]Google Scholar
  33. Barnes, G., Longcope, D.W., Leka, K.D.: Implementing a magnetic charge topology model for solar active regions. Astrophys. J. 629(1), 561–571 (2005) [Sect. 4.3.4]Google Scholar
  34. Barret, D., Olive, J.F., Boirin, L., et al.: Hard X-ray emission from low-mass X-ray binaries. Astrophys. J. 533, 329–351 (2000) [Sect. 10.3]Google Scholar
  35. Batchelor, G.K.: On the spontaneous magnetic field in a conducting liquid in turbulent motion. Proc. Royal Soc. A201, 405–416 (1950) [Sect. 14.1]Google Scholar
  36. Bateman, G., Erdelyi, A.: Higher Transcendental Functions. McGraw-Hill, New York (1953) [Sect. 3.4.1]Google Scholar
  37. Baum, P.J., Bratenahl, A., Kamin, G.: Current interruption and flux transfer solar flare models. Astrophys. J. 226(1), 286–300 (1978) [Sects. 5.1.3 and 16.2]Google Scholar
  38. Bazilevskaya, G.A.: Solar cosmic rays in the near Earth space and the atmosphere. Adv. Space Res. 35(3), 458–464 (2005) [Sect.  11.4.3]
  39. Becker, W. (ed.): Neutron Starts and Pulsars, p. 997. Springer, Berlin/Heidelberg (2009) [Intr., Sects. 10.3.2 and 11.5]Google Scholar
  40. Bednarek, W., Protheroe, R.J.: Gamma-ray and neutrino flares produced by protons accelerated on an accretion disc surface in active galactic nuclei. Mon. Not. Royal Astron. Soc. 302, 373–380 (1999) [Sect. 10.3]Google Scholar
  41. Begelman, M.C., Blandford, R.D., Rees, M.J.: Theory of extragalactic radio sources. Rev. Mod. Phys. 56(2), 255–351 (1984) [Intr.]Google Scholar
  42. Bentley, R.D., Klein, K.-L., van Driel-Gesztelyi, L., et al.: Magnetic activity associated with radio noise storms. Sol. Phys. 193(1–2), 227–245 (2000) [Sect. 5.3.2]Google Scholar
  43. Benz, A.: Plasma Astrophysics: Kinetic Processes in Solar and Stellar Coronae, 2nd edn., p. 299. Kluwer, Dordrecht (2002) [Sects. 6.2.6, 9.3.4 and 9.7]Google Scholar
  44. Benz, A., Krucker, S.: Heating events in the quiet solar corona. Sol. Phys. 182(2), 349–363 (1998) [Sect.  14.4]
  45. Benz, A., Krucker, S.: Heating events in the quiet solar corona: multiwavelength correlations. Astron. Astrophys. 341(1), 286–295 (1999) [Sect.  14.4]
  46. Benz, A.O., Lin, R.P., Sheiner, O.A., et al.: The source regions of impulsive solar electron events. Sol. Phys. 203(1), 131–144 (2001) [Sect. 11.4]Google Scholar
  47. Berestetskii, V.B., Lifshitz, E.M., Pitaevskii, L.P.: Quantum Electrodynamics. Fizmatlit, Moscow (2001) (in Russian) [Sect. 9.5.3]Google Scholar
  48. Berger, M.A.: Rigorous limits on magnetic helicity dissipation in the solar corona. Geophys. Astrophys. Fluid Dyn. 30(1), 79–104 (1984) [Sect. 14.1]Google Scholar
  49. Berger, M.A.: An energy formula for nonlinear force-free fields. Astron. Astrophys. 201(1), 355–361 (1988) [Sects. 14.1 and 14.2]Google Scholar
  50. Berger, M.A.: Three-dimensional reconnection from a global viewpoint. In: Guyenne, T.D., Hunt, J.J. (eds.) Reconnection in Space Plasma. ESA SP-285, vol. 2, p. 83–86. European Space Agency, Paris (1989) [Sects. 14.1 and 16.2]Google Scholar
  51. Berger, M.A.: Coronal heating by dissipation of magnetic structure. Space Sci. Rev. 68(1), 3–14 (1994) [Sect. 14.2]Google Scholar
  52. Bezrodnykh, S.I., Vlasov, V.I., Somov, B.V.: Analytical model of magnetic reconnection in the presence of shock waves attached to a current sheet. Astron. Lett. 33(2), 130–136 (2007) [Sects. 3.2 and 3.4.1]Google Scholar
  53. Bezrodnykh, S.I., Vlasov, V.I., Somov, B.V.: Generalized analytical models of Syrovatskii’s current sheet. Astron. Lett. 37(2), 113–130 (2011) [Sects. 3.2, 3.4.3 and 3.6]Google Scholar
  54. Bhattacharjee, A.: Impulsive magnetic reconnection in the Earth’s magnetotail and the solar corona. Ann. Rev. Astron. Astrophys. 42(1), 365–384 (2004) [Sect. 2.4.4]Google Scholar
  55. Birk, G.T., Otto, A.: The resistive tearing instability for generalized resistivity models. Phys. Fluids 3(B7), 1746–1754 (1991) [Sect. 13.1.2]Google Scholar
  56. Biskamp, D.: Magnetic reconnection via current sheets. Phys. Fluids 29(5), 1520–1531 (1986) [Sects. 3.2, 3.4.3 and 4.2.4, 12.1 and 12.5]Google Scholar
  57. Biskamp, D.: Resistive and collisionless magnetic reconnection. In: Chiudery, C., Einaudi, G. (eds.) Plasma Astrophysics, pp. 1–29. Springer, Berlin (1994) [Sect. 8.6]Google Scholar
  58. Biskamp, D.: Nonlinear Magnetohydrodynamics, p. 392. Cambridge University Press, Cambridge, UK (1997) [Sects. 3.1, 3.4.3, 4.2.4, 8.1.3, 12.1 and 12.5]Google Scholar
  59. Bogachev, S.A., Somov, B.V.: Comparison of the Fermi and betatron acceleration efficiencies in collapsing magnetic traps. Astron. Lett. 33(1), 54–62 (2005) [Sects. 9.4.2 and 9.4.3, 9.4.4 and 9.4.5]Google Scholar
  60. Bogachev, S.A., Somov, B.V.: Formation of power-law electron spectra in collapsing magnetic traps. Astron. Lett. 33(1), 54–62 (2007) [Sects. 9.5.1 and 9.5.3]Google Scholar
  61. Bogachev, S.A., Somov, B.V.: Effect of Coulomb collisions on the particle acceleration in collapsing magnetic traps. Astron. Lett. 35(1), 57–69 (2009) [Sects. 9.2.2, 9.6.2, 9.6.3, 9.6.4 and 9.7]Google Scholar
  62. Bogachev, S.A., Somov, B.V., Masuda, S.: On the velocity of a hard X-ray source in the solar corona. Astron. Lett. 24(4), 543–548 (1998) [Sects. 9.2.4 and 9.4.1]Google Scholar
  63. Bogachev, S.A., Somov, B.V., Kosugi, T., et al.: The motions of the hard X-ray sources in solar flares: images and statistics. Astrophys. J. 630(1), 561–572 (2005) [Sect. 7.4.5]Google Scholar
  64. Bogdanov, S.Yu., Frank, A.G., Kyrei, N.P., and Markov, V.S.: Magnetic reconnection, generation of plasma fluxes and accelerated particles in laboratory experiments. In: Plasma Astrophys. ESA SP-251, pp. 177–183. ESA Publications Division, Noordwijk (1986) [Sect. 5.1.2]Google Scholar
  65. Bogdanov, S.Yu., Kyrei, N.P., Markov, V.S., and Frank, A.G.: Current sheets in magnetic configurations with singular X-lines. JETP Lett. 71(2), 78–84 (2000) [Sect. 5.1.2]Google Scholar
  66. Borovsky, J.E., Funsten, H.O.: Role of the solar wind turbulence in coupling of the solar wind to the Earth’s magnetosphere. J. Geophys. Res. 108(A6), pp. SMP 13–1, CiteID 1246 (2003a) [Sects. 10.2.2 and 14.1.3]Google Scholar
  67. Borovsky, J.E., Funsten, H.O.: MHD turbulence in the Earth’s plasma sheet: dynamics, dissipation, and driving. J. Geophys. Res. 108(A7), pp. SMP 9–1, CiteID 1284 (2003b) [Sects. 10.2.2 and 14.1.3]Google Scholar
  68. Brandenburg, A.: An inverse cascade and nonlinear α-effect in simulations of isotropic helical hydromagnetic turbulence. Astrophys. J. 550(2), 824–840 (2001) [Sect. 14.1]Google Scholar
  69. Brandenburg, A., Subramanian, K.: Large scale dynamos with ambipolar diffusion nonlinearity. Astron. Astrophys. 361, L33–L36 (2000) [Sect. 14.1]Google Scholar
  70. Brissaud, A., Frisch, U., Leorat, J., et al.: Helicity cascades in fully developed isotropic turbulence. Phys. Fluid 16, 1366–1367 (1973) [Sect. 14.1]Google Scholar
  71. Brown, J.C.: The deduction of energy spectra of non-thermal electrons in flares from the observed dynamic spectra of hard X-ray bursts. Sol. Phys. 18(3), 489–502 (1971) [Sect. 17.3.1]Google Scholar
  72. Brown, J.C.: The temperature structure of chromospheric flares heated by non-thermal electrons. Sol. Phys. 31(1), 143–169 (1973) [Sect. 17.4.1]Google Scholar
  73. Brown, J.C., Hoyng, P.: Betatron acceleration in a large solar hard X-ray burst. Astrophys. J. 200(1), 734–746 (1975) [Sect. 17.3.2]Google Scholar
  74. Browning, P.K.: Helicity injection and relaxation in a coronal magnetic loop with a free surface. J. Plasma Phys. 40(2), 263–280 (1988) [Sect. 14.2]Google Scholar
  75. Brushlinskii, K.V., Zaborov, A.M., Syrovatskii, S.I.: Numerical analysis of the current sheet near a magnetic null line. Sov. J. Plasma Phys. 6(2), 165–173 (1980) [Sects. 3.2, 3.4.3, 4.2.4, 5.1.2, 12.1 and 12.5]Google Scholar
  76. Büchner, J., Zelenyi, L.: Regular and chaotic particle motion in magnetotail field reversal. J. Geophys. Res. 94(A9), 11821–11842 (1989) [Sect. 11.2]Google Scholar
  77. Bykov, A.M., Chevalier, R.A., Ellison, D.C., et al.: Non-thermal emission from a supernova remnant in a molecular cloud. Astrophys. J. 538(1), 203–216 (2000) [Sect. 9.6.1]Google Scholar
  78. Canfield, R.C., Hudson, H.S., McKenzie, D.E.: Sigmoidal morphology and eruptive solar activity. Geophys. Res. Lett. 26(6), 627–630 (1999) [Sect. 4.3.5]Google Scholar
  79. Carrington, R.C.: Description of a singular appearance seen in the Sun on September 1, 1859. Mon. Not. R. Astron. Soc. 20(1), 13–15 (1859) [Sect. 4.1.1]Google Scholar
  80. Casolino, M., Picozza, P., Altamura, F., et al.: Launch of the space experiment PAMELA. Adv. Space Res. 42(3), 455–466 (2008) [Sect.  11.4.3]
  81. Casolino, M., Bongue, D., De Pascale, M.P., et al.: The Pamela cosmic ray space observatory: detector, objectives and first results. E-print arXiv:0904.4692v1[astro-ph.HE] (2009) [Sect.  11.4.3]
  82. Cassak, P.A., Drake, J.F., Shay, M.A., et al.: Onset of fast magnetic reconnection. Phys. Rev. Lett. 98(21), id. 215001 (2007) [Sect. 4.2.4]Google Scholar
  83. Cattaneo, F.: On the origin of magnetic fields in the quiet photosphere. Astrophys. J. 515, L39–L42 (1999) [Sect. 14.1]Google Scholar
  84. Chae, J., Wang, H., Qiu, J., et al.: The formation of a prominence in active region NOAA 8668. 1. SOHO/MDI observations of magnetic field evolution. Astrophys. J. 560(1), 476–489 (2001) [Sect. 7.3]Google Scholar
  85. Chandra, R., Pariat, E., Schmieder, B., et al.: How can a negative magnetic helicity active region generate a positive helicity magnetic cloud? Sol. Phys. 261(1), 127–148 (2010) [Sect. 6.4.1]Google Scholar
  86. Chapman, S., Kendall, P.C.: Liquid instability and energy transformation near magnetic neutral line. A soluble non-linear hydromagnetic problem. Proc. Roy. Soc. Lond. A271, 435–448 (1963) [Sects. 2.4.1 and 2.4.2]Google Scholar
  87. Chen, J., Palmadesso, P.J.: Chaos and nonlinear dynamics of single particle orbits in a magnetotail field. J. Geophys. Res. 91(A2), 1499–1508 (1986) [Sect. 11.2]Google Scholar
  88. Chen, P.F., Fang, C., Tang, Y.H., Ding, M.D.: Simulation of magnetic reconnection with heat conduction. Astrophys. J. 513(1), 516–523 (1999a) [Sect. 3.4.3]Google Scholar
  89. Chen, P.F., Fang, C., Ding, M.D., Tang, Y.H.: Flaring loop motion and a unified model for solar flares. Astrophys. J. 520(2), 853–858 (1999b) [Sects. 3.4.3 and 8.5.2]Google Scholar
  90. Cheng, K.S., Romero, G.E. (eds.): Cosmic Gamma-Ray Sources, p. 402 Kluwer, Dordrecht (2004) [Sect. 11.5]Google Scholar
  91. Cho, J., Vishniac, E.T.: The anisotropy of magnetohydrodynamic Alfvenic turbulence. Astrophys. J. 539(1), 273–282 (2000a) [Sect. 14.1]Google Scholar
  92. Cho, J., Vishniac, E.T.: The generation of magnetic fields through driven turbulence. Astrophys. J. 538(1), 217–225 (2000b) [Sect. 14.1]Google Scholar
  93. Chupp, E.L.: In: Ramaty, R., Mandzhavidze, N., Hua, X.-M. (eds.) High Energy Solar Physics. AIP conference proceedings, vol. 374, pp. 3–9 AIP, Woodbury (1996) [Sect. 11.4]Google Scholar
  94. Chupp, E.L., Forrest, D.J., Higbie, P.R., et al.: Solar gamma ray lines observed during the solar activity of August 2 to August 11. Nature 241, 333 (1973) [Sect. 17.4.2]Google Scholar
  95. Colgate, S.A.: Relationship between high-energy phenomena on the Sun and in astrophysics. Sol. Phys. 118(1), 1–15 (1988) [Sect. 11.4]Google Scholar
  96. Colgate, S.A., Furth, H.P.: Stabilization of pinch discharges. Phys. Fluid 3(6), 982–1000 (1960) [Sect. 13.1.2]Google Scholar
  97. Colpi, M., Casella, P., Gorini, V., et al. (eds.): Physics of Relativistic Objects in Compact Binaries: From Birth to Coalescence, p. 378 Springer, Dordrecht (2009) [Sect. 11.5]Google Scholar
  98. Contopoulos, G.: Order and Chaos in Dynamical Astronomy, Springer, Berlin (2002) [Sect. 11.2]MATHCrossRefGoogle Scholar
  99. Coppi, B., Laval, G., Pellat, R.: Dynamics of the geomagnetic tail. Phys. Rev. Lett. 6(26), 1207–1210 (1966) [Sects. 13.1.2 and 13.6]Google Scholar
  100. Cowley, S.W.H.: Magnetic reconnection. In: Priest, E.R. (ed.) Solar System Magnetic Fields, p. 121–134 D. Reidel Publishing, Dordrecht (1986) [Sect. 1.2.2]Google Scholar
  101. Cox, D.P., Tucker, W.H.: Ionization equilibrium and radiative cooling of a low-density plasma. Astrophys. J. 157(3), 1157–1167 (1969) [Sect. 8.1.2]Google Scholar
  102. Craig, I.J.D., McClymont, A.N.: Linear theory of reconnection at an X-type neutral point. Astrophys. J. 405(1), 207–215 (1993) [Sect. 15.2.3]Google Scholar
  103. Crooker, N., Joselyn, J.A., Feynman, J. (eds): Coronal Mass Ejections, p. 299. American Geophysical Union, Washington (1997) [Intr.]Google Scholar
  104. Crooker, N.U., Gosling, J.T., Kahler, S.W.: Reducing heliospheric magnetic flux from coronal mass ejections without disconnection. J. Geophys. Res. 107(A2), SSH 3–1 (2002) [Sect. 7.2.2]Google Scholar
  105. Day, C.: SOHO observations implicate ‘magnetic carpet’ as source of coronal heating in quiet Sun. Physics Today. March issue, 19–21 (1998) [Sect.  14.4]
  106. de Feiter, L.D.: Solar flares as source of energetic particles. Space Sci. Rev. 16(1), 3–43 (1974) [Sect. 17.3.2]Google Scholar
  107. de Jager, C.: Solar flares and particle acceleration. Space Sci. Rev. 44(1), 43–90 (1986) [Sect. 14.1]Google Scholar
  108. de Jager, C.: Solar forcing of climate. 1: solar variability. Space Sci. Rev. 120(1), 197–241 (2005) [Intr., Sect. 10.2.3]Google Scholar
  109. de Jager, C., de Jonge, G.: Properties of elementary flare bursts. Sol. Phys. 58(1), 127–137 (1978) [Sect. 17.3.2]Google Scholar
  110. de Kluiver, H., Perepelkin, N.F., Hirose, A.: Experimental results on current-driven turbulence in plasmas – A survey. Phys. Rep. (Review Section of Physics Letters) 199(6), 281–381 (1991) [Sect. 10.1]Google Scholar
  111. Démoulin, P., van Driel-Gesztelyi, L., Schmieder, B., et al.: Evidence for magnetic reconnection in solar flares. Astron. Astrophys. 271(1), 292–307 (1993) [Intr., Sects. 5.3.2, 8.6 and 16.2]Google Scholar
  112. Den, O.G., Somov, B.V.: Magnetic field dissipation in a high-temperature plasma as a mechanism of energy release in a solar flare. Sov. Astron. – AJ 33(2), 149–155 (1989) [Sects. 4.3.3, 5.1.1, 8.5.5 and 16.2]Google Scholar
  113. Deng, Y., Wang, J., Yan, Y., et al.: Evolution of magnetic non-potentiality in NOAA AR 9077. Sol. Phys. 204(1), 13–28 (2001) [Sects. 6.2.4, 7.1.1 and 7.6]Google Scholar
  114. Dennis, B.R.: Solar hard X-ray bursts. Sol. Phys. 100(2), 465–490 (1985) [Sect. 8.5.5]Google Scholar
  115. Dennis, B.R.: Solar flare hard X-ray observations. Sol. Phys. 118(1), 49–94 (1988) [Sect. 8.5.5]Google Scholar
  116. DeVore, C.R., Antiochos, S.K., Guillaume, A.: Solar prominence interactions. Astrophys. J. 629(2), 1122–1134 (2005) [Sect. 15.3]Google Scholar
  117. Dobrowolny, M.: Instability of a neutral sheet. Nuovo Cimento B55(1), 427–438 (1968) [Sect. 11.3]Google Scholar
  118. Domingo, V., Fleck, B., Poland, A.A.: SOHO: the solar and heliospheric observatory. Space Sci. Rev. 72(1), 81–84 (1995) [Intr., Sect. 6.1]Google Scholar
  119. Drake, J.F., Biskamp, D., Zeiler, A.: Breakup of the electron current layer during 3-D collisionless reconnection. Geophys. Res. Lett. 24(2), 2921–2924 (1997) [Sect. 3.5]Google Scholar
  120. Dreicer, H.: Electron and ion runaway in a fully ionized gas. Phys. Rev. 115(2), 238–249 (1959) [Sect. 8.1.1]Google Scholar
  121. Dubrovin, B.A., Novikov, S.P., Fomenko, A.T.: Modern Geometry, p. 515. Nauka, Moscow (1986) (in Russian) [Sects. 4.2.2 and 4.2.3]Google Scholar
  122. Duijveman, A., Hoyng P., Ionson, J.A.: Fast plasma heating by anomalous and inertial resistivity effects in the solar atmosphere. Astrophys. J. 245(2), 721–735 (1981) [Sect. 8.4.1]Google Scholar
  123. Duijveman, A., Somov B.V., Spektor, J.A.: Evolution of a flaring loop after injection of energetic electrons. Sol. Phys. 88(1), 257–273 (1983) [Sect. 4.3.1]Google Scholar
  124. Duncan, R.C., Thompson, C.: Formation of very strongly magnetized neutron stars: implications for gamma-ray bursts. Astrophys. J. 392(1), L9–L13 (1992) [Intr.]Google Scholar
  125. Dungey, J.W.: Cosmic Electrodynamics, p. 183. Cambridge University Press, England (1958) [Intr., Sects. 1.1.1, 2.1.1, 13.1.2 and 16.2]Google Scholar
  126. Dungey, J.W.: Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 6(2), 47–48 (1961) [Sect. 10.2]Google Scholar
  127. Efthymiopoulos, C., Gontikakis, C., Anastasiadis, A.: Particle dynamics in 3D reconnecting current sheets in the solar atmosphere. Astron. Astrophys. 443(2), 663–678 (2005) [Sect. 11.1.5]Google Scholar
  128. Ermolaev, Yu.I., Zelenyi, L.M., Zastenker, G.N., et al.: Solar and heliospheric disturbances that resulted in the strongest magnetic storm of November 20, 2003. Geomag. Aeron. 45(1), 20–34 (2005) [Sect. 6.4.1]Google Scholar
  129. Fang, C., Ding, M.D.: On the spectral characteristics and atmosphere models of the two types of white-light flares. Astron. Astrophys. Suppl. 110(1), 99–106 (1995) [Sect. 15.2.1]Google Scholar
  130. Field, G.B.: Thermal instability. Astrophys. J. 142(2), 531–567 (1965) [Sects. 5.1.2 and 8.1.2]Google Scholar
  131. Fletcher, L.: On the generation of loop-top impulsive hard X-ray sources. Astron. Astrophys. 303(1), L9–L12 (1995) [Sect. 9.2.1]Google Scholar
  132. Fletcher, L., Hudson, H.: The magnetic structure and generation of EUV flare ribbons. Sol. Phys. 204(1), 71–91 (2001) [Sects. 6.1, 6.2.3, 6.2.4 and 7.1.2]Google Scholar
  133. Fletcher, L., Hudson, H.: Spectral and spatial variations of flare hard X-ray footpoints. Sol. Phys. 210(1), 307–321 (2002) [Intr., Sect. 7.4.1]Google Scholar
  134. Fletcher, L., Hannah, I.G., Hudson, H.S., Metcalf, T.R.: A TRACE white light and RHESSI hard X-ray study of flare energetics. Astrophys. J. 656(2), 1187–1196 (2007) [Sect. 17.4.2]Google Scholar
  135. Forbes, T.G., Acton, L.W.: Reconnection and field line shrinkage in solar flares. Astrophys. J. 459(1), 330–341 (1996) [Sects. 6.1, 6.2.4 and 7.4.1]Google Scholar
  136. Frank, A.G., Bugrov, S.G., Markov, V.S.: Hall currents in a current sheet: structure and dynamics. Phys. Plasma 15, 092102 (2008) [Sect. 2.4.4]Google Scholar
  137. Frank, A., Bugrov, S., Markov, V.: Enhancement of the guide field during the current sheet formation in the three-dimensional magnetic configuration with an X line. Phys. Lett. A 373, 1460–1464 (2009) [Sect. 8.2.2]Google Scholar
  138. Froyland, J.: Introduction to Chaos and Coherence, p. 156. Institute of Physics Publishing, Bristol/Philadelphia/Tokyo (1992) [Sect. 11.2]Google Scholar
  139. Furth, H.P.: Sheet pinch instabilities caused by finite conductivity. Bull. Am. Phys. Soc. 6(2), 193 (1961) [Sect. 13.1.2]Google Scholar
  140. Furth, H.P.: In: Proceedings of ESRW Conference of the Stability of Plane Plasmas, pp. 22–25. European Space Research Institute, Frascaty (1967) [Sect. 13.1.2]Google Scholar
  141. Furth, H.P., Killen, J., Rosenbluth, M.N.: Finite-resistivity instabilities of a sheet pinch. Phys. Fluid 6(4), 459–484 (1963) [Sects. 3.2, 6.2.4, 13.1.2, 13.2 and 13.3]Google Scholar
  142. Gal’per, A.M., Zemskov, V.M., Luchkov, B.I., et al.: Temporal fine structure in hard γ radiation in solar flares. JETP Lett. 59(3), 153–157 (1994) [Sect. 11.4]Google Scholar
  143. Galeev, A.A., Zelenyi, L.M.: Tearing instability in plasma configurations. Sov. Phys. – JETP 43(6), 1113–1123 (1976) [Sects. 13.1.2 and 13.6.2]Google Scholar
  144. Galeev, A.A., Rosner, R., Vaiana, G.S.: Structured coronae of accretion discs. Astrophys. J. 229(1), 318–326 (1979) [Intr., Sect. 10.3]Google Scholar
  145. Galsgaard, K., Longbottom, A.W.: Formation of solar prominences by flux convergence. Astrophys. J. 510(1), 444–459 (1999) [Sect. 15.3]Google Scholar
  146. Giovanelli, R.G.: A theory of chromospheric flares. Nature 158(4003), 81–82 (1946) [Intr., Sects. 1.1.1 and 16.2]Google Scholar
  147. Giovanelli, R.G.: Magnetic and electric phenomena in the sun’s atmosphere associated with sunspots. Mon. Not. R. Astron. Soc. 107(4), 338–355 (1947) [Sects. 2.1 and 16.2]Google Scholar
  148. Giovanelli, R.G.: Chromospheric flares. Mon. Not. R. Astron. Soc. 108(2), 163–176 (1948) [Sect. 16.2]Google Scholar
  149. Giuliani, P., Neukirch, T., Wood, P.: Particle motion in collapsing magnetic traps in solar flares. 1. Kinematic theory of collapsing magnetic traps. Astrophys. J. 635(1), 636–646 (2005) [Sects. 9.2.2 and 9.3.2]Google Scholar
  150. Glover, A., Ranns, N.D.R., Harra, L.K., et al.: The onset and association of CMEs with sigmoidal active regions. Geophys. Res. Lett., 27(13), 2161–2164 (2000) [Sect. 4.3.5]Google Scholar
  151. Gold, T.: Magnetic energy shedding in the solar atmosphere. In: Hess, W.N. (ed.) AAS-NASA Symposium in the Physics of Solar Flares. NASA-SP 50, pp. 389–396. NASA, Scientific and Technical Information Division, Washington (1964) [Sect.  14.4]
  152. Gold, T., Hoyle, F.: On the origin of solar flares. Mon. Not. R. Astron. Soc. 120(2), 89–105 (1960) [Sects. 4.3.3, 14.2 and 16.2]Google Scholar
  153. Goldreich, P., Sridhar, S.: Magnetohydrodynamic turbulence revisited. Astrophys. J. 485(2), 680–688 (1997) [Sect. 14.1]Google Scholar
  154. Golub, L., Bookbinder, J., DeLuca, E., et al.: A new view of the solar corona from the transition region and coronal explorer (TRACE). Phys. Plasma 6(5), 2205–2212 (1999) [Intr.]Google Scholar
  155. Gontikakis, C., Efthymiopoulos, C., Anastasiadis, A.: Regular and chaotic dynamics in 3D reconnecting current sheets. Mon. Not. R. Astron. Soc. 368(1), 293–304 (2006) [Sect. 11.2.5]Google Scholar
  156. Gopasyuk, S.I.: Solar magnetic fields and large-scale electric currents in the active regions. Adv. Space Res. 10(9), 151–160 (1990) [Sect. 5.1.1]Google Scholar
  157. Gorbachev, V.S., Somov, B.V.: Photospheric vortex flows as a cause for two-ribbon flares: a topological model. Sol. Phys. 117(1), 77–88 (1988) [Sects. 4.2.1, 4.3.5, 5.3.1, 5.3.2 and 7.2.3]Google Scholar
  158. Gorbachev, V.S., Somov, B.V.: Solar flares of November 5, 1980, as the result of magnetic reconnection at a separator. Sov. Astron. – AJ 33(1), 57–61 (1989) [Intr., Sects. 4.2.1, 4.2.4, 4.3.2, 5.3.2, 7.4.2, 8.6 and 16.3]Google Scholar
  159. Gorbachev, V.S., Somov, B.V.: Magnetic reconnection on the separator as a cause of a two-ribbon flare. Adv. Space Res. 10(9), 105–108 (1990) [Intr., Sects. 4.2.1, 4.3.1, 4.3.4, 5.3.1, 5.3.2, 6.2.3, 8.6 and 16.3]Google Scholar
  160. Gorbachev, V.S., Kel’ner, S.R., Somov, B.V., et al.: New topological approach to the question of solar flare trigger. Sov. Astron. – AJ 32(3), 308–314 (1988) [Sects. 4.2.1, 4.2.2 and 7.1.3]Google Scholar
  161. Gosling, J.T., Birn, J., Hesse, M.: Three-dimensional magnetic reconnection and the magnetic topology of coronal mass ejection events. Geophys. Res. Lett. 22(8), 869–872 (1995) [Sect. 7.2.2]Google Scholar
  162. Greco, A., Taktakishvili, A.L., Zimbardo, G., et al.: Ion dynamics in the near-Earth magnetotail: magnetic turbulence versus normal component of the average magnetic field. J. Geophys. Res. 107(A10), CiteID 1267 (2002). doi:  10.1029/2002JA009270[Sect. 11.1.3]
  163. Greene, J.M.: Geometrical properties of three-dimensional reconnecting magnetic fields with nulls. J. Geophys. Res. 93, 8583–8590 (1988) [Sect. 4.2.5]Google Scholar
  164. Gritsyk, P.A., Somov, B.V.: The kinetic description of the accelerated-electron flux in solar flares. Mosc. Univ. Phys. Bull. 66(5), 466–472 (2011) [Sect. 17.4.2]Google Scholar
  165. Groth, C.P.T., De Zeeuw, D.L., Gombosi, T.I., et al.: Global three-dimensional MHD simulation of a space weather event: CME formation, interplanetary propagation, and interaction with the magnetosphere. J. Geophys. Res. 105(A11), 25053–25078 (2000) [Sect. 10.2.3]Google Scholar
  166. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer, New York (1983) [Sect. 13.6]MATHGoogle Scholar
  167. Gurevich, A.V.: On the theory of runaway electrons. Sov. Phys. – JETP 12(5), 904–912 (1961) [Sect. 8.1.1]Google Scholar
  168. Gurevich, A.V., Zhivlyuk, Y.N.: Runaway electrons in a non-equilibrium plasma. Sov. Phys. – JETP 22(1), 153–159 (1966) [Sect. 8.1.1]Google Scholar
  169. Haisch, B.M., Strong, K.T., Rodonò M.: Flares on the Sun and other stars. Ann. Rev. Astron. Astrophys. 29, 275–324 (1991) [Intr.]Google Scholar
  170. Haken, H.: Synergetics. Springer, New York (1978) [Sect. 13.6]MATHCrossRefGoogle Scholar
  171. Hanslmeier, A.: The Sun and Space Weather, 2nd edn., p. 315. Springer, Dordrecht (2007) [Intr., Sect. 10.2.3]Google Scholar
  172. Hargreaves, J.K.: The Solar-Terrestrial Environment, p. 420. Cambridge University Press, Cambridge (1992) [Intr.]Google Scholar
  173. Harra-Murnion, L.K., Schmieder, B., van Driel-Gestelyi, L., et al.: Multi-wavelength observations of post flare loops in two long duration solar flares. Astron. Astrophys. 337, 911–920 (1998) [Sect. 9.1.2]Google Scholar
  174. Harris, E.G.: On a plasma sheath separating regions of oppositely directed magnetic field. Nuovo Cimento 23(1), 115–121 (1962) [Sects. 11.1.3, 11.3.2, 11.3.3, 11.4 and 13.6]Google Scholar
  175. Hénoux, J.-C., Somov, B.V.: Generation and structure of the electric currents in a flaring activity complex. Astron. Astrophys. 185(1), 306–314 (1987) [Sects. 7.2.3, 15.5.1 and 16.2.1]Google Scholar
  176. Hénoux, J.-C., Somov, B.V.: The photospheric dynamo. 1. Magnetic flux-tube generation. Astron. Astrophys. 241(2), 613–617 (1991) [Sects. 15.5 and 15.6]Google Scholar
  177. Hénoux, J.-C., Somov, B.V.: First ionization potential fractionation. In: Coronal Streamers, Coronal Loops, and Coronal and Solar Wind Composition. Proceedings of the First SOHO Workshop, ESA SP-348, pp. 325–330. European Space Agency, Noordwijk (1992) [Sect. 15.5]Google Scholar
  178. Hénoux, J.-C., Somov, B.V.: The photospheric dynamo. 2. Physics of thin magnetic flux tubes. Astron. Astrophys. 318(3), 947–956 (1997) [Sect. 15.5]Google Scholar
  179. Hénoux, J.-C., Somov, B.V.: Physics of thin flux tubes in a partially ionized atmosphere. In: Schmieder, B., Hofmann, A., Staude, J. (eds.) Third Advances in Solar Physics Euroconference: Magnetic Fields and Oscillations. ASP Conference Series, vol. 184, pp. 55–59. Astronomical Society of the Pacific, San Francisco (1999) [Sect. 15.5]Google Scholar
  180. Hesse, M., Birn, J., Baker, D.N., Slavin, J.A.: MHD simulation of the transition of reconnection from closed to open field lines. J. Geophys. Res. 101(A5), 10805–10816 (1996) [Sect. 8.2.1]Google Scholar
  181. Heyvaerts, J., Priest, E.R.: Coronal heating by reconnection in DC current systems. A theory based on Taylor’s hypothesis. Astron. Astrophys. 137(1), 63–78 (1984) [Sect. 14.2]Google Scholar
  182. Hirano, Y., Yagi, Y., Maejima, Y., et al.: Self-organization and its effect on confinement in a reversed field pinch plasma. Plasma Phys. Control. Fusion 39(5A), A393–A400 (1997) [Sect. 14.1]Google Scholar
  183. Hirose, S., Uchida, Y., Uemura, S., et al.: A quadruple magnetic source model for arcade flares and X-ray arcade formations outside active regions. II. Dark filament eruption and the associated arcade flare. Astrophys. J. 551(1), 586–596 (2001) [Sect. 7.2.2]Google Scholar
  184. Hodgson, R.: On a curious Appearance seen in the Sun. Mon. Not. R. Astron. Soc. 20(1), 15–16 (1859) [Sect. 4.1.1]Google Scholar
  185. Hoh, F.C.: Stability of sheet pinch. Phys. Fluid 9, 277–284 (1966) [Sect. 11.3]Google Scholar
  186. Hones, E.W.Jr. (ed.): Magnetic Reconnection in Space and Laboratory Plasmas, p. 386. American Geophysical Union, Washington (1984) [Sect. 16.2]Google Scholar
  187. Horiuchi, R., Sato, T.: Particle simulation study of driven reconnection in a collisionless plasma. Phys. Plasma 1(11), 3587–3597 (1994) [Sect. 8.1.3]Google Scholar
  188. Horiuchi, R., Sato, T.: Particle simulation study of collisionless driven reconnection in a sheared magnetic field. Phys. Plasma 4(2), 277–289 (1997) [Sects. 8.2.1, 8.6, 8.5.6 and 11.2]Google Scholar
  189. Horiuchi, R., Pei, W., Sato, T.: Collisionless driven reconnection in an open system. Earth Planet Space 53(6), 439–445 (2001) [Sects. 8.2.1 and 8.6]Google Scholar
  190. Horwitz, J.L., Gallagher, D.L., Peterson, W.K. (eds): Geospace Mass and Energy Flow, p. 393. American Geophysical Union, Washington (1998) [Intr.]Google Scholar
  191. Hoyng, P., Brown, J.C., van Beek, H.F.: High time resolution analysis of solar hard X-ray flares observed on board the ESRO TD-1A satellite. Sol. Phys. 48(1), 197–254 (1976) [Sect. 17.3.2]Google Scholar
  192. Hudson, H., Ryan, J.: High-energy particles in solar flares. Ann. Rev. Astron. Astrophys. 33, 239–282 (1995) [Sects. 9.2.1 and 11.1]Google Scholar
  193. Hudson, H.S., Lemen, J.R., St. Cyr, O.C., et al.: X-ray coronal changes during halo CMEs. Geophys. Res. Lett. 25(14), 2481–2484 (1998) [Sect. 4.3.5]Google Scholar
  194. Hurford, G.J., Schwartz, R.A., Krucker, S., et al.: First gamma-ray images of a solar flare. Astrophys. J. 595(2), L77–L80 (2003) [Intr.]Google Scholar
  195. Hurley, K., Boggs, S.E., Smith, D.M., et al.: An exceptionally bright flare from SGR 1806-20 and the origins of short-duration gamma-ray bursts. Nature 434(7037), 1098–1103 (2005) [Intr.]Google Scholar
  196. Ichimoto, K., Hirayama, T., Yamaguchi, A., et al.: Effective geometrical thickness and electron density of a flare of 1991 December 2. Publ. Astron. Soc. Jpn. 44(5), L117–L122 (1992) [Intr.]Google Scholar
  197. Imshennik, V.S., Syrovatskii, S.I.: Two-dimensional flow of an ideally conducting gas in the vicinity of the zero line of a magnetic field. Sov. Phys. – JETP 25(4), 656–664 (1967) [Sects. 2.4.1 and 2.4.2]Google Scholar
  198. Ip, J.T.C., Sonnerup, B.U.: Resistive tearing instability in a current sheet with coplanar viscous stagnation-point flow. J. Plasma Phys. 56(2), 265–284 (1996) [Sect. 13.5]Google Scholar
  199. Iroshnikov, P.S.: Turbulence of a conducting fluid in a strong magnetic field. Sov. Astron. – AJ. 7(4), 566–571 (1964) [Sect. 14.1]Google Scholar
  200. Isliker, H.: Structural properties of the dynamics in flares. Sol. Phys. 141(2), 325–334 (1992) [Sect. 11.2]Google Scholar
  201. Jacobsen, C., Carlqvist, P.: Solar flares caused by circuit interruptions. Icarus 3(3), 270–272 (1964) [Sect. 16.2]Google Scholar
  202. Jahnke, E., Emde, F., Losch, F.: Tables of Higher Funtions. McGraw-Hill, New York (1960) [Sect. 9.5.1]Google Scholar
  203. Jain, R., Pradhan, A.K., Joshi, V., et al.: The Fe-like feature of the X-ray spectrum of solar flares: first results from the SOXS Mission. Sol. Phys. 239(1), 217–237 (2006) [Sect. 8.6]Google Scholar
  204. Janicke, L.: The resistive tearing mode in weakly two-dimensional neutral sheets. Phys. Fluid 23(9), 1843–1849 (1980) [Sect. 13.1.2]Google Scholar
  205. Janicke, L.: Resistive tearing mode in coronal neutral sheets. Sol. Phys. 76(1), 29–43 (1982) [Sect. 13.1.2]Google Scholar
  206. Ji, H., Huang, G., Wang, H., et al.: Converging motion of Hα conjugate kernels: the signature of fast relaxation of a sheared magnetic field. Astrophys. J. 636(2), L173–L174 (2006) [Sects. 7.2.2 and 7.5.1]Google Scholar
  207. Ji, H., Huang, G., Wang, H.: The relaxation of sheared magnetic fields: a contracting process. Astrophys. J. 660(1), 893–900 (2007) [Sects. 7.2.2 and 7.5.1]Google Scholar
  208. Joshi, B., Veronig, A., Cho, K.-S., et al.: Magnetic reconnection during the two-phase evolution of a solar eruptive flare. Astrophys. J. 707(2), 1435–1450 (2009) [Sect. 7.5.1]Google Scholar
  209. Kadomtsev, B.B.: Hydrodynamic stability of a plasma. In: Leontovich, M.A. (ed.) Reviews of Plasma Physics, vol. 2, pp. 153–198. Consultants Bureau, New York (1966) [Sect. 5.1.2]Google Scholar
  210. Kadomtsev, B.B.: Collective Phenomena in Plasma, p. 238. Nauka, Moscow (1976) (in Russian) [Sect. 8.4.1]Google Scholar
  211. Kan, J.R., Akasofu, S.I., Lee, L.C.: A dynamo theory of solar flares. Sol. Phys. 84(1), 153–167 (1983) [Sect. 5.1.3]Google Scholar
  212. Karpen, J.T., Antiochos, S.K., De Vore, C.R.: Coronal current sheet formation: the effect of asymmetric and symmetric shears. Astrophys. J. 382(1), 327–337 (1991) [Sects. 16.2 and 16.4]Google Scholar
  213. Karpen, J.T., Antiochos, S.K., De Vore, C.R., et al.: Dynamic responses to reconnection in solar arcades. Astrophys. J. 495(1), 491–501 (1998) [Sects. 4.1.2 and 12.1]Google Scholar
  214. Kivelson, M.G., Russell, C.T. (eds): Introduction to Space Physics, p. 568. Cambridge University Press, Cambridge (1995) [Intr., Sect. 10.2.3]Google Scholar
  215. Klein, K.-L., Chupp, E.L., Trottet, G., et al.: Flare-associated energetic particles in the corona and at 1 AU. Astron. Astrophys. 348(1), 271–285 (1999) [Sect. 11.4]Google Scholar
  216. Klein, K.-L., Trottet, G., Lantos, P., et al.: Coronal electron acceleration and relativistic proton production during the 14 July 2000 flare and CME. Astron. Astrophys. 373, 1073–1082 (2001) [Sect. 7.2.2]Google Scholar
  217. Kokubun, S., Kamide, Y. (eds): Substorms-4, p. 823. Kluwer, Dordrecht/Terra Scientific Publishing, Tokyo (1998) [Intr., Sect. 13.6]Google Scholar
  218. Kontorovich, V.M.: On the interaction between small perturbations and the discontinuities in MHD and the stability of shock waves. Sov. Phys. – JETP 8(5), 851–858 (1959) [Sect. 12.2]Google Scholar
  219. Kopp, R.A., Pneuman, G.W.: Magnetic reconnection in the corona and the loop prominence phenomenon. Sol. Phys. 50(1), 85–94 (1976) [Sect. 7.4.1]Google Scholar
  220. Koppenfels, W., Stallmann, F.: Praxis der Konformen Abbildung. Springer, Berlin/Goettingen/ Heidelberg (1959) [Sect. 3.3]MATHCrossRefGoogle Scholar
  221. Korchak, A.A.: Possible mechanisms for generating hard X-rays in solar flares. Sov. Astron. – AJ 11(2), 258–263 (1967) [Sect. 17.1]Google Scholar
  222. Korchak, A.A.: On the origin of solar flare X-rays. Sol. Phys. 18(2), 284–304 (1971) [Sect. 17.1]Google Scholar
  223. Korchak, A.A.: Coulomb losses and the nuclear composition of the solar flare accelerated particles. Sol. Phys. 66(1), 149–158 (1980) [Sect. 9.6.1]Google Scholar
  224. Kosovichev, A.G., Zharkova, V.V.: Magnetic energy release and transients in the solar flare of 2000 July 14. Astrophys. J. 550(Part 2), L105–L108 (2001) [Sects. 7.1.2 and 7.3]Google Scholar
  225. Kosugi, T.: Solar flare energy release and particle acceleration as revealed by YohkohHXT. In: Ramaty, R., Mandzhavidze, N., Hua, X.-M. (eds.) High Energy Solar Physics, pp. 267–276. American Institute of Physics, New York (1996) [Sects. 9.2.1 and 11.4.2]Google Scholar
  226. Kosugi, T., Somov, B.: Magnetic reconnection and particle acceleration in solar flares. In: Watanabe, T., Kosugi, T., Sterling, A.C. (eds.) Observational Plasma astrophysics: Five Years of Yohkoh and Beyond, pp. 297–306. Kluwer, Dordrecht (1998) [Intr., Sect. 11.4.2]Google Scholar
  227. Kosugi, T., Dennis, B.R., Kai, K.: Energetic electrons in impulsive and extended solar flares as deduced from flux correlation between hard X-rays and microwaves. Astrophys. J. 324, 1118–1127 (1988) [Sects. 6.2.6 and 9.7]Google Scholar
  228. Kosugi, T., Makishima, K., Murakami, T., et al.: The hard X-ray telescope (HXT) for the Solar-A mission. Sol. Phys. 136(1), 17–36 (1991) [Intr., Sect. 6.1]Google Scholar
  229. Kosugi, T., Sakao, T., Masuda, S., et al.: Hard and soft X-ray observations of a super-hot thermal flare of 6 February, 1992. In: Enome, S., Hirayama, T. (eds.) New Look at the Sun with Emphasis on Advanced Observations of Coronal Dynamics and Flares, pp. 127–129 (1994) (Proceedings of Kofu Symposium, Kofu, 6–10 Sept 1993) [Sect. 9.1.1]Google Scholar
  230. Kosugi, T., Matsuzaki, K., Sakao, T., et al.: The Hinode (Solar-B) mission: an overview. Sol. Phys. 243(1), 3–17 (2007) [Intr., Sects. 16.6 and 17.4.2]Google Scholar
  231. Kovalev, V.A., Somov, B.V.: The role of collisions in the particle acceleration in solar-flare magnetic traps. Astron. Lett. 29(6), 465–472 (2003) [Sect. 14.3.1]Google Scholar
  232. Kraichnan, R.H.: Inertial-range spectrum of hydromagnetic turbulence. Phys. Fluid 8(7), 1385–1389 (1965) [Sect. 14.1]Google Scholar
  233. Krause, F., Rädler, K.-H.: Mean-Field Magnetohydrodynamics and Dynamo Theory. Pergamon Press, Oxford (1980) [Sect. 14.1]MATHGoogle Scholar
  234. Krucker, S., Benz, A.O.: Are heating events in the quiet solar corona small flares? Multiwavelength observations of individual events. Sol. Phys. 191(2), 341–358 (2000) [Sect.  14.4]
  235. Krucker, S., Benz, A.O., Aschwanden, M.J.: Yohkohobservation of the source regions of solar narrowband, millisecond spike events. Astron. Astrophys. 317(2), 569–579 (1997) [Sect. 11.4]Google Scholar
  236. Krucker, S., Hurford, G.J., Lin, R.P.: Hard X-ray source motions in the 2002 July 23 gamma-ray flare. Astrophys. J. 595, L103–L106 (2003) [Intr., Sects. 6.2.6, 7.4.1 and 9.1.2]Google Scholar
  237. Krucker, S., Hudson, H.S., Jeffrey, N.L.S., et al.: High-resolution imaging of solar flare ribbons and its implication on the thick-target beam model. Astrophys. J. 739(2), id. 96 (7pp) (2011) [Sects. 6.2.6, 16.6, 17.4.2 and 17.5]Google Scholar
  238. Kubát, J., Karlický, M.: Electric conductivity in the solar photosphere and chromosphere. Bull. Astron. Inst. Czechosl. 37(3), 155–163 (1986) [Sect. 15.2.2]Google Scholar
  239. Kundt, W.: Astrophysics: A Primer, p. 183. Springer, New York/Berlin/Heidelberg/Tokyo (2001) [Intr.]Google Scholar
  240. Kurths, J., Herzel, H.: Can a solar pulsation event be characterized by a low-dimensional chaotic attractor? Sol. Phys. 10(1), 39–45 (1986) [Sect. 11.2]Google Scholar
  241. Kurths, J., Benz, A., Aschwanden, M.J.: The attractor dimension of solar decimetric radio pulsation. Astron. Astrophys. 248(1), 270–276 (1991) [Sect. 11.2]Google Scholar
  242. Kusano, K.: Simulation study of the formation mechanism of sigmoidal structure in the solar corona. Astrophys. J. 631(2), 1260–1269 (2005) [Sects. 7.6 and 14.2.2]Google Scholar
  243. Kusano, K., Nishikawa, K.: Bifurcation and stability of coronal arcades in a linear force-free field. Astrophys. J. 461(1), 415–423 (1996) [Sects. 4.1.2 and 5.1.1]Google Scholar
  244. Laming, J.M., Drake, J.J.: Stellar coronal abundances. VI. The FIP effect and ξ Bootis A – Solar-like anomalies. Astrophys. J. 516(1), 324–334 (1999) [Sect. 15.4]Google Scholar
  245. Landau, L.D., Lifshitz, E.M.: Mechanics, 3rd edn., p. 165. Pergamon Press, Oxford/London/Paris (1976) [Sects. 5.2.4 and 11.2]Google Scholar
  246. Landau, L.D., Lifshitz, E.M., Pitaevskii, L.P.: Electrodynamics of Continuous Media, p. 460. Pergamon Press, Oxford/New York (1984) [Sect. 12.2.2]Google Scholar
  247. LaRosa, T.N., Moore, R.L.: A mechanism for bulk energization in solar flares: MHD turbulent cascade. Astrophys. J. 418(2), 912–918 (1993) [Sect. 14.1]Google Scholar
  248. LaRosa, T.N., Moore, R.L., Miller, J.A., et al.: New promise for electron bulk energization in solar flares: preferential Fermi acceleration of electrons over protons in reconnection-driven MHD turbulence. Astrophys. J. 467(1), 454–464 (1996) [Sect. 14.3.1]Google Scholar
  249. Lau, Y.-T.: Magnetic nulls and topology in a class of solar flare models. Sol. Phys. 148(2), 301–324 (1993) [Sects. 4.2.1 and 16.3]Google Scholar
  250. Lau, Y.-T., Finn, J.M.: Three-dimensional kinematic reconnection in the presence of field nulls and closed field lines. Astrophys. J. 350, 672–691 (1990) [Sect. 4.2.5]Google Scholar
  251. Lavrent’ev, M.A., Shabat, B.V.: Methods of the Theory of Complex Variable Functions, p. 736. Nauka, Moscow (1973) (in Russian) [Sects. 3.3, 3.4.1 and 16.3]Google Scholar
  252. Leamon, R.J., Smith, C.W., Ness, N.F., et al.: Observational constraints on the dynamics of the interplanetary magnetic field dissipation range. J. Geophys. Res. 103(A3), 4775–4787 (1998) [Sect. 14.1]Google Scholar
  253. Ledentsov, L.S., Somov, B.V.: On discontinuos plasma flows in the vicinity of reconnecting current layers in solar flares. Astron. Lett. 37(2), 131–140 (2011) [Sect. 3.4.3]Google Scholar
  254. Lembege, B., Pellat R.: Stability of a thick two-dimensional quasi-neutral sheet. Phys. Fluid 25(11), 1995–2004 (1982) [Sects. 11.1.3 and 13.6]Google Scholar
  255. Lesch, H., Pohl, M.: A possible explanation for intraday variability in active galactic nuclei. Astron. Astrophys. 254(1), 29–38 (1992) [Sect. 10.3]Google Scholar
  256. Li, Y.P., Gan, W.Q.: The shrinkage of flare radio loops. Astrophys. J. 629(2), L137–L139 (2005) [Sects. 7.5.1 and 9.7]Google Scholar
  257. Li, C., Tang, Y.H., Dai, Y., et al.: The acceleration characteristics of solar energetic particles in the 2000 July 14 event. Astron. Astrophys. 461(3), 1115–1119 (2007) [Sect. 6.2.5]Google Scholar
  258. Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion, p. 314. Springer, New York (1983) [Sect. 11.2]Google Scholar
  259. Lilensten, J. (ed.): Space Weather, Research Towards Applications in Europe, p. 330. Springer, Dordrecht (2007) [Intr., Sect. 10.2.3]Google Scholar
  260. Lin, R.P., Hudson, H.S.: 10-100 keV electron acceleration and emission from solar flares. Sol. Phys. 17(2), 412–435 (1971) [Sect. 17.3.1]Google Scholar
  261. Lin, R.P., Schwartz, R.A., Pelling, R.M., et al.: A new component of hard X-rays in solar flares. Astrophys. J. 251(2), L109–L114 (1981) [Sect. 8.5.5]Google Scholar
  262. Lin, Y., Wei, X., Zhang, H.: Variations of magnetic fields and electric currents associated with a solar flare. Sol. Phys. 148(1), 133–138 (1993) [Sect. 4.1.1]Google Scholar
  263. Lin, R.P., Larson, D., McFadden, J., et al.: Observations of an impulsive solar electron event extending down to ∼ 0.5 keV energy. Geophys. Res. Lett. 23(10), 1211–1214 (1996) [Sect. 11.4]Google Scholar
  264. Lin, R.P., Dennis, B.R., Hurford, G.J., et al.: The reuven ramaty high-energy solar spectroscopic imager (RHESSI). Sol. Phys. 210(1), 3–32 (2002) [Intr., Sects. 9.1.1 and 17.4.2]Google Scholar
  265. Lin, R.P., Krucker, S., Hurford, G.J., et al.: RHESSIobservations of particle acceleration and energy release in an intense solar gamma-ray line flare. Astrophys. J. 595(2), L69–L76 (2003a) [Intr., Sects. 6.2.6, 9.1.2 and 9.7]Google Scholar
  266. Lin, R.P., Krucker, S., Holman, G.D., et al.: In: Kajita, T., Asaoka, Y., Kawachi, A., et al. (eds.) Proceedings of the 28th International Cosmic Ray Conference, p. 3207. Universal Academy Press, Tokyo (2003b) [Sect. 9.5.3]Google Scholar
  267. Litvinenko, Y.E.: Regular versus chaotic motion of particles in non-neutral current sheets. Sol. Phys. 147(2), 337–342 (1993) [Sect. 11.2]Google Scholar
  268. Litvinenko, Y.E.: Interpretation of particle acceleration in a simulation study of collisionless reconnection. Phys. Plasma 4(9), 3439–3441 (1997) [Sect. 11.2]Google Scholar
  269. Litvinenko, Y.E.: Photospheric reconnection and cancelling magnetic features on the Sun. Astrophys. J. 515(1), 435–440 (1999) [Sects. 14.4 and 15.2.1]Google Scholar
  270. Litvinenko, Y.E., Somov, B.V.: Electron acceleration in current sheets in solar flares. Sov. Astron. Lett. 17(5), 353–356 (1991) [Sect. 11.1]Google Scholar
  271. Litvinenko, Y.E., Somov, B.V.: Particle acceleration in reconnecting current sheets. Sol. Phys. 146(1), 127–133 (1993) [Sects. 11.2 and 11.3]Google Scholar
  272. Litvinenko, Y.E., Somov, B.V.: Electromagnetic expulsion force in cosmic plasma. Astron. Astrophys. 287(1), L37–L40 (1994a) [Sect. 7.3]Google Scholar
  273. Litvinenko, Y.E., Somov, B.V.: Magnetic reconnection in the temperature minimum and prominence formation. Sol. Phys. 151(2), 265–270 (1994b) [Sects. 7.3, 14.4 and 15.2.1]Google Scholar
  274. Litvinenko, Y.E., Somov, B.V.: Relativistic acceleration of protons in current sheets of solar flares. Sol. Phys. 158(1), 317–330 (1995) [Sects. 11.3.3 and 11.4]Google Scholar
  275. Litvinenko, Y.E., Somov, B.V.: Aspects of the global MHD equilibria and filament eruptions in the solar corona. Space Sci. Rev. 95(1), 67–77 (2001) [Sect. 7.3]Google Scholar
  276. Liu, Y., Zhang, H.: Relationship between magnetic field evolution and major flare event on July 14, 2000. Astron. Astrophys. 372(3), 1019–1029 (2001) [Sects. 6.1, 6.2.3, 6.2.4, 6.2.6, 7.2.3 and 7.3]Google Scholar
  277. Liu, Y., Zhang, H.: Analysis of a delta spot. Astron. Astrophys. 386(2), 648–652 (2002) [Sect. 6.1]Google Scholar
  278. Liu, Y., Srivastava, N., Prasad, D., et al.: A possible explanation of reversed magnetic field features observed in NOAA AR 7321. Sol. Phys. 158(1), 249–258 (1995) [Sect. 15.3]Google Scholar
  279. Liu, C., Deng, N., Liu, Y., et al.: Rapid change of δ spot structure associated with seven major flares. Astrophys. J. 622(1), 722–736 (2005) [Sects. 4.1.1 and 4.1.3]Google Scholar
  280. Liu, S., Petrosian, V., Mason, G.M.: Stochastic acceleration of 3He and 4He in solar flares by parallel-propagating plasma waves: general results. Astrophys. J. 636(1), 462–474 (2006) [Sect. 14.3.2]Google Scholar
  281. Liu, W., Petrosian, V., Dennis, B.R., et al.: Double coronal hard and soft X-ray source observed by RHESSI: evidence of magnetic reconnection and particle acceleration in solar flares. Astrophys. J. 676(1), 704–716 (2008) [Sects. 7.2.2, 7.4.4 and 9.1.4]Google Scholar
  282. Liu, W., Petrosian, V., Dennis, B.R., et al.: Conjugate hard X-ray footpoints in the 2003 29 X10 flare: unshearing motions, correlations, and asymmetries. Astrophys. J. 693(1), 847–867 (2009) [Sects. 7.4.4, 7.5.1 and 7.5.2]Google Scholar
  283. Longcope, D.W.: Topology and current ribbons: a model for current, reconnection and flaring. Sol. Phys. 169(1), 91–121 (1996) [Sects. 5.3.2, 6.2.3 and 6.2.4]Google Scholar
  284. Longcope, D.W., Beveridge, C.: A quantitative topological model of reconnection and flux rope formation. Astrophys. J. 669(1), 621–635 (2007) [Sect. 8.6]Google Scholar
  285. Longcope, D.W., Cowley, S.C.: Current sheet formation along 3D magnetic separators. Phys. Plasma 3(8), 2885–2897 (1996) [Sects. 4.2.4, 5.1.1 and 6.2.3]Google Scholar
  286. Longcope, D.W., Silva, A.V.R.: A current ribbon model for energy storage and release with application to the flare of 7 January 1992. Sol. Phys. 179(2), 349–377 (1998) [Intr., Sects. 5.3.2 and 8.6]Google Scholar
  287. Longcope, D.W., McKenzie, D.E., Cirtain, J., et al.: Observations of separator reconnection to an emerging active region. Astrophys. J. 630(1), 596–614 (2005) [Sects. 5.1.3 and 5.3.3]Google Scholar
  288. Longmire, C.L.: Elementary Plasma Physics, p. 296. Interscience Publishing, New York/London (1963) [Sect. 11.3]Google Scholar
  289. Low, B.C.: Electric current sheet formation in a magnetic field induced by footpoint displacements. Astrophys. J. 323(1), 358–367 (1987) [Sect. 2.1.4]Google Scholar
  290. Low, B.C.: On the spontaneous formation of current sheets above a flexible solar photosphere. Astrophys. J. 381(1), 295–305 (1991) [Sects. 16.2 and 16.3]Google Scholar
  291. Low, B.C., Smith, D.F.: The free energies of partially open coronal magnetic fields. Astrophys. J. 410(1), 412–425 (1993) [Sect. 16.2]Google Scholar
  292. Low, B.C., Wolfson, R.: Spontaneous formation of current sheets and the origin of solar flares. Astrophys. J. 324(1), 574–581 (1988) [Sect. 2.1.4]Google Scholar
  293. Lu, E.T., Hamilton, R.J.: Avalanches and distribution of solar flares. Astrophys. J. 380(2), L89–L92 (1991) [Sect. 14.1]Google Scholar
  294. Lyon J.G.: The solar wind-magnetosphere-ionosphere system. Science 288, 1987–1991 (2000) [Sect. 10.2.3]Google Scholar
  295. Mackay, D.H., Priest, E.R., Gaizauskas, V. et al.: Role of helicity in the formation of intermediate filaments. Sol. Phys. 180(1), 299–312 (1998) [Sect. 15.3]Google Scholar
  296. Mandrini, C.H., Machado, M.E.: Large-scale brightenings associated with flares. Sol. Phys. 141(1), 147–164 (1993) [Sect. 5.3.2]Google Scholar
  297. Mandrini, C.H., Demoulin, P., Hénoux, J.C., et al.: Evidence for the interaction of large scale magnetic structures in solar flares. Astron. Astrophys. 250(2), 541–547 (1991) [Intr., Sect. 5.3.2]Google Scholar
  298. Mandrini, C.H., Rovira, M.G., Demoulin, P., et al.: Evidence for reconnection in large-scale structures in solar flares. Astron. Astrophys. 272(2), 609–620 (1993) [Intr., Sect. 5.3.2]Google Scholar
  299. Manoharan, P.K., Tokumaru, M., Pick, M., et al.: Coronal mass ejection of 2000 July 14 flare event: imaging from near-sun to Earth environment. Astrophys. J. 559(2), 1180–1189 (2001) [Sects. 7.1.1, 7.1.2 and 7.2.2]Google Scholar
  300. Markovskii, S.A., Skorokhodov, S.L.: Disintegration of trans-Alfvénic shocks due to variable viscosity and resistivity. J. Geophys. Res. 105(A6), 12702–12711 (2000) [Sect. 3.4.3]Google Scholar
  301. Markovskii, S.A., Somov, B.V.: A model of magnetic reconnection in a current sheet with shock waves. In: Fizika Solnechnoi Plasmy (Physics of Solar Plasma), pp. 456–472. Nauka, Moscow (1989) (in Russian) [Sect. 3.2]Google Scholar
  302. Markovskii, S.A., Somov, B.V.: A criterion for splitting of a reconnecting current sheet into MHD discontinuities. J. Plasma Phys. 55(3), 303–325 (1996) [Sect. 12.2]Google Scholar
  303. Marsh, G.E.: Force-Free Magnetic Fields: Solutions, Topology and Applications, River Edge, p. 159. World Scientific Publishing, London (1996) [Sect. 14.2]Google Scholar
  304. Martens, P.C.H.: The generation of proton beams in two-ribbon flares. Astrophys. J. 330(2), L131–L133 (1988) [Sects. 11.3 and 11.4]Google Scholar
  305. Martin, S.F.: Recent observations of the formation of filaments. In: Coronal and Prominence Plasmas, NASA CP-2442, pp. 73–80. National Aeronautics and Space Administration, Scientific and Technical Information Branch, Washington (1986) [Sects. 7.3 and 15.1]Google Scholar
  306. Martin, S.F.: Conditions for the formation and maintenance of filaments. Sol. Phys. 182(1), 107–137 (1998) [Sects. 7.3 and 15.3]Google Scholar
  307. Martin, S.F., Livi, S.H.B., Wang, J.: The cancellation of magnetic flux. II. In a decaying active region. Aust. J. Phys. 38, 929–959 (1985) [Sect. 7.3]Google Scholar
  308. Masuda, S.: Ph.D. thesis, University of Tokyo (1994) [Sect. 9.1.3]Google Scholar
  309. Masuda, S.: Hard X-ray solar flares revealed with YohkohHXT - A review. In: Martens, P.C.H., Cauffman, D.P. (eds.) Multi-wavelength Observations of Coronal Structure and Dynamics, Yohkoh 10th Anniversary Meeting, pp. 351–359. Pergamon, Amsterdam (2002) [Sect. 9.1.1]Google Scholar
  310. Masuda, S., Kosugi, T., Hara, H., et al.: A loop-top hard X-ray source in a compact solar flare as evidence for magnetic reconnection. Nature 371, 495–497 (1994) [Intr., Sect. 9.1.1]Google Scholar
  311. Masuda, S., Kosugi, T., Hara, H., et al.: Hard X-ray sources and the primary energy-release site in solar flares. Publ. Astron. Soc. Jpn. 47, 677–689 (1995) [Intr.]Google Scholar
  312. Masuda, S., Kosugi, T., Sakao, T., et al.: Coronal hard X-ray sources in solar flares observed with Yohkoh/HXT. In: Watanabe, T., Kosugi, T., Sterling, A.C. (eds.) Observational Plasma Astrophysics: Five Years of Yohkoh and Beyond, pp. 259–267. Kluwer, Dordrecht (1998) [Sect. 9.1.1]Google Scholar
  313. Masuda, S., Kosugi, T., Hudson, H.S.: A hard X-ray two-ribbon flare observed with Yohkoh/HXT. Sol. Phys. 204(1), 57–69 (2001) [Intr., Sects. 6.1, 6.2.3, 6.2.6, 7.1.2, 7.4.1 and 9.7]Google Scholar
  314. Mathieu, J., Scott, J.: An Introduction to Turbulent Flow. Cambridge University Press, New York (2000) [Sect. 14.1.2]MATHGoogle Scholar
  315. Mauas, P.J.: The white-light flare of 1982 June 15 – Observations. Astrophys. J. Suppl. 74, 609–646 (1990) [Sect. 15.2.1]Google Scholar
  316. McIntosh, P.S., Donnelly, R.F.: Properties of white light flares. I: association with Hα flares and sudden frequency deviations. Sol. Phys. 23(2), 444–456 (1972) [Sect. 17.4.2]Google Scholar
  317. McKenzie, D.E., Hudson, H.S.: X-ray observations of motions and structure above a solar flare arcade. Astrophys. J. 519, L93–L96 (1999) [Sects. 9.2.2 and 9.2.5]Google Scholar
  318. Mikhailovskii, A.B.: The Theory of Plasma Instabilities, p. 272. Atomizdat, Moscow (1975) (in Russian) [Sect. 8.4.1]Google Scholar
  319. Milano, L.J., Gómez, D.O., Martens, P.C.H.: Solar coronal heating: AC versus DC. Astrophys. J. 490(1), 442–451 (1997) [Sect.  14.4]Google Scholar
  320. Miller, J.A., Reames, D.V.,: Heavy ion acceleration by cascading Alfvén waves in impulsive solar flares. In: Ramaty, R., Mandzhavidze, N., Hua, X.-M. (eds.) High Energy Solar Physics, pp. 450–460. AIP, Woodbury/New York (1996) [Sect. 14.3.2]Google Scholar
  321. Miller, J.A., LaRosa, T.N., Moore, R.L.: Stochastic electron acceleration by cascading fast mode waves in impulsive solar flares. Astrophys. J. 461(1), 445–464 (1996) [Sect. 14.3.1]Google Scholar
  322. Miroshnichenko, L.I.: Solar Cosmic Rays, p. 480. Kluwer, Dordrecht/Boston/London (2001) [Intr., Sect. 11.1]Google Scholar
  323. Moffatt, H.K.: Magnetic Field Generation in Electrically Conducting Fluids, p. 343. Cambridge University Press, London/New York/Melbourne (1978) [Sects. 14.1 and 14.5]Google Scholar
  324. Moiseev, S.S., Chkhetiani, O.G.: Helical scaling in turbulence. JETP 83(1), 192–198 (1996) [Sect. 14.1]Google Scholar
  325. Moore, R.L., Falconer, D.A., Porter, J.G., et al.: On heating the Sun’s corona by magnetic explosions: feasibility in active regions and prospects for quiet regions and coronal holes. Astrophys. J. 526(1), 505–522 (1999) [Sect.  14.4]
  326. Moreton, G.E., Severny, A.B.: Magnetic fields and flares. Sol. Phys. 3(2), 282–297 (1968) [Sect. 5.1.1]Google Scholar
  327. Morita, S., Uchida, Y., Hirose, S., et al.: 3D structure of arcade-type flares derived from the homologous flare series. Sol. Phys. 200(1), 137–156 (2001) [Sects. 7.1.2 and 8.6]Google Scholar
  328. Morozov, A.I., Solov’ev, L.S.: The structure of magnetic fields. In: Leontovich M.A. (ed.) Reviews of Plasma Physics, vol. 2, pp. 1–101. Consultans Bureau, New York (1966a) [Sect. 16.3]Google Scholar
  329. Mukerjee, K., Agrawal, P., Paul, B., et al.: Pulse characteristics of the X-ray pulsar 4U1907+09. Astrophys. J. 548(1), 368–376 (2001) [Sect. 10.3]Google Scholar
  330. Murty, G.S.: Instabilities of a conducting fluid slab carrying uniform current in the presence of a magnetic field. Ark. Fys. 19(6), 499–510 (1961) [Sect. 13.1.2]Google Scholar
  331. Nagai, T., Fuijimoto, M., Saito, Y., et al.: Structure and dynamics of magnetic reconnection for substorm onsets with Geotail observations. J. Geophys. Res. 103, 4419–4428 (1998) [Intr., Sect. 13.6]Google Scholar
  332. Nakar, E., Piran, T., Sari, R.: Pure and loaded fireballs in Soft Gamma-Ray repeater giant flares. Astrophys. J. 635(1), 516–521 (2005) [Sect. 10.4]Google Scholar
  333. Newkirk, G., Altschuler, M.D.: Magnetic fields and the solar corona. III: the observed connection between magnetic fields and the density structure of the corona. Sol. Phys. 13(1), 131–152 (1970) [Sect. 3.7]Google Scholar
  334. Nishida, A., Nagayama, N.: Synoptic survey for the neutral line in the magnetotail during the substorm expansion phase. J. Geophys. Res. 78(19), 3782–3798 (1973) [Intr.]Google Scholar
  335. Nishida, A., Baker, D.N., Cowley, S.W.H. (eds): New Perspectives on the Earth’s Magnetotail, p. 339. American Geophysical Union, Washington (1998) [Intr.]Google Scholar
  336. Nishikawa, K.I., Sakai, J.: Stabilizing effect of a normal magnetic field on the collisional tearing mode. Phys. Fluid 25(8), 1384–1387 (1982) [Sect. 13.4]Google Scholar
  337. Ogawara, Y., Takano, T., Kato, T., et al.: The Solar-A mission: an overview. Sol. Phys. 136(1), 1–16 (1991) [Intr., Sect. 6.1]Google Scholar
  338. Ono, Y., Yamada,M., Akao, T., et al.: Ion acceleration and direct ion heating in three-component magnetic reconnection. Phys. Rev. Lett. 76(18), 3328–3331 (1996) [Sects. 8.2.1 and 8.5.6]Google Scholar
  339. Oreshina, A.V., Somov, B.V.: Slow and fast magnetic reconnection. I. Role of radiative cooling. Astron. Astrophys. 331, 1078–1086 (1998) [Sects. 8.1.2 and 15.2.3]Google Scholar
  340. Oreshina, A.V., Somov, B.V.: Analytical description of charged particle motion in a reconnecting current layer. Astron. Lett. 35(3), 195–206 (2009a) [Sect. 11.1.2]Google Scholar
  341. Oreshina, I.V., Somov, B.V.: Evolution of photospheric magnetic field and coronal zeroth points before solar flares. Astron. Lett. 35(3), 207–213 (2009b) [Sects. 6.3.2 and 6.4.4]Google Scholar
  342. Oreshina, A.V., Oreshina, I.V., Somov, B.V.: Magnetic-topology evolution in NOAA AR 10501 on 2003 November 18. Astron. Astrophys. 538, A138 (2012) [Sects. 6.4.1, 6.4.2, 6.4.3 and 6.4.4]Google Scholar
  343. Ott, E.: Chaotic flows and kinematic magnetic dynamos. Phys. Plasma 5(5), 1636–1646 (1998) [Sect. 14.1]Google Scholar
  344. Otto, A.: The resistive tearing instability for generalized resistive models: theory. Phys. Fluid 3B(7), 1739–1745 (1991) [Sect. 13.1.2]Google Scholar
  345. Ozernoy, L.M., Somov, B.V.: The magnetic field of a rotating cloud and magneto-rotational explosions. Astrophys. Space Sci. 11(2), 264–283 (1971) [Intr.]Google Scholar
  346. Paesold, G., Benz, A.O.: Electron firehose instability and acceleration of electrons in solar flares. Astron. Astrophys. 351, 741–746 (1999) [Sect. 14.3.1]Google Scholar
  347. Paesold, G., Benz, A.O., Klein, K.-L., et al.: Spatial analysis of solar type III events associated with narrow band spikes at metric wavelengths. Astron. Astrophys. 371, 333–342 (2001) [Sect. 11.4]Google Scholar
  348. Pallavicini, R., Serio, S., Vaiana, G.S.: A survey of soft X-ray limb flare images – The relation between their structure in the corona and other physical parameters. Astrophys. J. 216(1), 108–122 (1977) [Sects. 6.1.1 and 8.5.2]Google Scholar
  349. Palmer, I.D., Smerd, S.F.: Evidence for a two-component injection of cosmic rays from the solar flare of 1969, March 30. Sol. Phys. 26(2), 460–467 (1972) [Sect. 11.4]Google Scholar
  350. Park, B.T., Petrosian, V., Schwartz, R.A.: Stochastic acceleration and photon emission in electron-dominated solar flares. Astrophys. J. 489(1), 358–366 (1997) [Sect. 14.3.4]Google Scholar
  351. Parker, E.N.: Suprathermal particle generation in the solar corona. Astrophys. J. 128(2), 677–685 (1958) [Sect. 3.7]Google Scholar
  352. Parker, E.N.: Topological dissipation and the small-scale fields in turbulent gases. Astrophys. J. 174(1), 499–510 (1972) [Sects. 2.1.4 and 14.1]Google Scholar
  353. Parker, E.N.: Cosmic Magnetic Fields. Their Origin and Their Activity, p. 841. Clarendon Press, Oxford (1979) [Sects. 8.1 and 14.1]Google Scholar
  354. Parker, E.N.: Nanoflares and the solar X-ray corona. Astrophys. J. 330(1), 474–479 (1988) [Sects. 14.1 and 14.4]Google Scholar
  355. Parker, E.N.: A solar dynamo surface wave at the interface between convection and nonuniform rotation. Astrophys. J. 408(2), 707–719 (1993) [Sect. 14.1]Google Scholar
  356. Parnell, C.E.: Multiply connected source and null pairs. Sol. Phys. 242(1), 21–41 (2007) [Sect. 4.3.4]Google Scholar
  357. Pellat, R., Coroniti, F.V., Pritchett, P.L.: Does ion tearing exist? Geophys. Res. Lett. 18(2), 143–146 (1991) [Sect. 13.1.2]Google Scholar
  358. Peratt, A.L.: Physics of the Plasma Universe, p. 342. Springer, New York/Berlin/Heidelberg (1992) [Intr.]Google Scholar
  359. Peres, G., Rosner, R., Serio, S., et al.: Coronal closed structures. 4. Hydrodynamical stability and response to heating perturbations. Astrophys. J. 252(2), 791–799 (1982) [Sect. 15.2.3]Google Scholar
  360. Peterson, L.E., Winckler, J.B.: Gamma-ray burst from a solar flare. J. Geophys. Res. 64(7), 697–707 (1959) [Sects. 17.1 and 11.1.3]Google Scholar
  361. Petrosian, V.: Impulsive solar X-ray bursts: bremsstrahlung radiation from a beam of electrons in the solar chromosphere and the total energy of solar flares. Astrophys. J. 186(1), 291–304 (1973) [Sect. 17.4.1]Google Scholar
  362. Petrosian, V., Donaghy, T.Q., McTiernan, J.M.: Loop top hard X-ray emission in solar flares: images and statistics. Astrophys. J. 569(1), 459–473 (2002) [Sects. 9.1.1 and 9.1.3]Google Scholar
  363. Petrovskii, I.G.: Lectures on the Theory of Ordinary Differential Equations, p. 272. Nauka, Moscow (1964) (in Russian) [Sect. 4.2.3]Google Scholar
  364. Petschek, H.E.: Magnetic field annihilation. In: Hess, W.N. (ed.) AAS-NASA Symposium on the Physics of Solar Flares, NASA SP-50, pp. 425–439. NASA, Scientific and Technical Information Division, Washington (1964) [Sects. 3.1, 3.4.3, 12.1 and 12.6]Google Scholar
  365. Pevtsov, A.A.: Transequatorial loops in the solar corona. Astrophys. J. 531(1), 553–560 (2000) [Sect. 5.3.3]Google Scholar
  366. Pevtsov, A.A., Longcope, D.W.: NOAA 7926: a kinked Ω-loop? Astrophys. J. 508(2), 908–915 (1998) [Sect. 4.3.3]Google Scholar
  367. Pevtsov, A.A., Canfield, R.C., Zirin, H.: Reconnection and helicity in a solar flare. Astrophys. J. 473(1), 533–538 (1996) [Sects. 4.3.3 and 14.2]Google Scholar
  368. Pike, C.D., Mason, H.E.: Rotating transition region features observed with the SOHO CDS, coronal diagnostic spectrometer. Sol. Phys. 182(2), 333–348 (1998) [Sect. 15.5]Google Scholar
  369. Pneuman, G.W.: Magnetic structure responsible for coronal disturbances. In: Newkirk, G. (ed.) Coronal Disturbances, (IAU Symposium. 57), pp. 35–68. D. Reidel Publishing, Dordrecht/Boston (1974) [Sect. 13.1.2]Google Scholar
  370. Pneuman, G.W.: The formation of solar prominences by magnetic reconnection and condensation. Sol. Phys. 88(2), 219–239 (1983) [Sect. 15.1]Google Scholar
  371. Podgornii, A.I., Syrovatskii, S.I.: Formation and development of a current sheet for various magnetic viscosities and gas pressures. Sov. J. Plasma Phys. 7(5), 580–584 (1981) [Sects. 12.1 and 12.5]Google Scholar
  372. Pollard, R.K., Taylor, Y.B.: Influence of equilibrium flows on tearing modes. Phys. Fluid 22(1), 126–131 (1979) [Sect. 13.5]Google Scholar
  373. Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000) [Sect. 14.1.2]MATHCrossRefGoogle Scholar
  374. Porter, L.J., Klimchuk, J.A., Sturrock, P.A.: Cylindrically symmetric force-free magnetic fields. Astrophys. J. 385(2), 738–745 (1992) [Sect. 16.2]Google Scholar
  375. Priest, E.R.: Solar Magnetohydrodynamics, p. 472. D. Reidel Publishing, Dordrecht/Boston/ London (1982) [Sects. 3.1, 14.4 and 16.2]Google Scholar
  376. Priest, E.R., Forbes, T.: Magnetic Reconnection: MHD Theory and Applications. Cambridge University Press, Cambridge (2000) [Intr., Sects. 3.1 and 8.6]CrossRefGoogle Scholar
  377. Priest, E.R., Titov, V.S., Vekstein, G.E., et al.: Steady linear X-point magnetic reconnection. J. Geophys. Res. 99(A11), 21467–21479 (1994) [Sect. 15.2.3]Google Scholar
  378. Qiu, J., Lee, J., Gary, D.E.: Impulsive and gradual nonthermal emissions in an X-class flare. Astrophys. J. 603(1), 335–347 (2004) [Sects. 6.2.6 and 9.7]Google Scholar
  379. Raadu, M.A.: Global effects of double layers. In: Schrittwieser, R., Eder, G. (eds.) Second Symposium on Plasma Double Layers and Related Topics, p. 3–27. University of Innsbruck, Institute of Theoretical Physics, Innsbruck (1984) [Sect. 16.2]Google Scholar
  380. Ramaty, R., Kozlovsky, B., Lingenfelter, R.E.: Solar gamma rays. Space Sci. Rev. 18, 341–388 (1975) [Sect. 17.4.2]Google Scholar
  381. Ranns, N.D.R., Harra, L.K., Matthews, S.A., et al.: Emerging flux as a driver for homologous flares. Astron. Astrophys 360, 1163–1169 (2000) [Sect. 5.3.2]Google Scholar
  382. Reiman, A.: Minimum energy state of a toroidal discharge. Phys. Fluid 23(1), 230–231 (1980) [Sect. 14.5]Google Scholar
  383. Ren, Y., Yamada, M., Gerhardt, S., et al.: Experimental verification of the Hall effect during magnetic reconnection in a laboratory plasma. Phys. Rev. Lett. 95(5), id. 055003 (2005) [Sect. 2.4.4]Google Scholar
  384. Richmond, A.D.: Modeling the ionosphere wind dynamo: a review. Pure Appl. Geophys. 131(2), 413–435 (1989) [Sect. 15.5.1]Google Scholar
  385. Roald, C.B., Sturrock, P.A., Wolfson, R.: Coronal heating: energy release associated with chromospheric magnetic reconnection. Astrophys. J. 538(2), 960–967 (2000) [Sect.  14.4]Google Scholar
  386. Roikhvarger, Z.B., Syrovatskii, S.I.: Evolutionarity of MHD discontinuities with allowance for dissipative waves. Sov. Phys. – JETP 39(4), 654–656 (1974) [Sects. 3.4.3 and 12.2]Google Scholar
  387. Romanova, M.M., Ustyugova, G.V., Koldoba, A.V., et al.: Three-dimensional simulations of disk accretion to an inclined dipole. II. Hot spots and variability. Astrophys. J. 610(2), 929–932 (2004) [Sect. 10.3]Google Scholar
  388. Rose, W.K.: Advanced Stellar Astrophysics, p. 494. Cambridge University Press, Cambridge (1998) [Intr.]Google Scholar
  389. Roumeliotis, G., Moore, R.L.: A linear solution for magnetic reconnection driven by converging or diverging footpoint motions. Astrophys. J. 416(1), 386–391 (1993) [Sect. 15.1]Google Scholar
  390. Runov, A., Angelopoulos, V., Sitnov, M.I., et al.: THEMIS observations of an earthward-propagating dipolarization front. Geophys. Res. Lett. 36, L14106 (2009). doi:  10.1029/2009GL038980[Sect. 9.2.5]ADSCrossRefGoogle Scholar
  391. Russell, C.T.: A brief history of solar-terrestrial physics. In: Kivelson, M.G., Russel, C.T. (eds.) Introduction to Space Physics, pp. 1–26. Cambridge University Press, Cambridge (1995) [Sect. 10.2.2]Google Scholar
  392. Rust, D.M., Hegwer, F.: Analysis of the August 7, 1972 white light flare: light curves and correlation with hard X-rays. Sol. Phys. 40(1), 141–157 (1975) [Sect. 17.4.2]Google Scholar
  393. Rust, D.M., Kumar, A.: Evidence for helically kinked magnetic flux ropes in solar eruptions. Astrophys. J. 464(2), L199–L202 (1996) [Sect. 4.3.5]Google Scholar
  394. Rust, D.M., Somov, B.V.: Flare loops heated by thermal conduction. Sol. Phys. 93(1), 95–104 (1984) [Sect. 4.3.1]Google Scholar
  395. Ryan, J.M.: Long-duration solar gamma-ray flares. Space Sci. Rev. 93(3/4), 581–610 (2000) [Sect.  11.4.3]
  396. Ryan, J.M., Lockwood, J.A., Debrunner, H.: Solar energetic particles. Space Sci. Rev. 93(1/2), 35–53 (2000) [Sect.  11.4.3]Google Scholar
  397. Sakai, J.I., de Jager, C.: Solar flares and collisions between current-carrying loops. Space Sci. Rev. 77(1), 1–192 (1996) [Sects. 4.3.3 and 16.2]Google Scholar
  398. Sakao, T.: Ph.D. thesis, The University of Tokyo (1994) [Sect. 7.4.2]Google Scholar
  399. Sakao, T., Kosugi, T., Masuda, S.: Energy release in solar flares with respect to magnetic loops. In: Watanabe, T., Kosugi, T., Sterling, A.C. (eds.) Observational Plasma Astrophysics: Five Years of Yohkoh and Beyond, pp. 273–284 Kluwer Academic Publishing, Dordrecht (1998) [Sects. 5.3.1, 6.1 and 7.4.2]Google Scholar
  400. Sato, J.: Ph.D. thesis, Graduate University of Advanced Science, Tokyo (1997) [Sect. 9.1.1]Google Scholar
  401. Sato, J.: Observation of the coronal hard X-ray sources of the 1998 April 23 flare. Astrophys. J. 558, L137–L140 (2001) [Sect. 9.1.1]Google Scholar
  402. Sato, J., Kosugi, T., Makishima, K.: Improvement of Yohkoh hard X-ray imaging. Publ. Astron. Soc. Jpn. 51, 127–150 (1999) [Sects. 9.1.1 and 9.1.2]Google Scholar
  403. Sato, J., Sawa, M., Yoshimura, K., et al.: The Yohkoh HXT/SXT Flare Catalogue. Montana State University, Montana/Institute of Space and Astronautical Science, Sagamihara (2003) [Sect. 9.1.3]Google Scholar
  404. Schabansky, V.P.: Some processes in the magnetosphere. Space Sci. Rev. 12(3), 299–418 (1971) [Sect. 11.3]Google Scholar
  405. Scherrer, P.H., Bogart, R.S., Bush, R.I., et al.: The solar oscillations investigation – Michelson Doppler Imager. Sol. Phys. 162(1), 129–188 (1995) [Intr., Sect. 6.1]Google Scholar
  406. Schindler, K.: A theory of the substorm mechanism. J. Geophys. Res. 79(19), 2803–2810 (1974) [Sects. 13.1.2 and 13.6.2]Google Scholar
  407. Scholer, M., Sidorenko, I., Jaroschek, C.H., et al.: Onset of collisionless magnetic reconnection in thin current sheets: three-dimensional particle simulations. Phys. Plasma 10(9), 3521–3527 (2003) [Sects. 1.2.1 and 3.5]Google Scholar
  408. Schrijver, C.J., Title, A.M., van Ballegooijen, A.A., et al.: Sustaining the quiet photospheric network: the balance of flux emergence, fragmentation, merging, and cancellation. Astrophys. J. 487(1), 424–436 (1997) [Sect.  14.4]Google Scholar
  409. Schrijver, C.J., DeRosa M.L., Title, A.M., et al.: The nonpotentiality of active-region coronae and the dynamics of the photospheric magnetic field. Astrophys. J. 628(1), 501–513 (2005) [Sects. 5.1.3 and 7.2.3]Google Scholar
  410. Schuster, H.G.: Deterministic Chaos. An Introduction, p. 220. Physik-Verlag, Weinheim (1984) [Sect. 11.2]Google Scholar
  411. Sergeev, V., Kubyshkina, M., Alexeev, I., et at.: Study of near-Earth reconnection events with Cluster and Double Star. J. Geophys. Res. 113, A07S36 (2008). doi:  10.1029/2007JA012902[Sect. 9.2.5]
  412. Severny, A.B.: The stability of plasma layer with a neutral-point magnetic field. Sov. Astron. – AJ 6(6), 770–773 (1962) [Sect. 2.1.1]Google Scholar
  413. Severny, A.B.: Solar flares. Ann. Rev. Astron. Astrophys. 2, 363–400 (1964) [Sect. 4.1.1]Google Scholar
  414. Shafranov, V.D.: Plasma equilibrium in a magnetic field. In: Leontovich, M.A. (ed.) Reviews of Plasma Physics, vol. 2, pp. 103–151. Consultants Bureau, New York (1966) [Sect. 16.3]Google Scholar
  415. Share, G.H., Murphy, R.J., Tulka, A.J., et al.: Gamma-ray line observations of the 2000 July 14 flare and SEP impact on the Earth. Sol. Phys. 204(1), 43–55 (2001) [Sects. 6.2.5 and 7.1.1]Google Scholar
  416. Shay, M.A., Drake, J.F., Denton, R.E., Biskamp, D.: Structure of the dissipative region during collisionless magnetic reconnection. J. Geophys. Res. 103(A5), 9165–9176 (1998) [Sect. 3.5]Google Scholar
  417. Sheeley, N.R. Jr., Bohling, J.D., Brueckner, G.E., et al.: XUV observations of coronal magnetic fields. Sol. Phys. 40(1), 103–121 (1975) [Sect. 5.3.3]Google Scholar
  418. Shibasaki, K.: High-beta disruption in the solar atmosphere. Astrophys. J. 557(1), 326–331 (2001) [Sect. 7.6]Google Scholar
  419. Shibata, K., Masuda, S., Shimojo, M., et al.: Hot-plasma ejections associated with compact-loop solar flares. Astrophys. J. 451(2), L83–L86 (1995) [Sect. 7.1.2]Google Scholar
  420. Shimizu, T., Ugai, M.: Magnetohydrodynamic study of adiabatic supersonic and subsonic expansion accelerations in spontaneous fast magnetic reconnection. Phys. Plasma 10(4), 921–929 (2003) [Sect. 3.6]Google Scholar
  421. Simnett, G.M.: Studies of the dynamic corona from SOHO. In: Ramaty, R., Mandzhavidze, N. (eds.) High Energy Solar Physics: Anticipating HESSI. ASP Conference Series, Greenbelt, Maryland, vol. 206, pp. 43–53 (2000) [Sect. 9.2.2]Google Scholar
  422. Sitnov, M.I., Sharma, A.S.: Role of transient electrons and microinstabilities in the tearing instability of the geomagnetotail current sheet, and the general scenario of the substorms as a catastrophe. In: Kokubun, S., Kamide, Y. (eds.) Substorms-4, pp. 539–542. Kluwer, Dordrecht/Terra Scientific Publishing, Tokyo (1998) [Sect. 13.6]Google Scholar
  423. Sitnov, M.I., Malova, H.V., Lui, A.T.Y.: Quasi-neutral sheet tearing instability induced by electron preferential acceleration from stochasticity. J. Geophys. Res. 102(A1), 163–173 (1997) [Sect. 13.6]Google Scholar
  424. Shmeleva, O.P., Syrovatskii, S.I.: Distribution of temperature and emission measure in a steadily heated solar atmosphere. Sol. Phys. 33(2), 341–362 (1973) [Sect. 17.4.1]Google Scholar
  425. Smets, R., Delcourt, D., Sauvaud, J.A., et al.: Electron pitch angle distributions following the dipolarization phase of a substorm: interball-tail observations and modeling. J. Geophys. Res. 104(A7), 14571–14576 (1999) [Sects. 9.7 and 9.8]Google Scholar
  426. Smith, H.J., Smith, E.v.P.: Solar Flares, p. 426. Macmillan, New York (1963) [Sect. 4.1.1]Google Scholar
  427. Somov, B.V.: X-ray heating of a low-temperature region in chromospheric flares. Sol. Phys. 42(1), 235–246 (1975) [Sect. 17.4.2]Google Scholar
  428. Somov, B.V.: Comments on hydrodynamic models for the influence of flares upon the chromosphere. Sov. Astron. Lett. 6(5), 312–315 (1980) [Sect. 17.4.2]Google Scholar
  429. Somov, B.V.: Fast reconnection and transient phenomena with particle acceleration in the solar corona. Bull. Acad. Sci. USSR, Phys. Ser. 45(4), 114–116 (1981) [Sects. 8.1.1, 10.1 and 11.4.2]Google Scholar
  430. Somov, B.V.: New theoretical models of solar flares. Sov. Phys. Usp. 28(3), 271–272 (1985) [Sects.  4.3.5, 8.6 and 16.3]
  431. Somov, B.V.: Non-neutral current sheets and solar flare energetics. Astron. Astrophys. 163(1), 210–218 (1986) [Sects.  4.3.5 and 8.6]
  432. Somov, B.V.: A scenario for the large-scale magnetic field evolution in CMEs. J. Geomag. Geoelectr. 43(Suppl), 31–36 (1991) [Sect. 9.2.2]Google Scholar
  433. Somov, B.V.: Physical Processes in Solar Flares, p. 248. Kluwer, Dordrecht/Boston/London (1992) [Sects. 3.1, 4.2.4, 4.3.3, 6.1, 8.2.1, 8.2.2, 8.3.1, 8.3.2, 8.3.3, 8.4.1, 8.4.2, 8.5.3, 10.1, 11.1, 11.2, 11.3, 12.1, 13.5, 13.6, 16.2, 17.4.1 and 17.4.2]Google Scholar
  434. Somov, B.V.: Cosmic electrodynamics and solar physics. Bull. Russ. Acad. Sci. Phys. 63(8), 1157–1162 (1999) [Sect.  14.4]
  435. Somov, B.V.: Cosmic Plasma Physics, p. 652. Kluwer, Dordrecht/Boston/London (2000) [Intr., Sects. 8.5.2 and 8.6]Google Scholar
  436. Somov, B.V.: On the topological trigger of large eruptive solar flares. Astron. Lett. 34(9), 635–645 (2008a) [Sects. 4.2.3, 6.3.1, 6.3.2 and 6.4.1]Google Scholar
  437. Somov, B.V.: Magnetic reconnection and topological trigger in physics of large solar flares. Asian J. Phys. 17(2–3), 421–454 (2008b). [Sects. 4.2.3, 6.3.1, 6.3.2 and 6.4.1]Google Scholar
  438. Somov, B.V.: Interpretation of the observed motions of hard X-ray sources in solar flares. Astron. Lett. 36(7), 514–519 (2010) [Sect. 7.5.2]Google Scholar
  439. Somov, B.V.: A new scenario for impulsive bursts of hard electromagnetic radiation in space plasma. Astron. Lett. 37(10), 679–691 (2011) [Sect. 11.5]Google Scholar
  440. Somov, B.V.: Plasma Astrophysics, Part I, Fundamentals and Practice, p. 498. Springer Science+Business Media, New York (2012a) [Intr.]Google Scholar
  441. Somov, B.V.: On the magnetic reconnection of electric currents in solar flares. Astron. Lett. 38(2), 128–138 (2012b) [Sect. 16.1]Google Scholar
  442. Somov, B.V., Bogachev, S.A.: The betatron effect in collapsing magnetic trap. Astron. Lett. 29, 621–628 (2003) [Sects. 9.3.1, 9.3.2, 9.3.3, 9.3.4, 9.5.1, 9.4.3, 9.4.4, 9.4.5 and 9.7]Google Scholar
  443. Somov, B.V., Hénoux J.C.: Generation and interaction of electric currents in the quiet photospheric network. In: Magnetic Fields and Solar Processes. Proceedings of the 9th European Meeting on Solar Physics, ESA SP-448, pp. 659–663. European Space Agency, Noordwijk (1999) [Sects. 14.4 and 16.2]Google Scholar
  444. Somov, B.V., Kosugi, T.: Collisionless reconnection and high-energy particle acceleration in solar flares. Astrophys. J. 485(2), 859–868 (1997) [Sects. 6.1, 6.2.6, 7.5.2, 8.6, 9.2.1, 9.2.2, 9.2.3, 9.7, 9.8 and 10.1]Google Scholar
  445. Somov, B.V., Kozlova, L.M.: Fine structure of the solar chromosphere from infrared He I line observations. Astron. Rep. 42(6), 819–826 (1998) [Sect. 15.5]Google Scholar
  446. Somov, B.V., Litvinenko, Yu.E.: Magnetic reconnection and particle acceleration in the solar corona. In: Linsky, J., Serio, S. (eds.) Physics of Solar and Stellar Coronae, pp. 603–606. Kluwer, Dordrecht (1993) [Sect. 11.1]Google Scholar
  447. Somov, B.V., Merenkova, E.Yu.: Model computations of magnetic fields in solar flares. Bull. Russ. Acad. Sci. Phys. 63(8), 1186–1188 (1999) [Sects. 5.3.1, 11.2 and 16.3]Google Scholar
  448. Somov, B.V., Oreshina, A.V.: Slow and fast magnetic reconnection. II. High-temperature turbulent-current sheet. Astron. Astrophys. 354, 703–713 (2000) [Sects. 8.1.2 and 8.3.2]Google Scholar
  449. Somov, B.V., Syrovatskii, S.I.: Appearance of a current sheet in a plasma moving in the field of a two-dimensional magnetic dipole. Sov. Phys. – JETP 34(5), 992–997 (1972) [Sects. 2.1.4, 3.4.1, 3.7, 6.3.2, 8.1.1, 10.3 and 16.3]Google Scholar
  450. Somov, B.V., Syrovatskii, S.I.: Electric and magnetic fields arising from the rupture of a neutral current sheet. Bull. Acad. Sci. USSR Phys. Ser. 39(2), 109–111 (1975) [Sects. 3.2, 3.6 and 5.1.2]Google Scholar
  451. Somov, B.V., Syrovatskii, S.I.: Physical processes in the solar atmosphere associated with flares. Sov. Phys. Usp. 19(10), 813–835 (1976a) [Sects. 8.1.2 and 17.4.2]Google Scholar
  452. Somov, B.V., Syrovatskii, S.I.: Hydrodynamic plasma flows in a strong magnetic field. In: Basov, N.G. (ed.) Neutral Current Sheets in Plasma. Proceedings of the P.N. Lebedev Physics Institute, vol. 74, pp. 13–71. Consultants Bureau, New York/London (1976b) [Sects. 2.2.1, 3.1 and 12.1]Google Scholar
  453. Somov, B.V., Syrovatskii, S.I.: Current sheets as the source of heating for solar active regions. Solar Phys. 55(2), 393–399 (1977) [Sect. 5.1.1]Google Scholar
  454. Somov, B.V., Syrovatskii, S.I.: Thermal trigger for solar flares and coronal loops formation. Solar Phys. 75(1), 237–244 (1982) [Sect. 8.1.2]Google Scholar
  455. Somov, B.V., Titov, V.S.: Magnetic reconnection as a mechanism for heating the coronal loops. Sov. Astron. Lett. 9(1), 26–28 (1983) [Sect. 10.1]Google Scholar
  456. Somov, B.V., Titov, V.S.: Effect of longitudinal magnetic field in current sheets on the Sun. Sov. Astron. – AJ 29(5), 559–563 (1985a) [Sects. 8.2.2 and 14.2]Google Scholar
  457. Somov, B.V., Titov, V.S.: Magnetic reconnection in a high-temperature plasma of solar flares. 2. Effects caused by transverse and longitudinal magnetic fields. Sol. Phys. 102(1), 79–96 (1985b) [Sects. 8.2.2, 8.3.1, 13.5 and 14.2]Google Scholar
  458. Somov, B.V., Verneta, A.I.: Magnetic reconnection in a high-temperature plasma of solar flares. 3. Stabilization effect of a transverse magnetic field in non-neutral current sheets. Sol. Phys. 117(1), 89–95 (1988) [Sects. 13.1.2 and 13.6.2]Google Scholar
  459. Somov, B.V., Verneta, A.I.: Magnetic reconnection in a high-temperature plasma of solar flares. 4. Resistive tearing mode in non-neutral current sheets. Sol. Phys. 120(1), 93–115 (1989) [Sects. 13.1.2 and 13.4]Google Scholar
  460. Somov, B.V., Verneta, A.I.: Tearing instability of reconnecting current sheets in space plasmas. Space Sci. Rev. 65(3), 253–288 (1993) [Sects. 13.1.2, 13.5.2 and 13.6.2]Google Scholar
  461. Somov, B.V., Syrovatskii, S.I., Spektor, A.R.: Hydrodynamic response of the solar chromosphere to elementary flare burst. 1. Heating by accelerated electrons. Sol. Phys. 73(1), 145–155 (1981) [Sect. 17.4.2]Google Scholar
  462. Somov, B.V., Kosugi, T., Sakao, T.: Collisionless 3D reconnection in impulsive solar flares. Astrophys. J. 497(2), 943–956 (1998) [Sects. 5.3.1, 6.1, 7.1.3, 7.2.3, 7.4.1, 7.6, 8.6, 10.1 and 11.2]Google Scholar
  463. Somov, B.V., Litvinenko, Y.E., Kosugi, T., et al.: Coronal hard X-rays in solar flares: Yohkohobservations and interpretation. In: Magnetic Fields and Solar Processes. Proceedings of the 9th European Meeting on Solar Physics, ESA SP-448, pp. 701–708. European Space Agency, Noordwijk (1999) [Sects. 9.2.4 and 9.8]Google Scholar
  464. Somov, B.V., Kosugi, T., Litvinenko, Y.E., et al.: Collisionless reconnection in the structure and dynamics of active regions. In: Brekke, P., Fleck, B., Gurman, J.B. (eds.) Recent Insight into the Physics of the Sun and Heliosphere: Highlights from SOHO and Other Space Missions. Proceedings of the IAU Symposium, vol. 203, pp. 558–561. Sheridan Books, Chelsea (2001) [Sects. 4.3.3 and 16.3]Google Scholar
  465. Somov, B.V., Kosugi, T., Hudson, H.S., et al.: Magnetic reconnection scenario of the Bastille day 2000 flare. Astrophys. J. 579(2), 863–873 (2002a) [Sects. 6.1.1, 7.2.3, 7.4.1, 7.4.4, 7.5.1, 7.5.2, 7.6, 8.6 and 14.2]Google Scholar
  466. Somov, B.V., Kosugi, T., Litvinenko, Y.E., et al.: Three-dimensional reconnection at the Sun: Space observations and collisionless models. Adv. Space Res. 29(7), 1035–1044 (2002b) [Sect. 4.3.3]Google Scholar
  467. Somov, B.V., Hénoux, J.C., Bogachev, S.A.: Is it possible to accelerate ions in collapsing magnetic trap? Adv. Space Res. 30(1), 55–60 (2002c) [Sect. 9.8]Google Scholar
  468. Somov, B.V., Oreshina, A.V., Oreshina, I.V., et at.: Flares in accretion disk coronae. Adv. Space Res. 32(6), 1087–1096 (2003a) [Intr., Sect. 10.3]Google Scholar
  469. Somov, B.V., Kosugi, T., Hudson, H.S., et al.: Modeling large solar flares. Adv. Space Res. 32(12), 2439–2450 (2003b) [Sects. 7.4.4 and 7.4.5]Google Scholar
  470. Somov, B.V., Kosugi, T., Bogachev, S.A., et al.: Motion of the HXR sources in solar flares: Yohkohimages and statistics. Adv. Space Res. 35(10), 1700–1706 (2005a) [Sects. 7.4.2, 7.4.5 and 7.5.2]Google Scholar
  471. Somov, B.V., Kosugi, T., Bogachev, S.A., et al.: On upward motions of coronal hard X-ray sources in solar flares. Adv. Space Res. 35(10), 1690–1699 (2005b) [Sect. 9.1.3]Google Scholar
  472. Somov, B.V., Kosugi, T., Oreshina, I.V., et al.: Large-scale reconnection in a large flare. Adv. Space Res. 35(10), 1712–1722 (2005c) [Sects. 6.2.1, 6.2.4, 6.2.5 and 6.2.6]Google Scholar
  473. Somov, B.V., Oreshina, I.V., Kovalenko, I.A.: Magnetic reconnection, electric field, and particle acceleration in the July 14, 2000 solar flare. Astron. Lett. 34(5), 327–336 (2008) [Sect. 4.1.3]Google Scholar
  474. Sotirelis, T., Meng, C.-I.: Magnetopause from pressure balance. J. Geophys. Res 104(A4), 6889–6898 (1999) [Sect. 10.2]Google Scholar
  475. Speiser, T.W.: Particle trajectories in model current sheets. 1. Analytical solutions. J. Geophys. Res. 70(17), 4219–4226 (1965) [Sects. 1.2.3, 11.1, 11.2, 11.3 and 11.4]Google Scholar
  476. Speiser, T.W.: On the uncoupling of parallel and perpendicular particle motion in a neutral sheet. J. Geophys. Res. 73(3), 1112–1113 (1968) [Sect. 11.2]Google Scholar
  477. Speiser, T.W., Lyons, L.R.: Comparison of an analytical approximation for particle motion in a current sheet with precise numerical calculations. J. Geophys. Res. 89(A1), 147–158 (1984) [Sect. 11.3]Google Scholar
  478. Spicer, D.S.: Magnetic energy storage and conversion in the solar atmosphere. Space Sci. Rev. 31(1), 351–435 (1982) [Sects. 5.1.3 and 16.4]Google Scholar
  479. Srivastava, N., Mathew, S.K., Louis, R.E. et al.: Source region of the 18 November 2003 coronal mass ejection that led to the strongest magnetic storm of cycle 23. J. Geophys. Res. 114(A3), CiteID A03107 (2009) [Sect. 6.4.1]Google Scholar
  480. Stenzel, R.L., Gekelman, W.: Particle acceleration during reconnection in laboratory plasmas. Adv. Space Res. 4(2), 459–470 (1984) [Sects. 5.1.2, 5.1.3 and 16.2]Google Scholar
  481. Sterling, A.C., Hudson, H.S.: Yohkoh SXT observations of X-ray “dimming” associated with a halo coronal mass ejection. Astrophys. J. 491(1), L55–L58 (1997) [Sect. 4.3.5]Google Scholar
  482. Stewart, R.T., Labrum, N.R.: Meter-wavelength observations of the solar radio storm of August 17–22, 1968. Sol. Phys. 27(1), 192–202 (1972) [Sect. 11.4]Google Scholar
  483. Strong, K.T., Saba, J.L.R., Haisch, B.M., et al. (eds): The Many Faces of the Sun, p. 610. Springer, New York/Berlin/Heidelberg/Tokyo (1999) [Intr., Sect. 6.1]Google Scholar
  484. Sturrock, P.A.: Maximum energy of semi-infinite magnetic field configurations. Astrophys. J. 380(2), 655–659 (1991) [Sect. 16.2]Google Scholar
  485. Sturrock, P.A.: Plasma Physics: An Introduction to the Theory of Astrophysical, Geophysical and Laboratory Plasmas, p. 335. Cambridge University Press, Cambridge (1994) [Intr.]Google Scholar
  486. Sudol, J.J., Harvey, J.W.: Longitudinal magnetic field changes accompanying solar flares. Astrophys. J. 635(1), 647–658 (2005) [Sects. 4.1.1 and 4.1.3]Google Scholar
  487. Sui, L., Holman, G.D.: Evidence for the formation of a large-scale current sheet in a solar flare. Astrophys. J. 596, L251–L254 (2003) [Sects. 7.5.1, 9.1.2 and 9.1.3]Google Scholar
  488. Sui, L., Holman, G.D., Dennis, B.R.: Evidence for magnetic reconnection in three homologous solar flares observed by RHESSI. Astrophys. J. 612(1), 546–556 (2004) [Sects. 7.5.1, 9.1.2 and 9.1.3]Google Scholar
  489. Svestka, Z.: The Hα flare as a secondary product of a coronal instability. Sol. Phys. 31(2), 389–400 (1973) [Sect. 17.4.1]Google Scholar
  490. Svestka, Z.: Solar Flares. D. Reidel Publishing, Dordrecht (1976) [Sects. 6.1, 7.1.2 and 7.4.3]CrossRefGoogle Scholar
  491. Sweet, P.A.: The production of high energy particles in solar flares. Nuovo Cimento Suppl. 8(Serie 10), 188–196 (1958) [Intr., Sect. 16.2]Google Scholar
  492. Sweet, P.A.: Mechanisms of solar flares. Ann. Rev. Astron. Astrophys. 7, 149–176 (1969) [Sects. 2.1.1, 4.2.4, 4.3.1, 8.1.1 and 11.1]Google Scholar
  493. Syrovatskii, S.I.: Some properties of discontinuity surfaces in MHD. Proc. P.N. Lebedev Phys. Inst. 8, 13–64 (1956) (in Russian) [Sect. 12.3]Google Scholar
  494. Syrovatskii, S.I.: The stability of plasma in a nonuniform magnetic field and the mechanism of solar flares. Sov. Astron. – AJ 6(6), 768–769 (1962) [Sect. 2.1.1]Google Scholar
  495. Syrovatskii, S.I.: Dynamical dissipation of a magnetic field and particle acceleration. Sov. Astron. – AJ 10(2), 270–276 (1966a) [Sects. 2.1.1, 2.2.1, 2.3.2, 3.1, 4.2.4, 5.3.2, 8.6, 8.5.6 and 16.3]Google Scholar
  496. Syrovatskii, S.I.: Dynamical dissipation of magnetic energy in the vicinity of a neutral line. Sov. Phys. – JETP 23(4), 754–762 (1966b) [Sects. 2.1.6, 2.1.7, 2.3.2 and 8.6]Google Scholar
  497. Syrovatskii, S.I.: MHD cumulation near a zero field line. Sov. Phys. – JETP 27(5), 763–766 (1968) [Sect. 2.4.2]Google Scholar
  498. Syrovatskii, S.I.: On the mechanism of solar flares. In: de Jager, C., Svestka, Z. (eds.) Solar Flares and Space Research. 11th COSPAR Symposium, pp. 346–355. North-Holland Publishing, Amsterdam (1969) [Sects. 5.2.3 and 5.2.4]Google Scholar
  499. Syrovatskii, S.I.: Formation of current sheets in a plasma with a frozen-in strong field. Sov. Phys. – JETP 33(5), 933–940 (1971) [Sects. 3.1, 12.1 and 16.3]Google Scholar
  500. Syrovatskii, S.I.: Particle acceleration and plasma ejection from the Sun. In: Dryer, E.R. (ed.) Solar-Terrestrial Physics 1970, Part 1, pp. 119–133. D. Reidel Publishing, Dordrecht (1972) [Sects. 5.2.1, 5.2.4, 7.1.2 and 8.4.1]Google Scholar
  501. Syrovatskii, S.I.: Neutral current sheets in laboratory and space plasmas. In: Basov, N.G. (ed.) Neutral Current Sheets in Plasmas. Proceedings of the P.N. Lebedev Physics Institute, vol. 74, pp. 2–10. Consultants Bureau, New York/London (1976a) [Sects. 3.1, 8.1.1 and 12.1]Google Scholar
  502. Syrovatskii, S.I.: Current-sheet parameters and a thermal trigger for solar flares. Sov. Astron. Lett. 2(1), 13–14 (1976b) [Sects. 5.1.1, 5.1.3 and 8.1.2]Google Scholar
  503. Syrovatskii, S.I.: Pinch sheets and reconnection in astrophysics. Ann. Rev. Astron. Astrophys. 19, 163–229 (1981) [Sects. 4.2.4, 5.1.1, 5.3.2, 8.1.1, 8.4.1, 11.1, 11.4, 13.5.2 and 16.2]Google Scholar
  504. Syrovatskii, S.I.: Model for flare loops, fast motions, and opening of magnetic field in the corona. Sol. Phys. 76(1), 3–20 (1982) [Sects.  4.3.5, 6.3.1, 11.1 and 15.1]
  505. Syrovatskii, S.I., Shmeleva, O.P.: Heating of plasma by high-energy electrons, and the non-thermal X-ray emission in solar flares. Sov. Astron. – AJ 16(2), 273–283 (1972) [Sects. 17.2.2, 17.2.4 and 17.3.1]Google Scholar
  506. Syrovatskii, S.I., Somov, B.V.: Physical driving forces and models of coronal responses. In: Dryer, M., Tandberg-Hanssen, E. (eds.) Solar and Interplanetary Dynamics. IAU Symposium, vol. 91, pp. 425–441. Reidel, Dordrecht (1980) [Sects.  4.3.5, 6.3.1 and 16.2]
  507. Tanaka, K.: Impact of X-ray observations from the Hinotori satellite on solar flare research. Publ. Astron. Soc. Jpn. 39(1), 1–45 (1987) [Sect. 8.5.5]Google Scholar
  508. Tandberg-Hanssen, E.: The Nature of Solar Prominences, p. 308. Kluwer, Dordrecht/Boston/ London (1995) [Sect. 15.1]Google Scholar
  509. Tarbell, T.D.: Early results from the atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO). Bull. Am. Astron. Soc. 43, AAS Meeting 217, No. 115.09, p. 122 (2011) [Intr.]Google Scholar
  510. Taylor, J.B.: Relaxation of toroidal plasma and generation of reverse magnetic fields. Phys. Rev. Lett. 33(19), 1139–1141 (1974) [Sects. 14.1 and 14.2.2]Google Scholar
  511. Taylor, J.B.: Relaxation and magnetic reconnection in plasmas. Rev. Mod. Phys. 58(3), 741–763 (1986) [Sect. 14.1]Google Scholar
  512. Tian, L., Wang, J., Wu, D.: Non-potentiality of the magnetic field beneath the eruptive filament in the Bastille event. Sol. Phys. 209, 375–389 (2002) [Sect. 6.2.4]Google Scholar
  513. Titov, V.S., Priest, E.R., Démoulin, P.: Conditions for the appearance of ‘bald patches’ at the solar surface. Astron. Astrophys. 276(2), 564–570 (1993) [Sect. 16.3]Google Scholar
  514. Tsalas, M., Chapman, S.C., Rowlands, G.: The stability of charged-particle motion in sheared magnetic reversals. J. Plasma Phys. 65(4), 331–352 (2001) [Sect. 11.1.2]Google Scholar
  515. Tsuneta, S.: Solar flares as an ongoing magnetic reconnection process. In: Zirin, H., Ai, G., Wang, H. (eds.) ASP Conference Series, vol. 46, pp. 239–248. Astronomical Society of the Pacific, San Francisco (1993) [Intr., Sect. 16.2]Google Scholar
  516. Tsuneta, S.: Structure and dynamics of reconnection in a solar flare. Astrophys. J. 456(2), 840–849 (1996) [Sects. 6.1, 7.1.2, 8.1.1, 8.6 and 8.5.5]Google Scholar
  517. Tsuneta, S., Naito, T.: Fermi acceleration at the fast shock in a solar flare and the impulsive loop-top hard X-ray source. Astrophys. J. 495, L67–L70 (1998) [Sect. 9.3.1]Google Scholar
  518. Tsuneta, S., Nitta, N., Ohki, K., et al.: Hard X-ray imaging observations of solar hot thermal flares with the Hinotorispacecraft. Astrophys. J. 284(2), 827–832 (1984) [Sect. 8.5.5]Google Scholar
  519. Tsuneta, S., Acton, L., Bruner, M., et al.: The soft X-ray telescope for the Solar-A mission. Solar Phys. 136(1), 37–67 (1991) [Intr., Sect. 6.1]Google Scholar
  520. Tsuneta, S., Hara, H., Shimuzu, T., et al.: Observation of a solar flare at the limb with the Yohkohsoft X-ray telescope. Publ. Astron. Soc. Jpn. 44(5), L63–L69 (1992) [Intr.]Google Scholar
  521. Tsuneta, S., Masuda, S., Kosugi, T., et al.: Hot and super-hot plasmas above an impulsive-flare loop. Astrophys. J. 478(2), 787–796 (1997) [Sects. 8.1.1, 8.5.4, 8.6, 9.2.3 and 9.6.4]Google Scholar
  522. Tsuneta, S., Ichimoto, K., Katsukawa, Y., et al.: The Solar Optical Telescope for the Hinode mission: an overview. Solar Phys. 249(2), 167–196 (2008) [Intr., Sects. 16.6 and 17.4.2]Google Scholar
  523. Tsurutani, B.T., Gonzalez, W.D., Kamide, Y., et al. (eds): Magnetic Storms, p. 266. American Geophysical Union, Washington (1997) [Intr.]Google Scholar
  524. Tsyganenko, N.A.: Effects of the solar wind conditions on the global magnetospheric configuration as deduced from data-based field models. In: Proceedings of 3rd International Conference on Substorms (ICS-3), ESA SP-389, pp. 181–190. European Space Agency Publications Division, Noordwijk (1996) [Sect. 10.2]Google Scholar
  525. Uchida, Y., Hirose, S., Morita, S., et al.: Observations of flares and active regions from Yohkoh, and magnetohydrodynamic models explaining them. Astrophys. Space Sci. 264(1), 145–169 (1998) [Sects. 7.1.2 and 7.6]Google Scholar
  526. Ugai, M.: The evolution of fast reconnection in a three-dimensional current sheet system. Phys. Plasma 15(8), 082306–082306-10 (2008) [Sect. 3.4.3]Google Scholar
  527. Ugai, M.: Impulsive magnetic pulsations and electrojets in the loop footpoint driven by the fast reconnection jet. Phys. Plasma 16(11), 112902–112902-8 (2009) [Sect. 3.4.3]Google Scholar
  528. Ugarte-Urra, I., Warren, H.P., Winebarger, A.R.: The magnetic topology of coronal mass ejection sources. Astrophys. J. 662(2), 1293–1301 (2007) [Sects. 6.3.1 and 8.6]Google Scholar
  529. Ulmschneider, P., Rosner, R., Priest, E.R. (eds): Mechanisms of Chromospheric and Coronal Heating. Springer, Berlin (1991) [Sect.  14.4]CrossRefGoogle Scholar
  530. Uzdensky, D.A.: Self-regulation of solar coronal heating process via the collisionless reconnection condition. Phys. Rev. Lett. 99(26), id. 261101 (2007a) [Sect. 4.2.4]Google Scholar
  531. Uzdensky, D.A.: Fast collisionless reconnection condition and self-organization of solar coronal heating. Astrophys. J. 671(2), 2139–2153 (2007b) [Sect. 8.3.1]Google Scholar
  532. Uzdensky, D.A., Kulsrud, R.M.: Physical origin of the quadrupole out-of-plane magnetic field in Hall-magnetohydrodynamic reconnection. Phys. Plasma 13(66), 062305–062305-14 (2006) [Sect. 2.4.4]Google Scholar
  533. van Ballegooijen, A.A., Martens, P.C.H.: Formation and eruption of solar prominences. Astrophys. J. 343(3), 971–984 (1989) [Sects. 7.3 and 15.1]Google Scholar
  534. van Ballegooijen, A.A., Martens, P.C.H.: Magnetic fields in quiescent prominences. Astrophys. J. 361(1), 283–289 (1990) [Sect. 15.1]Google Scholar
  535. van Hollebeke, M.A.I., Ma Sung, L.S., McDonald, F.B.: The variation of solar proton energy spectra and size distribution with heliolongitude. Solar Phys. 41(1), 189–223 (1975) [Sect. 17.4.2]Google Scholar
  536. Vekstein, G.E., Priest, E.R.: Magnetohydrodynamic equilibria and cusp formation at an X-type neutral line by footpoint shearing. Astrophys. J. 384(1), 333–340 (1992) [Sects. 16.2 and 16.3]Google Scholar
  537. Veltri, P., Zimbardo, G., Taktakishvili, A.L., et al.: Effect of magnetic turbulence on the ion dynamics in the distant magnetotail. J. Geophys. Res. 103(A7), 14897–14910 (1998) [Sect. 11.1.3]Google Scholar
  538. Vernazza, J.E., Avrett, E.H., Loeser, R.: Structure of the solar chromosphere. Basic computations and summary of results. Astrophys. J. 184, 605–632 (1973) [Sect. 17.4.2]Google Scholar
  539. Vernazza, J.E., Avrett, E.H., Loeser, R.: Structure of the solar chromosphere. 3. Models of the EUV brightness components of the quiet Sun. Astrophys. J. Suppl. 45, 635–725 (1981) [Sect. 15.2.2]Google Scholar
  540. Verneta, A.I., Somov, B.V.: Effect of compressibility on the development of the tearing instability in a non-neutral current sheet in the solar atmosphere. Astron. Rep. 37(3), 282–285 (1993) [Sect. 13.5.2]Google Scholar
  541. Vladimirov, V.S.: Equations of Mathematical Physics, p. 418. M. Dekker, New York (1971) [Sect. 13.6]Google Scholar
  542. Voronov, G.S., Kyrie, N.P., Markov, V.S., et al.: Spectroscopic measurements of the electron and ion temperatures and effective ion charge in current sheets formed in two- and three-dimensional magnetic configurations. Plasma Phys. Rep. 34(12), 999–1015 (2008) [Sect. 5.1.2]Google Scholar
  543. Vorpahl, J.A.: The triggering and subsequent development of a solar flare. Astrophys. J. 205(1), 868–873 (1976) [Sects. 17.3.2 and 17.4.1]Google Scholar
  544. Wang, J.: Vector magnetic fields and magnetic activity of the Sun. Fundam. Cosm. Phys. 20(3), 251–382 (1999) [Sects. 4.1.1 and 15.3]Google Scholar
  545. Wang, H., Qiu, J.: Relationship between flare kernels in Hα far-blue wing and magnetic fields. Astrophys. J. 568(1), 408–412 (2002) [Sect. 6.1]Google Scholar
  546. Wang, Y.M., Sheeley, N.R.: Observations of core fallback during coronal mass ejections. Astrophys. J. 567(2), 1211–1224 (2002) [Sect. 9.2.5]Google Scholar
  547. Wang, J., Shi, Z.: The flare-associated magnetic changes in an active region. II. Flux emergence and cancellation. Sol. Phys. 143(1), 119–139 (1993) [Sects. 6.2.4 and 7.6]Google Scholar
  548. Wang, J.X., Shi, Z.X., Wang, H., et al.: Flares and the magnetic non-potentiality. Astrophys. J. 456(2), 861–878 (1996) [Sect. 5.1.1]Google Scholar
  549. Wang, H., Qiu, J., Jing, J., et al.: Study of ribbon separation of a flare associated with a quiescent filament eruption. Astrophys. J. 593(1), 564–570 (2003) [Sect. 7.4.5]Google Scholar
  550. Wang, H., Liu, C., Deng, Y., et al.: Reevaluation of the magnetic structure and evolution associated with the Bastille day flare on 2000 July 14. Astrophys. J. 627(2), 1031–1039 (2005) [Sects. 4.1.1, 4.1.3, 7.1.1 and 7.1.2]Google Scholar
  551. Watanabe, K., Krucker, S., Hudson, H., et al.: G-band and hard X-ray emissions of the 2006 December 14 flare observed by Hinode/SOT and RHESSI. Astrophys. J. 715(1), 651–655 (2010) [Sect. 17.4.2]Google Scholar
  552. Wedemeyer-Böhm, S.: Point spread functions for the Solar optical telescope onboard Hinode. Astron. Astrophys. 487(1), 399–412 (2008) [Sect. 16.6]Google Scholar
  553. Woltjer, L.: A theorem on force-free magnetic fields. Proc. Nat. Acad. Sci. USA 44(6), 489–491 (1958) [Sect. 14.1]Google Scholar
  554. Woltjer, L.: Hydromagnetic equilibrium: II. Stability in the variational formulation. Proc. Nat. Acad. Sci. USA 45(6), 769–771 (1959) [Sect. 14.5]Google Scholar
  555. Wright, J.M.: National Space Weather Program: The Implementation Plan, FCM-P31. Office of the Federal Coordinator for Meteorological Services and Supporting Research, Washington (1997) [Intr., Sect. 10.2.3]Google Scholar
  556. Wright, A.N., Berger, M.A.: The effect of reconnection upon the linkage and interior structure of magnetic flux tubes. J. Geophys. Res. 94(A2), 1295–1302 (1989) [Sect. 14.1]Google Scholar
  557. Wright, A.N., Berger, M.A.: A physical description of magnetic helicity evolution in the presence of reconnection lines. J. Plasma Phys. 46(1), 179–199 (1991) [Sect. 14.2]Google Scholar
  558. Xiao, C.J., Wang, X.G., Pu, Z.Y., et al.: Satellite observations of separator-line geometry of three-dimensional magnetic reconnection. Nature Phys. 3(9), 609–613 (2007) [Intr., Sect.  4.2.1]Google Scholar
  559. Xu, Y., Cao, W., Liu, C., et al.: High-resolution observations of multiwavelength emissions during two X-class white-light flares. Astrophys. J. 641(2), 1210–1216 (2006) [Sect. 17.4.2]Google Scholar
  560. Yamada, M., Ren, Y., Ji, H., et al.: Identification of two-scale diffusion layer during magnetic reconnection in a laboratory plasma. Bull. Am. Phys. Soc. 52(11), abstract ID: BAPS.2007.DPP.TP8.6 (2007) [Sect. 4.2.4]Google Scholar
  561. Yan, Y., Deng, Y., Karlicky, M., et al.: The magnetic rope structure and associated energetic processes in the 2000 July 14 solar flare. Astrophys. J. 551(Part 2), L115–L118 (2001) [Sects. 6.1 and 7.2.3]Google Scholar
  562. Yokoyama, T., Shibata, K.: Magnetic reconnection coupled with heat conduction. Astrophys. J. 474(1), L61–L64 (1997) [Sect. 3.6]Google Scholar
  563. Yokoyama, T., Akita, K., Morimoto, T., et al.: Clear evidence of reconnection inflow of a solar flare. Astrophys. J. 546(1), L69–L72 (2001) [Sect. 8.1.1]Google Scholar
  564. Zeiler, A., Biskamp, D., Drake, J.F., et al.: Three-dimensional particle simulation of collisionless magnetic reconnection. J. Geophys. Res. 107(A9), SPM 6-1, CiteID 1230 (2002) [Sects. 3.4.3 and 3.5]Google Scholar
  565. Zel’dovich, Ya.B., Raizer, Yu.P.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, vol.1, p. 464; vol. 2, p. 452. Academic, New York/San Francisco/London (1966) [Sect. 2.4.1]Google Scholar
  566. Zel’dovich, Ya.B., Raizer, Yu.P.: In: Hayes, W.D., Probstein, R.F. (eds.) Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Dover, Mineola (2002) [Sect. 2.4.1]Google Scholar
  567. Zelenyi, L.M., Dolgonosov, M.S., Grigorenko, E.E., et al.: Universal properties of the nonadiabatic acceleration of ions in current sheets. JETP Lett. 85(4), 187–193 (2007) [Sect. 11.1.3]Google Scholar
  568. Zelenyi, L.M., Artemyev, A.V., Petrukovich, A.A., et al.: Low frequency eigenmodes of thin anisotropic current sheets and Cluster observations. Ann. Geophys. 27(2), 861–868 (2009) [Sects. 11.1.3 and 13.1.1]Google Scholar
  569. Zhang, H.: Configuration of magnetic shear and vertical current in the active region NOAA 5395 in 1989 March. Astron. Astrophys. Suppl. 111(1), 27–40 (1995) [Sect. 5.1.1]Google Scholar
  570. Zhang, H.: Magnetic field, helicity and the 2000 July 14 flare in solar active region 9077. Mon. Not. R. Astron. Soc. 332(2), 500–512 (2002) [Sects. 6.2.4 and 7.1.1]Google Scholar
  571. Zhang, H.-Q., Chupp, E. L.: Studies on post-flare prominence of 1981 April 27. Astrophys. Space Sci. 153(1), 95–108 (1989) [Sect. 11.4]Google Scholar
  572. Zhang, J., Wang, J., Deng, Y., et al.: Magnetic flux cancelation associated with the major solar event on 2000 July 14. Astrophys. J. 548(Part 2), L99–L102 (2001) [Sects. 6.1, 7.2.2, 7.2.3 and 7.3]Google Scholar
  573. Zhang, J., Li, L., Song, Q.: Interaction between a fast rotating sunspot and ephemeral regions as the origin of the major solar event on 2006 December 13. Astrophys. J. 662(1), Part 2, L35–L38 (2007) [Sect.  11.4.3]
  574. Zhou, T., Ji, H., Huang, G.: Converging motion of conjugate flaring kernels during two large solar flares. Adv. Space Res. 41(8), 1195–1201 (2008) [Sects. 7.2.2 and 7.5.1]Google Scholar
  575. Zirin, H.: Astrophysics of the Sun. D. Reidel, Dordrecht (1988) [Sects. 6.1 and 7.1.2]Google Scholar
  576. Zirin, H., Tanaka, K.: The flare of August 1972. Sol. Phys. 32(1), 173–207 (1973) [Sect. 17.4.1]Google Scholar
  577. Zirker, J.B., Cleveland, F.M.: Avalanche models of active region heating and flaring. Sol. Phys. 145(1), 119–128 (1993) [Sect. 14.1]Google Scholar
  578. Zuccarello, F., Burm, H., Kuperus, M., et al.: Varying self-inductance and energy storage in a sheared force-free arcade. Astron. Astrophys. 180(1), 218–222 (1987) [Sect. 16.4]Google Scholar
  579. Zweibel, E.G.: Magnetic reconnection in partially ionized gases. Astrophys. J. 340(2), 550–557 (1989) [Sect. 15.2.3]Google Scholar
  580. Zwingmann, W., Schindler, K., Birn, J.: On sheared magnetic field structures containing neutral points. Sol. Phys. 99(1), 133–143 (1985) [Sects. 13.1, 16.2 and 16.3]Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Boris V. Somov
    • 1
  1. 1.Astronomical Institute and Faculty of PhysicsM.V. Lomonosov Moscow State UniversityMoskvaRussia

Personalised recommendations