Evolutionarity of MHD Discontinuities

  • Boris V. Somov
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 391)

Abstract

A discontinuity cannot exist in astrophysical plasma with magnetic field if small perturbations disintegrate it into other discontinuities or transform it to a more general non-steady flow. In this chapter we consider the so-called evolutionarity or structural stability of the classic discontinuous solution of the MHD equations.

Keywords

Entropy Flare Geophysics 

References

  1. Acton, L.: Coronal structures, local and global. In: Uchida, Y., Kosugi, T., Hudson, H. (eds.) Magnetohydrodynamic Phenomena in the Solar Atmosphere: Prototypes of Stellar Magnetic Activity, pp. 3–11. Kluwer Academic, Dordrecht (1996) [Sect. 19.3.4]Google Scholar
  2. Akhiezer, A.I., Lyubarskii, G.Ya., Polovin, R.V.: On the stability of shock waves in MHD. Sov. Phys. JETP 8(3), 507–512 (1959) [Sect. 17.2.1]Google Scholar
  3. Akhiezer, A.I., Akhiezer, I.A., Polovin, R.V., et al.: Plasma Electrodynamics. Oxford, Pergamon (1975) [Sects. 15.4.5, 17.2.2]Google Scholar
  4. Alekseyev, I.I., Kropotkin, A.P.: Passage of energetic particles through a MHD discontinuity. Geomagn. Aeron. 10(6), 755–758 (1970) [Sect. 18.3.1]Google Scholar
  5. Alexander, D., Daou, A.G.: Saturation of nonthermal hard X-ray emission in solar flares. Astrophys. J. 666(2), 1268–1276 (2007) [Sects. 4.5.6, 4.6]Google Scholar
  6. Alfaro, E.J., Pérez, E., Franco, J. (eds.): How does the Galaxy work? A galactic tertulia with Don Cox and Ron Reynolds. Kluwer Academic, Dordrecht (2004) [Sect. 9.8]Google Scholar
  7. Alfvén, H.: On the solar origin of cosmic radiation. Phys. Rev. 75(11), 1732–1735 (1949) [Sect. 7.2]Google Scholar
  8. Alfvén, H.: Cosmic Electrodynamics, p. 228. Clarendon Press, Oxford (1950) [Intr., Sects. 12.2.2, 13.4, 15.2.2, 20.1.4]Google Scholar
  9. Alfvén, H.: Cosmic Plasma, p. 164. D. Reidel Publishers, Dordrecht (1981) [Sect. 20.1.4]Google Scholar
  10. Alfvén, H., Fälthammar, C.-G.: Cosmic Electrodynamics, p. 228. Clarendon Press, Oxford (1963) [Sects. 8.1.4, 8.2.3, 11.1, 15.4.5]Google Scholar
  11. Allred, J.C; Hawley, S.L., Abbett, W.P., Carlsson, M.: Radiative hydrodynamic models of the optical and ultraviolet emission from solar flares. Astrophys. J. 630(1), 573–586 (2005) [Sect. 8.3.2]Google Scholar
  12. Alperovich, L.S., Fedorov, E.N.: Hydromagnetic Waves in the Magnetosphere and Ionosphere, p. 426. Springer, Berlin (2007) [Sects. 11.1, 11.4.1]Google Scholar
  13. Altyntsev, A.T., Krasov, V.I., Tomozov V.M.: Magnetic field dissipation in neutral current sheets. Solar Phys. 55(1), 69–81 (1977) [Sect. 12.3.1]Google Scholar
  14. Anderson, J.E.: Magnetohydrodynamic Shock Waves, p. 226. MIT, Cambridge (1963) [Sects. 16.2.4(c), 17.4.2]Google Scholar
  15. Andres, U.T., Polak, L.S., Syrovatskii, S.I.: Electromagnetic expulsion of spherical bodies from a conductive fluid. Soviet Phys. Tech. Phys. 8(3), 193–196 (1963) [Sects. 19.4.2, 20.4]Google Scholar
  16. Anile, A.M.: Relativistic Fluids and Magneto-Fluids, p. 336. Cambridge University Press, Cambridge (1989) [Sect. 12.2]Google Scholar
  17. Antonucci, E., Somov, B.V.: A diagnostic method for reconnecting magnetic fields in the solar corona. In: Coronal Streamers, Coronal Loops, and Coronal and Solar Wind Composition, Proceedings of First SOHO Workshop, ESA SP-348, pp. 293–294 (1992) [Sects. 8.3.3, 20.4]Google Scholar
  18. Antonucci, E., Benna, C., Somov, B.V.: Interpretation of the observed plasma ‘turbulent’ velocities as a result of reconnection in solar flares. Astrophys. J. 456(2), 833–839 (1996) [Sects. 8.3.3, 20.4]Google Scholar
  19. Arons, J.: Pulsar emission: Where to go? In: Becker, W. (ed.) Neutron Stars and Pulsars, pp. 373–420. Springer-Verlag, Berlin, Heidelberg (2009) [Sect. 12.2.5]Google Scholar
  20. Aschwanden, M.J.: Particle Acceleration and Kinematics in Solar Flares: A Synthesis of Recent Observations and Theoretical Concepts, p. 227. Kluwer Academic, Dordrecht (2002) [Sect. 4.5.7]Google Scholar
  21. Aschwanden, M.J.: Physics of the Solar Corona: An Introduction, p. 227. Springer, Berlin (2004) [Sect. 15.5]Google Scholar
  22. Aschwanden, M.J., Kliem, B., Schwarz, U., et al.: Wavelet analysis of solar flare hard X-rays. Astrophys. J. 505(2), 941–956 (1998) [Sect. 4.5.7]Google Scholar
  23. Aschwanden, M.J., Nightingale, R.W., Andries, J., et al.: Observational tests of damping by resonant absorption in coronal loop oscillations. Astrophys. J. 598, 1375–1386 (2003) [Sect. 15.5]Google Scholar
  24. Asmussen, S., Glynn, P.W.: Stochastic Simulations: Algorithms and Analysis, p. 476. Springer, New York (2007) [Sect. 3.4]Google Scholar
  25. Atkinson, G., Unti, T.: Two-dimensional Chapman-Ferraro problem with neutral sheet. 1. The interior field. J. Geophys. Res. Space Phys. 74(14), 3713–3716 (1969) [Sect. 14.2.2(a)]Google Scholar
  26. Atoyan, A.M., Aharonian, F.A.: Modeling of the non-thermal flares in the Galactic microquasar GRS 1915+105. Mon. Not. Roy. Astron. Soc. 302(1), 253–276 (1999) [Sect. 20.1.3]Google Scholar
  27. Axford, W.I., Leer, E., Skadron, G.: The acceleration of cosmic rays by shock waves. In: Proc. 15th Int. Cosmic Ray Conf. (Plovdiv, August 13–26, 1977), Bulgarian Acad. Sci., Sofia, vol. 11, pp. 132–137 (1977) [Sect. 18.2.1]Google Scholar
  28. Bachiller, R.: Bipolar molecular outflows from young stars and protostars. Ann. Rev. Astron. Astrophys. 34, 111–154 (1996) [Sect. 20.2]Google Scholar
  29. Bai, T., Hudson, H.S., Pelling, R.M., et al.: First-order Fermi acceleration in solar flares as a mechanism for the second-step acceleration of protons and electrons. Astrophys. J. 267(1), 433–441 (1983) [Sect. 6.2.4]Google Scholar
  30. Balbus, S.A., Papaloizou, J.C.B.: On the dynamical foundations of α disks. Astrophys. J. 521(2), 650–658 (1999) [Sect. 13.2.1]Google Scholar
  31. Balescu, R.: Statistical Mechanics of Charged Particles, p. 477. Wiley, London (1963) [Sect. 4.1.2]Google Scholar
  32. Balescu, R.: Equilibrium and Nonequilibrium Statistical Mechanics. Wiley, London (1975) [Sect. 3.1.4]MATHGoogle Scholar
  33. Balescu, R.: Transport Processes in Plasmas. North-Holland, Amsterdam (1988) [Sect. 9.5]Google Scholar
  34. Balikhin, M., Gedalin, M., Petrukovich, A.: New mechanism for electron heating in shocks. Phys. Rev. Lett. 70, 1259–1262 (1993) [Sect. 18.3.2(a)]Google Scholar
  35. Balogh, A., Erdös, G.: Fast acceleration of ions at quasi-perpendicular shocks. J. Geophys. Res. 96(A9), 15853–15862 (1991) [Sect. 18.3.2(b)]Google Scholar
  36. Barenblatt, G.I.: Similarity, Self-Similarity, and Intermediate Asymptotics. Plenum, New York (1979) [Sect. 20.4]MATHCrossRefGoogle Scholar
  37. Becker, W. (ed.): Neutron Starts and Pulsars, p. 997. Springer, Berlin (2009) [Sects. 5.4, 7.3, 12.2.2]Google Scholar
  38. Bednarek, W., Protheroe, R.J.: Gamma-ray and neutrino flares produced by protons accelerated on an accretion disc surface in active galactic nuclei. Mon. Not. Royal Astron. Soc. 302, 373–380 (1999) [Sect. 13.2.4]Google Scholar
  39. Begelman, M.C., Blandford, R.D., Rees, M.J.: Theory of extragalactic radio sources. Rev. Mod. Phys. 56(2), 255–351 (1984) [Sects. 7.3, 13.3.1, 13.3.3, 20.1.3]Google Scholar
  40. Beloborodov, A.M.: Plasma ejection from magnetic flares and the X-ray spectrum of Cygnus X-1. Astrophys. J. 510, L123–L126 (1999) [Sect. 13.2.4]Google Scholar
  41. Benz, A.: Plasma Astrophysics: Kinetic Processes in Solar and Stellar Coronae, 2nd edn., p. 299. Kluwer Academic, Dordrecht (2002) [Sects. 3.1.2, 7.1]Google Scholar
  42. Bernstein, I.B., Frieman, E.A., Kruskal, M.D., et al.: An energy principle for hydromagnetic stability problems. Proc. Roy. Soc. 244(A1), 17–40 (1958) [Sect. 19.3.4]Google Scholar
  43. Bertin, G.: The Dynamics of Galaxies, p. 448. Cambridge University Press, Cambridge (1999). [Sects. 1.3, 9.8]Google Scholar
  44. Bethe, H.A.: Office of Scientific Research and Development, Rep. No. 445 (1942) [Sect. 17.1.1]Google Scholar
  45. Bezrodnykh, S.I., Vlasov, V.I., Somov, B.V.: Analytical model of magnetic reconnection in the presence of shock waves attached to a current sheet. Astron. Lett. 33(2), 130–136 (2007) [Sect. 14.2.2(a)]Google Scholar
  46. Bezrodnykh, S.I., Vlasov, V.I., Somov, B.V.: Generalized analytical models of Syrovatskii’s current sheet. Astron. Lett. 37(2), 113–130 (2011) [Sect. 14.2.2(a)]Google Scholar
  47. Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. 1. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94(3), 511–525 (1954) [Sect. 9.9]Google Scholar
  48. Bhattacharjee, A.: Impulsive magnetic reconnection in the Earth’s magnetotail and the solar corona. Ann. Rev. Astron. Astrophys. 42, 365–384 (2004) [Sect. 11.4.2]Google Scholar
  49. Bianchini, A., Della Valle, M., Orio, M. (eds.): Cataclysmic Variables, p. 540. Kluwer Academic, Dordrecht (1995) [Sect. 13.2.2]Google Scholar
  50. Binney, J., Tremaine, S.: Galactic Dynamics. Princeton University Press, New Jersey (1987) [Sects. 3.3.1, 8.5]MATHGoogle Scholar
  51. Birkinshaw, M.: Instabilities in astrophysical jets. In: de Gouveia Dal Pino, E.M., et al. (eds.) Advanced Topics on Astrophysical and Space Plasmas, pp. 17–91. Kluwer Academic, Dordrecht (1997) [Sect. 13.3.1]Google Scholar
  52. Biskamp, D., Welter, H.: Magnetic arcade evolution and instability. Solar Phys. 120(1), 49–77 (1989) [Sect. 19.4.3]Google Scholar
  53. Blackman, E.G.: On particle energization in accretion flow. Mon. Not. Roy. Astron. Soc. 302(4), 723–730 (1999) [Sect. 8.3.5]Google Scholar
  54. Blackman, E.G., Field, G.B.: Constraints on the magnitude of α in dynamo theory. Astrophys. J. 534(2), 984–988 (2000) [Sect. 13.1.2]Google Scholar
  55. Blandford, R.D.: Particle acceleration mechanisms. Astrophys. J. Suppl. 90(2), 515–520 (1994) [Sects. 18.1, 18.2.1]Google Scholar
  56. Bliokh, P., Sinitsin, V., Yaroshenko, V.: Dusty and Self-Gravitational Plasmas in Space, p. 250. Kluwer Academic, Dordrecht (1995) [Sect. 1.2.4]Google Scholar
  57. Blokhintsev, D.I.: Moving receiver of sound. Doklady Akademii Nauk SSSR (Soviet Physics Doklady), 47(1), 22–25 (in Russian) (1945) [Sect. 15.2.1]Google Scholar
  58. Bobrova, N.A., Syrovatskii, S.I.: Singular lines of 1D force-free field. Solar Phys. 61(2), 379–387 (1979) [Sect. 19.2.1(a)]Google Scholar
  59. Bocquet, M., Bonazzola, S., Gourgoulhon, E., et al.: Rotating neutron star models with a magnetic field. Astron. Astrophys. 301(3), 757–775 (1995) [Sect. 19.1.3]Google Scholar
  60. Bodmer, R., Bochsler, P.: Influence of Coulomb collisions on isotopic and elemental fractionation in the solar wind. J. Geophys. Res. 105(A1), 47–60 (2000) [Sects. 8.4.1(b), 10.1]Google Scholar
  61. Bogachev, S.A., Somov, B.V.: Effect of Coulomb collisions on the particle acceleration in collapsing magnetic traps. Astron. Lett. 35(1), 57–69 (2009) [Sect. 8.1.4]Google Scholar
  62. Bogdanov, S.Yu., Frank, A.G., Kyrei, N.P., et al.: Magnetic reconnection, generation of plasma fluxes and accelerated particles in laboratory experiments. Plasma Astrophys. ESA SP-251, 177–183 (1986) [Sect. 12.3.1]Google Scholar
  63. Bogdanov, S.Yu., Kyrei, N.P., Markov, V.S., et al.: Current sheets in magnetic configurations with singular X-lines. JETP Lett. 71(2), 78–84 (2000) [Sect. 12.3.1]Google Scholar
  64. Bogoliubov, N.N.: Problems of a Dynamical Theory in Statistical Physics. State Technical Press, Moscow (in Russian) (1946) [Sect. 2.4]Google Scholar
  65. Bolcato, R., Etay, J., Fautrelle, Y., et al.: Electromagnetic billiards. Phys. Fluids 5(A7), 1852–1853 (1993) [Sect. 20.5]Google Scholar
  66. Boltzmann, L.: Sitzungsber. Kaiserl. Akad. Wiss. Wien. 66, 275–284 (1872) [Sects. 3.5, 9.6.1]Google Scholar
  67. Boltzmann, L.: Lectures on the Theory of Gases. Gostehizdat, Moscow (in Russian) (1956) [Sects. 3.5, 9.6.1]Google Scholar
  68. Bondi, H.: On spherical symmetrical accretion. Mon. Not. Roy. Astron. Soc. 112(1), 195–204 (1952) [Sect. 13.2.3]Google Scholar
  69. Bontemps, S., André, P., Terebey, S., et al.: Evolution of outflow activity around low-mass embedded young stellar objects. Astron. Astrophys. 311, 858–875 (1996) [Sect. 20.2]Google Scholar
  70. Born, M., Green, H.S.: A General Kinetic Theory of Liquids. Cambridge University Press, Cambridge (1949) [Sect. 2.4]MATHGoogle Scholar
  71. Bradt, H.: Astrophysics Processes, p. 504. Cambridge University Press, Cambridge (2008) [Sects. 3.1.1, 9.5.2, 13.2.3]Google Scholar
  72. Braginskii, S.I.: Transport processes in plasma. In: Leontovich, M. (ed.) Reviews of Plasma Physics, vol. 1, pp. 205–311. Consultants Bureau, New York (1965) [Sects. 8.3.2, 9.6, 10.5, 11.4.2]Google Scholar
  73. Bridgman, P.W.: Dimensional Analysis, p. 113. Yale University Press, New Haven (1931) [Sect. 20.4]Google Scholar
  74. Broderick, A., Prakash, M., Lattimer, J.M.: The equation of state of neutron star matter in strong magnetic fields. Astrophys. J. 537(1), 351–367 (2000) [Sect. 19.1.3]Google Scholar
  75. Brown, J.C.: The deduction of energy spectra of non-thermal electrons in flares from the observed dynamic spectra of hard X-ray bursts. Solar Phys. 18(2), 489–502 (1971) [Sects. 4.3.4, 8.1.5]Google Scholar
  76. Brown, J.C.: The directivity and polarization of thick target X-ray bremsstrahlung from flares. Solar Phys. 26(2), 441–459 (1972) [Sects. 4.4.1, 4.4.2]Google Scholar
  77. Brown, J.C., McArthur, G.K., Barrett, R.K., et al.: Inversion of the thick-target bremsstrahlung spectra from non-uniformly ionized plasmas. Solar Phys. 179(2), 379–404 (1998a) [Sect. 4.5.7]Google Scholar
  78. Brown, J.C., Conway, A.J., Aschwanden, M.J.: The electron injection function and energy-dependent delays in thick-target hard X-rays. Astrophys. J. 509(2), 911–917 (1998b) [Sect. 4.5.7]Google Scholar
  79. Brown, J.C., Emslie, A.G., Kontar, E.P.: The determination and use of mean electron flux spectra in solar flares. Astrophys. J. 595(2), L115–L117 (2003) [Sect. 4.5.7]Google Scholar
  80. Bykov, A.M., Chevalier, R.A., Ellison, D.C., et al.: Non-thermal emission from a supernova remnant in a molecular cloud. Astrophys. J. 538(1), 203–216 (2000) [Sect. 8.4.1(b)]Google Scholar
  81. Cadjan, M.G., Ivanov, M.F.: Langevin approach to plasma kinetics with collisions. J. Plasma Phys. 61(1), 89–106 (1999) [Sect. 3.4]Google Scholar
  82. Cai, H.J., Lee, L.C.: The generalized Ohm’s law in collisionless reconnection. Phys. Plasmas 4(3), 509–520 (1997) [Sect. 1.2.4]Google Scholar
  83. Camenzind, M.: Magnetic fields and the physics of active galactic nuclei. Rev. Mod. Astron. 8, 201–233 (1995) [Sect. 13.3.3]Google Scholar
  84. Campbell, C.G.: Magnetohydrodynamics of Binary Stars, p. 306. Kluwer Academic, Dordrecht (1997) [Sect. 13.2.1]Google Scholar
  85. Cassak, P.A., Drake, J.F., Shay, M.A., et al.: Onset of fast magnetic reconnection. Phys. Rev. Lett. 98(21), id. 215001 (2007) [Sect. 11.4.2]Google Scholar
  86. Cercignani, C.: Mathematical Methods in Kinetic Theory. MacMillan, London (1969) [Sect. 3.5]MATHGoogle Scholar
  87. Chakrabarti, S.K. (ed.): Observational Evidence for Black Holes in the Universe, p. 399. Kluwer Academic, Dordrecht (1999) [Sect. 8.3.5]Google Scholar
  88. Chandrasekhar, S.: Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15(1), 1–89 (1943a) [Sects. 3.1.4, 8.1.5, 8.3.1]Google Scholar
  89. Chandrasekhar, S.: Dynamical friction. 1. General considerations. Astrophys. J. 97(1), 255–262 (1943b) [Sects. 3.1.4, 8.3.1, 8.5]Google Scholar
  90. Chandrasekhar, S.: Dynamical friction. 2. The rate of escape of stars from clusters and the evidence for the operation of dynamic friction. Astrophys. J. 97(1), 263–273 (1943c) [Sects. 8.3.1, 8.5]Google Scholar
  91. Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability, p. 654. Dover, New York (1981) [Sects. 19.1.2, 19.3.4]Google Scholar
  92. Chandrasekhar, S., Fermi, E.: Problems of gravitational stability in the presence of a magnetic field. Astrophys. J. 118(1), 116–141 (1953) [Sect. 19.1.1]Google Scholar
  93. Cherenkov, P.A.: C. R. Acad. Sci. U.S.S.R. 8, 451 (in Russian) (1934) [Sect. 7.4]Google Scholar
  94. Cherenkov, P.A.: Visible radiation produced by electrons moving in a medium with velocities exceeding that of light. Phys. Rev. 52, 378–379 (1937) [Sect. 7.4]Google Scholar
  95. Chernov, A.A., Yan’kov, V.V.: Electron flow in low-density pinches. Soviet J. Plasma Phys. 8(5), 522–528 (1982) [Sect. 20.4]Google Scholar
  96. Chew, G.F., Goldberger, M.L., Low, F.E.: The Boltzmann equation and the one-fluid hydromagnetic equations in the absence of particle collisions. Proc. Roy. Soc. Lond. A236(1), 112–118 (1956) [Sects. 5.2.1, 11.5.1, 16.4]Google Scholar
  97. Choudhuri, A.R.: The Physics of Fluids and Plasmas: An Introduction for Astrophysicists, p. 427. Cambridge University Press, Cambridge (1998) [Intr., Sect. 19.1.2]Google Scholar
  98. Ciufolini, I., Matzner, R.A. (eds.): General Relativity and John Archibald Wheeler, p. 545. Springer Science+Business Media B.V., Dordrecht (2010) [Sect. 13.3.2]Google Scholar
  99. Clarke, C., Carswell, P.: Principles of Astrophysical Fluid Dynamics, p. 226. Cambridge University Press, Cambridge (2007) [Sect. 9.5.2]Google Scholar
  100. Clausius, R.: On a mechanical theorem applicable to heat. Phil. Mag. (Series 4) 40(1), 122–127 (1870) [Sect. 19.1.1]Google Scholar
  101. Cole, J.D., Huth, J.H.: Some interior problems of hydromagnetics. Phys. Fluids 2(6), 624–626 (1959) [Sect. 14.5]Google Scholar
  102. Collins, G.W.: The Virial Theorem in Stellar Astrophysics. Pachart, Tucson (1978) [Sect. 19.1.1]Google Scholar
  103. Colpi, M., Casella, P., Gorini, V., et al. (eds.): Physics of Relativistic Objects in Compact Binaries: From Birth to Coalescence, Springer, Dordrecht (2009) [Sect. 12.2.2]Google Scholar
  104. Coppi, B., Laval, G., Pellat, R.: Dynamics of the geomagnetic tail. Phys. Rev. Lett. 6(26), 1207–1210 (1966) [Sect. 3.1.2]Google Scholar
  105. Courant, R., Friedrichs, K.O.: Supersonic Flow and Shock Waves, p. 464. Springer, New York (1985) [Sect. 17.1.1]Google Scholar
  106. Cowling, T.G.: Magnetohydrodynamics, p. 135. Adam Hilger, Bristol (1976) [Sect. 11.6]Google Scholar
  107. Cox, D.P., Tucker, W.H.: Ionization equilibrium and radiative cooling of a low-density plasma. Astrophys. J. 157(3), 1157–1167 (1969) [Sects. 12.1.3, 15.4.1]Google Scholar
  108. Cromwell, D., McQuillan, P., Brown, J.C.: Beam-driven return current instability and anomalous plasma heating in solar flares. Solar Phys. 115(2), 289–312 (1988) [Sect. 4.5.6]Google Scholar
  109. Crooker, N., Joselyn, J.A., Feynman, J. (eds.): Coronal Mass Ejections, p. 299. American Geophysical Union, Washington (1997) [Intr.]Google Scholar
  110. Cumming, A., Arras, P., Zweibel, E.: Magnetic field evolution in neutron star crusts due to the Hall effect and ohmic decay. Astrophys. J. 609, 999–1017 (2004) [Sect. 11.4.2]Google Scholar
  111. Cuperman, S., Dryer, M.: On the heat conduction in multicomponent, non-Maxwellian spherically symmetric solar wind plasmas. Astrophys. J. 298, 414–420 (1985) [Sect. 9.6.2]Google Scholar
  112. Dadhich, N., Kembhavi, A. (eds): The Universe: Visions and Perspectives, p. 346. Kluwer Academic, Dordrecht (2000) [Sect. 1.3]Google Scholar
  113. Darwin, C.: Source of the cosmic rays. Nature 164, 1112–1114 (1949) [Sect. 18.1]Google Scholar
  114. Davidson, R.C.: Theory of Nonneutral Plasmas. W.A. Benjamin, London (1974) [Sect. 11.5.2]Google Scholar
  115. Davis, L.Jr.: Modified Fermi mechanism for the acceleration of cosmic rays. Phys. Rev. 101, 351–358 (1956) [Sect. 6.2.4]Google Scholar
  116. de Hoffmann, F., Teller, E.: Magnetohydrodynamic shocks. Phys. Rev. 80(4), 692–703 (1950) [Sects. 16.2.1, 16.2.4(a), 16.5]Google Scholar
  117. de Martino, D., Silvotti, R., Solheim, J.-E., et al. (eds.): White Dwarfs, p. 429. Kluwer Academic, Dordrecht (2003) [Sects. 1.4, 3.5]Google Scholar
  118. Debye, P., Hückel, E.: Phys. Z 24, 185 (1923) [Sect. 8.2.1]Google Scholar
  119. Decker, R.B.: Formation of shock-spike events in quasi-perpendicular shocks. J. Geophys. Res. 88(A12), 9959–9973 (1983) [Sect. 18.3.2(a) (a)]Google Scholar
  120. Decker, R.B.: The role of magnetic loops in particle acceleration at nearly perpendicular shocks. J. Geophys. Res. 98(A1), 33–46 (1993) [Sect. 18.3.2(b) (b)]Google Scholar
  121. Decker, R.B., Vlahos, L.: Numerical studies of particle acceleration at turbulent, oblique shocks with an application to prompt ion acceleration during solar flares. Astrophys. J. 306(2), 710–729 (1986) [Sect. 18.3.3]Google Scholar
  122. Diakonov, S.V., Somov, B.V.: Thermal electrons runaway from a hot plasma during a flare in the reverse-current model and their X-ray bremsstrahlung. Solar Phys. 116(1), 119–139 (1988) [Sects. 4.5.2, 4.5.3, 4.5.5, 8.4.3, 9.7.3]Google Scholar
  123. Diakonov, S.V., Somov, B.V.: A thermal model with return current for source of hard X-ray radiation and microwave radiation of solar flare. Kinematics Phys. Celes. Bodies (Allerton Press, Inc.) 6(1), 47–53 (1990) [Sect. 4.5.5]Google Scholar
  124. Diamond, P.H., Itoh, S.I., Itoh, K.: Modern Plasma Physics. Vol. 1: Physical Kinetics of Turbulent Plasmas, p. 417. Cambridge University Press, Cambridge (2010) [Intr., Sect. 3.1.2]Google Scholar
  125. Di Matteo, T., Celotti, A., Fabian, A.C.: Magnetic flares in accretion disc coronae and the spectral states of black hole candidates: The case of GX339-4. Mon. Not. Roy. Astron. Soc. 304, 809–820 (1999) [Sect. 13.2.4]Google Scholar
  126. Di Matteo, T., Quataert, E., Allen, S.W., et al.: Low-radiative-efficiency accretion in the nuclei of elliptic galaxies. Mon. Not. Roy. Astron. Soc. 311(3), 507–521 (2000) [Sect. 13.2.3]Google Scholar
  127. Di Matteo, T., Johnstone, R.M., Allen, S.W., et al.: Accretion onto nearby supermassive black holes: Chandra constraints on the dominant cluster galaxy NGC 6166. Astrophys. J. 550(1), L19–L23 (2001) [Sect. 13.2.3]Google Scholar
  128. Dokuchaev, V.P.: Emission of magnetoacoustic waves in the motion of stars in cosmic space. Sov. Astron. AJ 8(1), 23–31 (1964) [Sect. 15.6]Google Scholar
  129. Dorman, L.: Cosmic Rays in Magnetospheres of the Earth and other Planets, p. 770. Springer Science+Business Media B.V., Dordrecht (2009) [Sect. 5.1.3]Google Scholar
  130. Drake, J.F., Kleva R.G.: Collisionless reconnection and the sawtooth crash. Phys. Rev. Lett. 66(11), 1458–1461 (1991) [Sect. 11.2]Google Scholar
  131. Dreicer, H.: Electron and ion runaway in a fully ionized gas Phys. Rev. 115(2), 238–249 (1959) [Sects. 8.4.2, 10.1]Google Scholar
  132. Duijveman, A., Somov, B.V., Spektor, A.R.: Evolution of a flaring loop after injection of fast electrons. Solar Phys. 88(1), 257–273 (1983) [Sect. 8.3.2]Google Scholar
  133. Duncan, R.C., Thompson, C.: Formation of very strongly magnetized neutron stars: Implications for gamma-ray bursts. Astrophys. J. 392(1), L9–L13 (1992) [Sect. 13.1.2]Google Scholar
  134. D’yakov, S.P.: Zhurnal Exper. Teor. Fiz. 27, 288–297 (in Russian) (1954) [Sect. 17.5]Google Scholar
  135. Dyer, K.K., Reynolds, S.R., Borkowski, K.J., et al.: Separating thermal and non-thermal X-rays in supernova remnants. I. Total fits to SN 1006 AD. Astrophys. J. 551(1), 439–453 (2001) [Sect. 18.2.1]Google Scholar
  136. Eichler, D.: Particle acceleration in solar flares by cyclotron damping of cascading turbulence. Astrophys. J. 229(1), 413–418 (1979) [Sect. 6.2.4]Google Scholar
  137. Elperin, T., Golubev, I., Kleeorin, N., et al.: Large-scale instability in a sheared nonhelical turbulence: Formation of vortical structures. Phys. Rev. E 76(6), id. 066310 (2007) [Sect. 13.1.2]Google Scholar
  138. Elsasser, W.M.: Hydromagnetic dynamo theory. Rev. Mod. Phys. 28(2), 135–163 (1956) [Sects. 13.1.2, 20.1.5]Google Scholar
  139. Erdös, G., Balogh, A.: Drift acceleration at interplanetary shocks. Astrophys. J. Suppl. 90(2), 553–559 (1994) [Sect. 18.3.2(b)]Google Scholar
  140. Everitt, C.W.F., DeBra, D.B., Parkinson, B.W., et al.: Gravity Probe B: Final results of a space experiment to test general relativity. Phys. Rev. Lett. 106, 221101–221105 (2011) [Sect. 13.3.2]Google Scholar
  141. Falle, S.A., Komissarov, S.S.: On the inadmissibility of non-evolutionary shocks. J. Plasma Phys. 65(1), 29–58 (2001) [Sect. 16.3]Google Scholar
  142. Fedoryuk, V.M.: Ordinary Differential Equations. Nauka, Moscow (in Russian) (1985) [Sect. 17.4.1]MATHGoogle Scholar
  143. Feldman, W.C., Bame, S.J., Gary, S.P., et al.: Electron heating within the Earth’s bow shock. Phys. Rev. Lett. 49, 199–202 (1982) [Sect. 18.3.2(a)]Google Scholar
  144. Ferencz, C., Ferencz, O.E., Hamar, D., et al.: Whistler Phenomena, p. 260. Kluwer Academic, Dordrecht (2001) [Sect. 7.1.3]Google Scholar
  145. Fermi, E.: On the origin of cosmic radiation. Phys. Rev. 75, 1169–1174 (1949) [Sect. 6.2.4]Google Scholar
  146. Fermi, E.: Galactic magnetic fields and the origin of cosmic radiation. Astrophys. J. 119(1), 1–6 (1954) [Sect. 6.2.4]Google Scholar
  147. Fernández, J.A.: Comets: Nature, Dynamics, Origin, and their Cosmogonical Relevance, p. 383. Springer, Dordrecht (2005) [Sect. 1.2.4]Google Scholar
  148. Feroci, M., Hurley, K., Duncan, R.C., et al.: The giant flare of 1998 August 27 from SGR 1900+14. 1. An interpretive study of Bepposax and Ulysses observations. Astrophys. J. 549, 1021–1038 (2001) [Sect. 19.1.3]Google Scholar
  149. Field, G.B.: Thermal instability. Astrophys. J. 142(2), 531–567 (1965) [Sects. 8.3.4, 9.4.3, 12.1.3, 15.4.5]Google Scholar
  150. Fokker, A.D.: Die mittlere Energie rotieren der elektrischer Dipole im Strahlungsfeld. Ann. der Physik 43(5), 810–820 (1914) [Sect. 3.1.4]Google Scholar
  151. Fortov, V.E., Iakubov, I.T., Khrapak, A.G.: Physics of Strongly Coupled Plasma, p.376. Clarendon Press, Oxford (2006) [Sect. 3.1.1]Google Scholar
  152. Fox, D.C., Loeb, A.: Do the electrons and ions in X-ray clusters share the same temperature? Astrophys. J. 491(2), 459–466 (1997) [Sect. 8.3.4]Google Scholar
  153. Freidberg, J.P.: Plasma Physics and Fusion Energy, p. 671. Cambridge University Press, Cambridge (2007) [Intr.]Google Scholar
  154. Galeev, A.A., Rosner, R., Vaiana, G.S.: Structured coronae of accretion discs. Astrophys. J. 229(1), 318–326 (1979) [Sect. 13.2.4]Google Scholar
  155. Gedalin, M., Griv, E.: Collisionless electrons in a thin high Much number shocks: Dependence on angle and β. Ann. Geophysicae 17(10), 1251–1259 (1999) [Sects. 16.4, 18.3.2(a)]Google Scholar
  156. Gel’fand, I.M.: Some problems of the theory of quasilinear equations. Usp. Mat. Nauk 14(2), 87–158 (in Russian) (1959) [Sect. 17.1.1]Google Scholar
  157. Gerbeth, G., Thess, A., Marty, P.: Theoretical study of the MHD flow around a cylinder in crossed electric and magnetic fields. Eur. J. Mech. B/Fluids 9(3), 239–257 (1990) [Sects. 19.4.2, 20.3]Google Scholar
  158. Germain, P.: Shock waves and shock-wave structure in magneto-fluid dynamics. Rev. Mod. Phys. 32(4), 951–958 (1960) [Sect. 17.4.2]Google Scholar
  159. Giacalone, J., Ellison, D.C.: Three-dimensional numerical simulations of particle injection and acceleration at quasi-perpendicular shocks. J. Geophys. Res. 105(A6), 12541–12556 (2000) [Sects. 18.1, 18.3.2(b)]Google Scholar
  160. Gieseler, U.D.J., Kirk, J.G., Gallant, Y.A., et al.: Particle acceleration at oblique shocks and discontinuities of the density profile. Astron. Astrophys. 435(1), 298–306 (1999) [Sect. 18.2.1]Google Scholar
  161. Gilman, P.A.: Fluid dynamics and MHD of the solar convection zone and tachocline. Solar Phys. 192(1), 27–48 (2000) [Sect. 20.1.5]Google Scholar
  162. Ginzburg, V.L., Syrovatskii, S.I.: The Origin of Cosmic Rays. Pergamon Press, Oxford (1964) [Sect. 5.1.3]Google Scholar
  163. Ginzburg, V.L., Syrovatskii, S.I.: Cosmic magneto-bremsstrahlung (synchrotron) radiation. Annu. Rev. Astron. Astrophys. 3, 297–350 (1965) [Sect. 5.4]Google Scholar
  164. Ginzburg, V.L., Zheleznyakov, V.V.: On the possible mechanisms of sporadic solar radio emission. Sov. Astron. AJ 2(5), 653–668 (1958) [Sect. 7.1]Google Scholar
  165. Ginzburg, V., Landau, L., Leontovich, M., et al.: On the insolvency of the A.A. Vlasov works on general theory of plasma and solid-state matter. Zhur. Eksp. Teor. Fiz. 16(3), 246–252 (in Russian) (1946) [Sect. 3.1.2]Google Scholar
  166. Giovanelli, R.G.: A theory of chromospheric flares. Nature 158(4003), 81–82 (1946) [Sect. 12.4.1]Google Scholar
  167. Giovanelli, R.G.: Magnetic and electric phenomena in the Sun’s atmosphere associated with sunspots. Mon. Not. Roy. Astron. Soc. 107(4), 338–355 (1947) [Sect. 12.4.1]Google Scholar
  168. Giovanelli, R.G.: Electron energies resulting from an electric field in a highly ionized gas. Phil. Mag. Seventh Series 40(301), 206–214 (1949) [Sect. 8.4.2]Google Scholar
  169. Gisler, G., Lemons, D.: Electron Fermi acceleration in collapsing magnetic traps: Computational and analytical models. J. Geophys. Res. 95(A9), 14925–14938 (1990) [Sect. 18.3.2(b)]Google Scholar
  170. Glasstone, S., Loveberg, R.H.: Controlled Thermonuclear Reactions, p. 523. Van Nostrand, Princeton (1960) [Intr.]Google Scholar
  171. Gnedenko, B.V.: A Course of Probability Theory, 4th edn. Nauka, Moscow (in Russian) (1965) [Sect. 2.2.2]Google Scholar
  172. Golant, V.E., Zhilinskii, A.P., Sakharov, I.E.: The Basis of Plasma Physics. Atomizdat, Moscow (in Russian) (1977) [Sects. 9.3.2, 9.7.1, 9.7.2]Google Scholar
  173. Goldreich, P., Reisenegger, A.: Magnetic field decay in isolated neutron stars. Astrophys. J. 395(1), 250–258 (1992) [Sect. 11.4.2]Google Scholar
  174. Goldreich, P., Sridhar, S.: Magnetohydrodynamic turbulence revisited. Astrophys. J. 485(2), 680–688 (1997) [Sect. 7.2]Google Scholar
  175. Goldston, R.J., Rutherford, P.H.: Introduction to Plasma Physics, p. 492. Institute of Physics Publishing, Bristol (1995) [Intr.]Google Scholar
  176. Gombosi, T.I.: Physics of the Space Environment, p. 339. Cambridge University Press, Cambridge (1999) [Sect. 18.2.1]Google Scholar
  177. Gorbachev, V.S., Kel’ner, S.R.: Formation of plasma condensations in fluctuating strong magnetic field. Sov. Phys. JETP 67(9), 1785–1790 (1988) [Sect. 14.4.1]Google Scholar
  178. Gosling, J.T.: Observations of magnetic reconnection in the turbulent high-speed solar wind. Astrophys. J. 671(1), L73–L76 (2007) [Sect. 12.4.2]Google Scholar
  179. Gosling, J.T., Eriksson, S., McComas, D.J., et al.: Multiple magnetic reconnection sites associated with a coronal mass ejection in the solar wind. Geophys. Res. 112(A8), CiteID A08106 (2007a) [Sect. 11.5.1]Google Scholar
  180. Gosling, J.T., Eriksson, S., Phan, T.D., et al.: Direct evidence for prolonged magnetic reconnection at a continuous X-line within the heliospheric current sheet. Geophys. Res. Lett. 34(6), CiteID L06102 (2007b) [Sect. 12.4.2]Google Scholar
  181. Grad, H.: Note on N-dimensional Hermite polynomials. Commun. Pure Appl. Math. 2(4), 325–330 (1949)[Sect. 9.7.1]Google Scholar
  182. Grad, H.: Reducible problems in magneto-fluid dynamic steady flows. Rev. Mod. Phys. 32(4), 830–847 (1960) [Sect. 19.5]Google Scholar
  183. Grad, H., Rubin, H.: Hydromagnetic equilibria and force-free fields. Proc. Second Int. Conf. on Peaceful Uses of Atomic Energy 31, 190–197 (1958) [Sect. 19.5]Google Scholar
  184. Grant, H.L., Stewart, R.W., Moilliet, A.: Turbulence spectra from a tidal channel. J. Fluid Mech. 12, 241–248 (1962) [Sect. 7.2]Google Scholar
  185. Gritsyk, P.A., Somov, B.V.: The kinetic description of the accelerated-electron flux in solar flares. Moscow Univ. Phys. Bull. 66(5), 466–472 (2011) [Sect. 4.5.5]Google Scholar
  186. Gurevich, A.V.: On the theory of runaway electrons. Sov. Phys. JETP 12(5), 904–912 (1961) [Sect. 8.4.2]Google Scholar
  187. Gurevich, A.V., Istomin, Y.N.: Thermal runaway and convective heat transport by fast electrons in a plasma. Sov. Phys. JETP 50(3), 470–475 (1979) [Sect. 8.4.3]Google Scholar
  188. Gurevich, A.V., Zhivlyuk, Y.N.: Runaway electrons in a non-equilibrium plasma. Sov. Phys. JETP 22(1), 153–159 (1966) [Sect. 4.5.2]Google Scholar
  189. Harris, E.G.: On a plasma sheath separating regions of oppositely directed magnetic field. Nuovo Cimento 23(1), 115–121 (1962) [Sect. 3.1.2]Google Scholar
  190. Hattori, M., Umetsu, K.: A possible route to spontaneous reduction of the heat conductivity by a temperature gradient-driven instability in electron-ion plasmas. Astrophys. J. 533(1), 84–94 (2000) [Sect. 8.3.4]Google Scholar
  191. Hawley, J.F., Balbus, S.A.: Instability and turbulence in accretion discs. In: Miyama, S.M., et al. (eds.) Numerical Astrophysics, pp. 187–194. Kluwer Academic, Dordrecht (1999) [Sect. 13.2.1]Google Scholar
  192. Hawley, J.F., Gammie, C.F., Balbus, S.A.: Local three-dimensional magnetohydrodynamic simulations of accretion disks. Astrophys. J. 440(2), 742–763 (1995) [Sect. 13.2.1]Google Scholar
  193. Heinemann, T., McWilliams, J.C., Schekochihin, A.A.: Large-scale magnetic field generation by randomly forced shearing waves. Phys. Rev. Lett., 107(25), 255004 (2011) [Sect. 13.1.2]Google Scholar
  194. Hénoux, J.-C., Somov, B.V.: Generation and structure of the electric currents in a flaring activity complex. Astron. Astrophys. 185(1), 306–314 (1987) [Sect. 20.2]Google Scholar
  195. Hénoux, J.-C., Somov, B.V.: The photospheric dynamo. 1. Magnetic flux-tube generation. Astron. Astrophys. 241(2), 613–617 (1991) [Sects. 11.1, 20.2]Google Scholar
  196. Hénoux, J.-C., Somov, B.V.: The photospheric dynamo. 2. Physics of thin magnetic flux tubes. Astron. Astrophys. 318(3), 947–956 (1997) [Sect. 11.1]Google Scholar
  197. Hirotani, K., Okamoto, I.: Pair plasma production in a force-free magnetosphere around a supermassive black hole. Astrophys. J. 497(2), 563–572 (1998) [Sects. 7.3, 11.5.2]Google Scholar
  198. Hollweg, J.V.: Viscosity and the Chew-Goldberger-Low equations in the solar corona. Astrophys. J. 306(2), 730–739 (1986) [Sects. 9.6, 10.5]Google Scholar
  199. Holman, G.D.: DC electric field acceleration of ions in solar flares. Astrophys. J. 452(2), 451–456 (1995) [Sect. 8.4.1(b)]Google Scholar
  200. Horiuchi, R., Sato, T.: Particle simulation study of driven reconnection in a collisionless plasma. Phys. Plasmas 1(11), 3587–3597 (1994) [Sects. 1.2.4, 11.2]Google Scholar
  201. Hoshino, M., Stenzel, R.L., Shibata, K. (eds.): Magnetic Reconnection in Space and Laboratory Plasmas, p. 693. Terra Scientific Publ. Co., Tokyo (2001) [Sect. 13.1.3]Google Scholar
  202. Hoyng, P., Brown, J.C., van Beek, H.F.: High time resolution analysis of solar hard X-ray flares observed on board the ESRO TD-1A satellite. Solar Phys. 48(2), 197–254 (1976) [Sect. 4.5.1]Google Scholar
  203. Hubrig, S., North, P., Mathys, G.: Magnetic Ap stars in the Hertzsprung-Russell diagram. Astrophys. J. 539(1), 352–363 (2000) [Sect. 19.1.3]Google Scholar
  204. Hudson, P.D.: Reflection of charged particles by plasma shocks. Mon. Not. Roy. Astron. Soc. 131(1), 23–50 (1965) [Sects. 18.3, 18.3.1, 18.3.2(a)]Google Scholar
  205. Iacus, S.M.: Simulation and Inference for Stochastic Differential Equations, p. 284. Springer Science+Business Media, LLC, New York (2008) [Sect. 3.4]Google Scholar
  206. Imshennik, V.S., Bobrova, N.A.: Dynamics of Collisional Plasma. Energoatomizdat, Moscow (in Russian) (1997) [Sect. 15.4.4]Google Scholar
  207. Innes, D.E., Inhester, B., Axford, W.I., et al.: Bi-directional jets produced by reconnection on the Sun. Nature 386, 811–813 (1997) [Sect. 8.3.3]Google Scholar
  208. Iordanskii, S.V.: On compression waves in magnetohydrodynamics. Sov. Phys. Doklady 3(4), 736–738 (1958) [Sect. 16.2.4(c)]Google Scholar
  209. Iroshnikov, P.S.: Turbulence of a conducting fluid in a strong magnetic field. Sov. Astron. AJ. 7(4), 566–571 (1964) [Sect. 7.2.3]Google Scholar
  210. Jaroschek, C.H., Treumann, R.A., Lesch, H., et al.: Fast reconnection in relativistic pair plasmas: Analysis of particle acceleration in self-consistent full particle simulations. Phys. Plasm. 11(3), 1151–1163 (2004) [Sect. 7.3]Google Scholar
  211. Jeans, J.: Astronomy and Cosmogony. Cambridge University Press, Cambridge (1929) [Sect. 8.1.5]MATHGoogle Scholar
  212. Jones, F.C., Ellison D.C.: The plasma physics of shock acceleration. Space Sci. Rev. 58(3), 259–346 (1991) [Sects. 18.1, 18.2.1, 18.3.1]Google Scholar
  213. Jones, M.E., Lemons, D.S., Mason, R.J., et al.: A grid-based Coulomb collision model for PIC codes. J. Comput. Phys.123(1), 169–181 (1996) [Sect. 3.4]Google Scholar
  214. Kadomtsev, B.B.: Convective instability of a plasma. In: Leontovich, M.A. (ed.) Plasma Physics and the Problem of Controlled Thermonuclear Reactions, vol. 4, pp. 450–453. Pergamon Press, Oxford (1960) [Sect. 19.3.4]Google Scholar
  215. Kadomtsev, B.B.: Hydrodynamic stability of a plasma. In: Leontovich, M.A. (ed.) Reviews of Plasma Physics, vol. 2, pp. 153–198. Consultants Bureau, New York (1966) [Sects. 15.4.1, 19.3.2, 19.3.4]Google Scholar
  216. Kadomtsev, B.B.: Collective Phenomena in Plasma, p. 238. Nauka, Moscow (in Russian) (1976) [Sect. 7.1]Google Scholar
  217. Kandrup, H.E.: Collisionless relaxation in galactic dynamics and the evolution of long-range order. Ann. New York Acad. Sci. 848, 28–47 (1998) [Sect. 3.3.2]Google Scholar
  218. Kikuchi, H.: Electrohydrodynamics in Dusty and Dirty Plasmas, p. 207. Kluwer Academic, Dordrecht (2001) [Sect. 1.2.4]Google Scholar
  219. Kirkwood, J.G.: The statistical mechanical theory of transport processes. I. General theory. J. Chem. Phys. 14, 180–201 (1946) [Sect. 2.4]Google Scholar
  220. Kittel, C.: Introduction to Solid State Physics, 7th edn. Wiley, New York (1995) [Sects. 1.4, 3.5]Google Scholar
  221. Kivelson, M.G., Russell, C.T. (eds.): Introduction to Space Physics, p. 568. Cambridge University Press, Cambridge (1995) [Sects. 4.1.1, 6.2.4]Google Scholar
  222. Kleeorin, N., Rogachevskii, I., Sokoloff, D., et al.: Mean-field dynamos in random Arnold-Beltrami-Childress and Roberts flows. Phys. Rev. E 79(4), 046302 (2009) [Sect. 13.1.2]Google Scholar
  223. Klimontovich, Yu.L.: Kinetic Theory of Non-ideal Gas and Non-ideal Plasma, p. 352. Nauka, Moscow (in Russian) (1975) [Sect. 2.4]Google Scholar
  224. Klimontovich, Yu.L.: Statistical Physics. Harwood Academic, New York (1986) [Intr., Sects. 2.4, 3.1.3, 3.1.4]Google Scholar
  225. Klimontovich, Yu.L.: Two alternative approaches in the kinetic theory of a fully ionized plasma. J. Plasma Phys. 59(4), 647–656 (1998) [Sect. 3.1.3]Google Scholar
  226. Klimontovich, Yu.L., Silin, V.P.: On magnetic hydrodynamics for a non-isothermal plasma without collisions. Sov. Phys. JETP 40, 1213–1223 (1961) [Sects. 11.5.1, 16.4]Google Scholar
  227. Kogan, M.N.: Dynamics of a Dilute Gas. Nauka, Moscow (in Russian) (1967) [Sect. 3.5]Google Scholar
  228. Koide, S., Shibata, K., Kudoh, T.: Relativistic jet formation from black hole magnetized accretion discs. Astrophys. J. 522, 727–752 (1999) [Sects. 12.2, 13.3.1]Google Scholar
  229. Kolmogorov, A.N.: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. C.R. Acad. Sci. USSR, 30, 201–206 (1941) [Sect. 7.2]Google Scholar
  230. Korchak, A.A.: On the origin of solar flare X-rays. Solar Phys. 18(2), 284–304 (1971) [Sect. 8.1.5]Google Scholar
  231. Korchak, A.A.: Coulomb losses and the nuclear composition of the solar flare accelerated particles. Solar Phys. 66(1), 149–158 (1980) [Sect. 8.4.1(b)]Google Scholar
  232. Kosugi, T., Matsuzaki, K., Sakao, T., et al.: The Hinode (Solar-B) mission: An overview. Solar Phys. 243(1), 3–17 (2007) [Sect. 8.3.2]Google Scholar
  233. Kotchine, N.E.: Rendiconti del Circolo Matematico di Palermo 50, 305–314 (1926) [Sect. 17.1.1]Google Scholar
  234. Kovalev, V.A., Somov, B.V.: On the acceleration of solar-flare charged particles in a collapsing magnetic trap with an electric potential. Astron. Lett. 28(7), 488–493 (2002) [Sect. 8.1.4]Google Scholar
  235. Kraichnan, R.H.: Inertial-range spectrum of hydromagnetic turbulence. Phys. Fluids 8(7), 1385–1389 (1965) [Sect. 7.2]Google Scholar
  236. Krall, N.A., Trivelpiece, A.W.: Principles of Plasma Physics. McGraw-Hill Book Co., New York (1973) [Sect. 9.6.2]Google Scholar
  237. Krucker, S., Hudson, H.S., Jeffrey, N.L.S., et al.: High-resolution imaging of solar flare ribbons and its implication on the thick-target beam model. Astrophys. J. 739(2), 96 (7pp) (2011) [Sect. 8.3.2]Google Scholar
  238. Krymskii, G.F.: A regular mechanism for the acceleration of charged particles on the front of a shock wave. Sov. Phys. Dokl. 22(6), 327–328 (1977) [Sect. 18.2.1]Google Scholar
  239. Kubbinga, H.: A tribute to Boltzmann. Europhysicsnews 37(6), 28–29 (2006) [Sect. 9.6.1]Google Scholar
  240. Kudriavtsev, V.S.: Energetic diffusion of fast ions in equilibrium plasma. Sov. Phys. JETP 7(6), 1075–1079 (1958) [Sect. 4.1.2]Google Scholar
  241. Kulikovskii, A.G., Liubimov, G.A.: On the structure of an inclined MHD shock wave. Appl. Math. Mech. 25(1), 171–179 (1961) [Sect. 17.4.2]Google Scholar
  242. Kumar, N., Kumar, P., Singh, S.: Coronal heating by MHD waves. Astron. Astrophys. 453(2), 1067–1078 (2006) [Sect. 15.2.1]Google Scholar
  243. Kunkel, W.B.: Generalized Ohm’s law for plasma including neutral particles. Phys. Fluids 27(9), 2369–2371 (1984) [Sect. 11.1]Google Scholar
  244. Lahav, O., Terlevich, E., Terlevich, R.J. (eds.): Gravitational Dynamics, p. 270. Cambridge University Press, Cambridge (1996) [Sect. 1.3]Google Scholar
  245. Lancellotti, C., Kiessling, M.: Self-similar gravitational collapse in stellar dynamics. Astrophys. J.549, L93–L96 (2001) [Sect. 3.3.2]Google Scholar
  246. Landau, L.D.: Kinetic equation in the case of Coulomb interaction. Zhur. Exper. Teor. Fiz. 7(1), 203–212 (in Russian) (1937) [Sect. 3.1.3]Google Scholar
  247. Landau, L.D.: On the vibrations of the electron plasma. J. Phys. USSR 10(1), 25–30 (1946) [Sects. 3.1.3, 7.1]Google Scholar
  248. Landau, L.D., Lifshitz, E.M.: Fluid Mechanics, p. 536. Oxford, London (1959a) [Sects. 12.2.2, 12.2.3, 15.6, 16.1.2, 16.2.2, 20.2]Google Scholar
  249. Landau, L.D., Lifshitz, E.M.: Statistical Physics, p. 478. Pergamon Press, London (1959b) [Sects. 1.1.5, 1.4, 3.5, 16.5]Google Scholar
  250. Landau, L.D., Lifshitz, E.M.: Classical Theory of Field, 4th edn., p. 374. Oxford, New York (1975) [Sects. 1.2.1, 2.2.1, 5.1.1, 5.1.3, 5.4, 6.2.1, 7.4, 13.4, 18.4, 19.1.1]Google Scholar
  251. Landau, L.D., Lifshitz, E.M.: Mechanics, 3rd edn., p. 165. Oxford, London (1976) [Sects. 1.1.5, 1.4, 6.1, 8.1.1, 19.1.1]Google Scholar
  252. Landau, L.D., Lifshitz, E.M., Pitaevskii, L.P.: Electrodynamics of Continuous Media, p. 460. Pergamon Press, Oxford (1984) [Sects. 11.4.2, 16.2.4(c), 17.3.2]Google Scholar
  253. Langmuir, I.: Proc. Nat. Acad. Sci. U.S.A. 14, 627 (1928) [Sect. 3.2.2]Google Scholar
  254. Larrabee, D.A., Lovelace, R.V.E., Romanova, M.M.: Lepton acceleration by relativistic collisionless magnetic reconnection. Astrophys. J. 586(1), 72–78 (2003) [Sect. 7.3]Google Scholar
  255. Lavrent’ev, M.A., Shabat, B.V.: Methods of the Theory of Complex Variable Functions, p. 736. Nauka, Moscow (in Russian) (1973) [Sects. 3.1.3, 9.7.1, 14.2.2(a)]Google Scholar
  256. Lax, P.: Hyperbolic systems of conservation laws. Comm. Pure Appl. Math. 10(4), 537–566 (1957) [Sect. 17.1.1]Google Scholar
  257. Lax, P.: Hyperbolic Partial Differential Equations, AMS, Courant Inst. of Math. Sci. (2006) [Sect. 17.1.1]Google Scholar
  258. Leenov, D., Kolin, A.: Theory of electromagnetophoresis. 1. MHD forces experienced by spherical and cylindrical particles. J. Chem. Phys. 22(4), 683–688 (1954) [Sect. 20.4]Google Scholar
  259. Leith, C.E.: Diffusion approximation to inertial energy transfer in isotropic turbulence. Phys. Fluids 10(7), 1409–1416 (1967) [Sect. 7.2]Google Scholar
  260. Leontovich, M.A. (ed.): Plasma Physics and the Problem of Controlled Thermonuclear Reactions, vols. 1–4. Pergamon Press, London (1960) [Intr.]Google Scholar
  261. Lesch, H., Pohl, M.: A possible explanation for intraday variability in active galactic nuclei. Astron. Astrophys. 254(1), 29–38 (1992) [Sect. 13.2.4]Google Scholar
  262. Letessier, J., Rafelski, J.: Hadrons and Quark-gluon Plasma, p. 397. Cambridge University Press, Cambridge (2004) [Sect. 12.2.5]Google Scholar
  263. Liberman, M.A.: On actuating shock waves in a completely ionized plasma. Sov. Phys. JETP 48(5), 832–840 (1978) [Sects. 16.2.6, 17.4.2]Google Scholar
  264. Liboff, R.: Kinetic Theory: Classical, Quantum, and Relativistic Descriptions, p. 571. Springer, Heidelberg (2003) [Intr.]Google Scholar
  265. Lichnerowicz, A.: Relativistic Hydrodynamics and Magnetohydrodynamics, p. 196. Benjamin, New York (1967) [Sect. 12.2]Google Scholar
  266. Lifshitz, E.M., Pitaevskii, L.P.: Physical Kinetics, p. 452. Pergamon Press, Oxford (1981) [Sects. 3.5, 7.3, 8.3.1, 9.6]Google Scholar
  267. Lin, R.P., Hudson, H.S.: 10–100 keV electron acceleration and emission from solar flares. Solar Phys. 17(2), 412–435 (1971) [Sects. 4.3.4, 8.3.2]Google Scholar
  268. Lin, R.P., Dennis, B.R., Hurford, G.J., et al.: The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Solar Phys. 210(1), 3–32 (2002) [Sect. 4.5.7]Google Scholar
  269. Lin, R.P., Krucker, S., Hurford, G.J., et al.: RHESSI observations of particle acceleration and energy release in an intense solar gamma-ray line flare. Astrophys. J. 595(2), L69–L76 (2003) [Sect. 4.5.7]Google Scholar
  270. Litvinenko, Y.E., Somov, B.V.: Solar flares and virial theorem. Sov. Astron. AJ 35(2), 183–188 (1991a) [Sects. 19.1.3, 19.2.2, 19.4.3]Google Scholar
  271. Litvinenko, Y.E., Somov, B.V.: Nonthermal electrons in the thick-target reverse-current model for hard X-ray bremsstrahlung. Solar Phys. 131(2), 319–336 (1991b) [Sects. 4.5.2, 4.5.5]Google Scholar
  272. Litvinenko, Y.E., Somov, B.V.: Electromagnetic expulsion force in cosmic plasma. Astron. Astrophys. 287(1), L37–L40 (1994) [Sect. 20.4]Google Scholar
  273. Litvinenko, Y.E., Somov, B.V.: Aspects of the global MHD equilibria and filament eruptions in the solar corona. Space Sci. Rev. 95(1), 67–77 (2001) [Sects. 19.1.3, 19.4.3]Google Scholar
  274. Liubarskii, G.Ya., Polovin, R.V.: Simple magnetoacoustic waves. Sov. Phys. JETP 8(2), 351 (1958) [Sect. 16.2.4(c)]Google Scholar
  275. Lovelace, R.V.E.: Dynamo model of double radio sources. Nature 262, 649–652 (1976) [Sect. 20.1.3]Google Scholar
  276. Luna, M., Karpen, J.T., DeVore, C.R.: Formation and evolution of a multi-threaded solar prominence. Astrophys. J. 746(1), article id. 30 (2012) [Sect. 12.1.3]Google Scholar
  277. Lundquist, S.: Magneto-hydrostatic fields. Ark. Fys. 2(35), 361–365 (1951) [Sect. 19.2.1(b)]Google Scholar
  278. Macdonald, D.A., Thorne, K.S., Price, R.H., et al.: Astrophysical applications of black-hole electrodynamics. In: Thorne, K.S., Price, R.H., Macdonald, D.A. (eds.) Black Holes: The Membrane Paradigm, pp. 121–137. Yale University Press, New Haven (1986) [Sect. 13.3.1]Google Scholar
  279. MacDonald, W.M., Rothenbluth, M.N., Chuck, W.: Relaxation of a system of particles with Coulomb interactions. Phys. Rev. 107(2), 350–353 (1957) [Sect. 4.1.2]Google Scholar
  280. Mach, E.: Die Geschichte und die Wurzel des Satzes von der Erhaltung der Arbeit. Calve, Prag (1872) [Sect. 13.3.2]Google Scholar
  281. Mach, E.: Die Mechanik in ihrer Entwicklung. Historisch-kritisch Dargestellt. Brockhaus, Leipzig (1883) [Sect. 13.3.2]Google Scholar
  282. MacNeice, P., McWhirter, R.W.P., Spicer, D.S., et al.: A numerical model of a solar flare based on electron beam heating of the chromosphere. Solar Phys. 90(2), 357–353 (1984) [Sect. 8.3.2]Google Scholar
  283. Manmoto, T.: Advection-dominated accretion flow around a Kerr black hole. Astrophys. J. 534(2), 734–746 (2000) [Sects. 8.3.5, 13.2.3]Google Scholar
  284. Markovskii, S.A.: Nonevolutionarity of trans-Alfvénic shocks in a magnetized plasma. J. Geophys. Res. 104(A3), 4427–4436 (1999) [Sects. 17.3.2, 17.4.2]Google Scholar
  285. Markovskii, S.A., Skorokhodov, S.L.: Disintegration of trans-Alfvénic shocks due to variable viscosity and resistivity. J. Geophys. Res. 105(A6), 12702–12711 (2000) [Sect. 17.4.2]Google Scholar
  286. Markovskii, S.A., Somov, B.V.: A model of magnetic reconnection in a current sheet with shock waves. Fizika Solnechnoi Plasmy (Physics of Solar Plasma), pp. 456–472. Nauka, Moscow (in Russian) (1989) [Sect. 14.2.2(a)]Google Scholar
  287. Markovskii, S.A., Somov, B.V.: MHD discontinuities in space plasmas: Interrelation between stability and structure. Space Sci. Rev. 78(3–4), 443–506 (1996) [Sect. 17.5]Google Scholar
  288. Marty, P., Alemany, A.: Écoulement dû à des champs magnétique et électrique croisés autour d’un cylindre de conductivité quelconque. Journal de Mécanique Théorique et Appliquée 2(2), 227–243 (1983) [Sects. 19.4.2, 20.3]Google Scholar
  289. Maxwell, J.C.: Illustrations of the dynamical theory of gases. Phil. Mag. Ser. 4(19), 19–24 (1860) [Sect. 9.6.1]Google Scholar
  290. McClymont, A.N., Canfield, R.C.: Flare loop radiative hydrodynamics. I – Basic methods. Astrophys. J. 265, 483–506 (1983) [Sect. 8.3.2]Google Scholar
  291. McDonald, L., Harra-Murnion, L.K., Culhane, J.L.: Non-thermal electron energy deposition in the chromosphere and the accompanying soft X-ray flare emission. Solar Phys. 185(2), 323–350 (1999) [Sect. 8.3.2]Google Scholar
  292. Michel, F.C.: Theory of Neutron Star Magnetospheres, p. 456. Chicago University Press, Chicago (1991) [Sects. 7.3, 11.5.2, 12.2.2]Google Scholar
  293. Mikhailovskii, A.B.: Nonlinear excitation of electromagnetic waves in a relativistic electron-positron plasma. Sov. J. Plasma Phys. 6(3), 336–340 (1979) [Sect. 7.3]Google Scholar
  294. Mikhailovskii, A.B., Onishchenko, O.G., Tatarinov, E.G.: Alfvén solitons in a relativistic electron-positron plasma. Plasma Phys. Contr. Fusion 27(5), 539–556 (1985) [Sect. 7.3]Google Scholar
  295. Mirabel, I.F., Rodriguez, L.F.: Microquasars in our Galaxy. Nature 392, 673–676 (1998) [Sect. 20.1.3]Google Scholar
  296. Moffatt, H.K.: Magnetic Field Generation in Electrically Conducting Fluids, p. 343. Cambridge University Press, London (1978) [Sect. 13.1.2]Google Scholar
  297. Moreau, R.: Magnetohydrodynamics, p. 328. Kluwer Academic, Dordrecht (1990) [Sect. 20.1.5]Google Scholar
  298. Morozov, A.I., Solov’ev, L.S.: The structure of magnetic fields. In: Leontovich, M.A. (ed.) Reviews of Plasma Physics, vol. 2, pp. 1–101. Consultans Bureau, New York (1966a) [Sect. 19.3.4]Google Scholar
  299. Morozov, A.I., Solov’ev, L.S.: Motion of particles in electromagnetic fields. In: Leontovich, M.A. (ed.) Reviews of Plasma Physics, vol. 2, pp. 201–297. Consultans Bureau, New York (1966b) [Sect. 5.3.4]Google Scholar
  300. Moses, G.A., Duderstadt, J.J.: Improved treatment of electron thermal conduction in plasma hydrodynamics calculations. Phys. Fluids 20(5), 762–770 (1977) [Sect. 9.7.1]Google Scholar
  301. Nakano, T.: Star formation in magnetic clouds. Astrophys. J. 494(2), 587–604 (1998) [Sect. 19.1.3]Google Scholar
  302. Narayan, R., Garcia, M.R., McClintock, J.E.: Advection-dominated accretion and black hole horizons. Astrophys. J.478(2), L79–L82 (1997) [Sect. 8.3.5]Google Scholar
  303. Negoro, H., Kitamoto, S., Takeuchi, M., et al.: Statistics of X-ray fluctuations from Cygnus X-1: Reservoirs in the disk? Astrophys. J. 452(1), L49–L52 (1995) [Sect. 13.2.4]Google Scholar
  304. Nishida, A.: Can random reconnection on the magnetopause produce the low latitude boundary layer? Geophys. Res. Lett. 16, 227–230 (1989) [Sect. 12.4.2]Google Scholar
  305. Nishikawa, K.I., Frank, J., Christodoulou, D.M., et al.: 3D relativistic MHD simulations of extragalactic jets. In: Miyama, S.M., et al. (eds.) Numerical Astrophysics, pp. 217–218. Kluwer Academic, Dordrecht (1999) [Sect. 13.3.1]Google Scholar
  306. Northrop, T.G.: The Adiabatic Motion of Charged Particles. Wiley, New York (1963) [Sect. 6.4]MATHGoogle Scholar
  307. Novikov, I.D., Frolov, V.P.: Physics of Black Holes, p. 341. Kluwer Academic, Dordrecht (1989) [Sects. 11.5.2, 12.2.2, 13.3.1]Google Scholar
  308. Novikov, I.D., Thorne, K.S.: In: Dewitt, C.D., Dewitt, B. (eds.) Black Holes, pp. 345–354. Gordon and Breach, New York (1973) [Sects. 8.3.5, 13.2.1, 13.2.3]Google Scholar
  309. Obertz, P.: Two-dimensional problem of the shape of the magnetosphere. Geomagn. Aeron. 13(5), 758–766 (1973) [Sect. 14.2.2(a)]Google Scholar
  310. Ogawara, Y., Takano, T., Kato, T., et al.: The Solar-A mission: An overview. Solar Phys. 136(1), 1–16 (1991) [Sect. 8.3.2]Google Scholar
  311. Oreshina, A.V., Somov, B.V.: Analytical description of charged particle motion in a reconnecting current layer Astron. Lett. 35(3), 195–206 (2009) [Sect. 5.2.3]Google Scholar
  312. Oreshina, A.V., Somov, B.V.: On the heat-transfer mechanisms in solar flares. 1. Classical and anomalous heat conduction. Moscow Univ. Phys. Bull. 66(3), 286–291 (2011a) [Sects. 9.6.2, 9.7.3]Google Scholar
  313. Oreshina, A.V., Somov, B.V.: On the heat-transfer mechanisms in solar flares. 1. Account of heat-flux relaxation. Moscow Univ. Phys. Bull. 66(3), 292–297 (2011b) [Sects. 9.6.2, 9.7.3]Google Scholar
  314. Oreshina, I.V., Somov, B.V.: Conformal mapping for solving problems of space electrodynamics. Bull. Russ. Acad. Sci. Phys. 63(8), 1209–1212 (1999) [Sect. 14.5]Google Scholar
  315. Ostriker, E.C.: Dynamical friction in a gaseous medium. Astrophys. J. 513(1), 252–258 (1999) [Sect. 8.5]Google Scholar
  316. Padmanabhan, T.: An Invitation to Astrophysics. World Scientific Publ. Co., New Jersey (2006) [Sect. 14.4.2]MATHGoogle Scholar
  317. Palmer, P.L.: Stability of Collisionless Stellar Systems, p. 349. Kluwer Academic, Dordrecht (1994) [Sect. 9.8]Google Scholar
  318. Parker, E.N.: Cosmic Magnetic Fields. Their Origin and Their Activity, p. 841. Clarendon Press, Oxford (1979) [Sects. 13.1.2, 19.3.4, 19.4.2, 20.1.5]Google Scholar
  319. Parks, G.K.: Physics of Space Plasmas, An Introduction, 2nd edn., p. 597. Westview Press, Oxford (2004) [Intr., Sects. 14.5, 18.1, 18.2.3]Google Scholar
  320. Peacock, J.A.: Cosmological Physics, p. 682. Cambridge University Press, Cambridge (1999) [Sects. 7.3, 9.8]Google Scholar
  321. Persson, H.: Electric field along a magnetic line of force in a low-density plasma. Phys. Fluids 6(12), 1756–1759 (1963) [Sect. 8.1.4]Google Scholar
  322. Peterson, L.E., Winckler, J.B.: Gamma-ray burst from a solar flare. J. Geophys. Res. 64(7), 697–707 (1959) [Sect. 4.3.4]Google Scholar
  323. Pfaffelmoser, K.: Global classic solutions of the Vlasov-Poisson system in three dimensions for general initial data. J. Diff. Equat. 95, 281–303 (1992) [Sect. 16.5]Google Scholar
  324. Phan, T.D., Gosling, J.T., Davis, M.S., et al.: A magnetic reconnection X-line extending more than 390 Earth radii in the solar wind. Nature 439(04393), 175–178 (2006) [Sect. 12.4.2]Google Scholar
  325. Planck, M.: Über einen Satz der Statistischen Dynamik und seine Erweiterung in der Quantentheorie. Sitzber Preuss. Akad. Wiss., Phys-Math. Klasse 324 (1917) [Sect. 3.1.4]Google Scholar
  326. Polovin, R.V.: Shock waves in MHD. Soviet Phys. Usp. 3(5), 677–688 (1961) [Sects. 16.2.4(c), 17.2.2]Google Scholar
  327. Polovin, R.V., Demutskii, V.P.: Fundamentals of Magnetohydrodynamics. Consultants Bureau, New York (1990) [Sect. 17.4.1]Google Scholar
  328. Polovin, R.V., Liubarskii, G.Ya.: Impossibility of rarefaction shock waves in MHD. Sov. Phys. JETP 8(2), 351–352 (1958) [Sect. 16.2.4(c)]Google Scholar
  329. Priest, E.R.: Solar Magnetohydrodynamics, p. 472. D. Reidel Publ. Co., Dordrecht (1982) [Sects. 16.2.4(c), 19.3.4]Google Scholar
  330. Punsly, B.: Black Hole Gravitohydromagnetics, p. 400. Springer, New York (2001) [Sect. 12.2.5]Google Scholar
  331. Quarati, P., Scarfone, A.M.: Modified Debye-Hückel electron shielding and penetration factor. Astrophys. J. 666(2), 1303–1310 (2007) [Sect. 8.2.2]Google Scholar
  332. Ramos, J.I., Winowich, N.S.: Magnetohydrodynamic channel flow study. Phys. Fluids 29(4), 992–997 (1986) [Sect. 20.2]Google Scholar
  333. Reid, I.N., Liebert, J., Schmidt, G.D.: Discovery of a magnetic DZ white dwarf with Zeeman-split lines of heavy elements. Astrophys. J. 550(1), L61–L63 (2001) [Sect. 13.2.2]Google Scholar
  334. Rodrigues-Pacheco, J., Sequeiros, J., del Peral, L., et al.: Diffusive-shock-accelerated interplanetary ions at several energies during the solar cycle 21 maximum. Solar Phys. 181(1), 185–200 (1998) [Sect. 18.2.1]Google Scholar
  335. Rogachevskii, I., Kleeorin, N.: Shear-current effect in a turbulent convection with a large-scale shear. Phys. Rev. E 75(4), 046305 (2007) [Sect. 13.1.2]Google Scholar
  336. Roikhvarger, Z.B., Syrovatskii, S.I.: Evolutionarity of MHD discontinuities with allowance for dissipative waves. Sov. Phys. JETP 39(4), 654–656 (1974) [Sects. 17.1.4, 17.3.1, 17.3.2]Google Scholar
  337. Rose, W.K.: Advanced Stellar Astrophysics, p. 494. Cambridge University Press, Cambridge (1998) [Sects. 1.3, 5.4, 7.3, 12.2.2, 13.2.1, 14.4.2]Google Scholar
  338. Rosenbluth, M., Longmire, C.: Stability of plasmas confined by magnetic fields. Ann. Phys. 1(1), 120–140 (1957) [Sects. 19.3.2, 19.3.3]Google Scholar
  339. Ruderman, M.: Matter in superstrong magnetic fields: The surface of a neutron star. Phys. Rev. Lett. 27(19), 1306–1308 (1971) [Sect. 5.4]Google Scholar
  340. Ruderman, M.A., Sutherland, P.G.: Theory of pulsars: Polar gaps, sparks, and coherent radiation. Astrophys. J. 196(1), 51–72 (1975) [Sect. 7.3]Google Scholar
  341. Rüdiger, G., von Rekowski, B.: Differential rotation and meridional flow for fast-rotating solar-type stars. Astrophys. J. 494(2), 691–699 (1998) [Sects. 13.1.2, 20.1.5]Google Scholar
  342. Ruffolo, D.: Transport and acceleration of energetic particles near an oblique shock. Astrophys. J. 515(2), 787–800 (1999) [Sect. 18.2.1]Google Scholar
  343. Salat, A.: Non-linear plasma transport equations for high flow velocity. Plasma Phys. J. 17, 589–607 (1975) [Sect. 9.7.2]Google Scholar
  344. Sarazin, C.L., Kempner, J.C.: Nonthermal bremsstrahlung and hard X-ray emission from clusters of galaxies. Astrophys. J. 533(1), 73–83 (2000) [Sect. 8.3.4]Google Scholar
  345. Sarris, E.T., Van Allen, J.A.: Effects of interplanetary shocks on energetic particles. J. Geophys. Res. 79(28), 4157–4173 (1974) [Sect. 18.3.2(a)]Google Scholar
  346. Schabansky, V.P.: Some processes in the magnetosphere. Space Sci. Rev. 12(3), 299–418 (1971) [Sect. 11.1]Google Scholar
  347. Schiff, L.I.: Possible new experimental test of general relativity theory. Phys. Rev. Lett. 4(5), 215–217 (1960) [Sect. 13.4]Google Scholar
  348. Schlickeiser, R.: Cosmic Ray Astrophysics, p. 519. Springer, New York (2002) [Sect. 5.1.3]Google Scholar
  349. Schlüter, A.: Dynamic des Plasmas. Zeitschrift für Naturforschung 6A(2), 73–78 (1951) [Sect. 11.1]Google Scholar
  350. Schmidt, G.: Physics of High Temperature Plasmas, p. 408. Academic, New York (1979) [Sect. 3.1.2]Google Scholar
  351. Schou, J., Antia, H.M., Basu, S., et al.: Helioseismic studies of differential rotation in the solar envelope by the solar oscillations investigation using the Michelson Doppler Imager. Astrophys. J. 505(1), 390–417 (1998) [Sect. 20.1.5]Google Scholar
  352. Schram, P.P.J.: Kinetic Theory of Gases and Plasmas, p. 426. Kluwer Academic, Dordrecht (1991) [Intr., Sect. 6.2.2]Google Scholar
  353. Schrijver, C.J., Zwaan, C.: Solar and Stellar Magnetic Activity, p. 400. Cambridge University Press, Cambridge (1999) [Sect. 20.1.5]Google Scholar
  354. Sedov, L.I.: Mechanics of Continuous Medium, vol. 1, p. 536, vol. 2, p. 584. Nauka, Moscow (in Russian) (1973) [Sect. 13.1.1]Google Scholar
  355. Sermulyn’sh, B.A., Somov, B.V.: The problem of reverse current under heating of the solar atmosphere by accelerated electrons. In: Proc. 12th Leningrad Seminar on Space Physics: Complex Study of the Sun, pp. 90–95. LIYaF, Leningrad (in Russian) (1982) [Sect. 4.5.6]Google Scholar
  356. Sermulyn’sh, B.A., Somov, B.V.: On the influence of reverse current on the chromospheric heating by accelerated electrons. Investig. Sun Red Stars 18, 86–92 (in Russian) (1983) [Sect. 4.5.6]Google Scholar
  357. Shafranov, V.D.: On MHD equilibrium configurations. Sov. Phys. JETP 6, 545–551 (1958) [Sect. 19.5]Google Scholar
  358. Shafranov, V.D.: Plasma equilibrium in a magnetic field. In: Leontovich, M.A. (ed.) Reviews of Plasma Physics, vol. 2, pp. 103–151. Consultants Bureau, New York (1966) [Sects. 19.2.2, 19.3.2]Google Scholar
  359. Shakura, N.I., Sunyaev, R.A.: Black holes in binary systems, Observational appearance. Astron. Astrophys. 24(2), 337–355 (1973) [Sects. 8.3.5, 13.2.1, 13.2.3]Google Scholar
  360. Sheeley, N.R., Jr., Warren, H.P., Wang, Y.-M.: A streamer ejection with reconnection close to the Sun. Astrophys. J. 671(1), 926–935 (2007) [Sect. 11.5.1]Google Scholar
  361. Shercliff, A.J.: A Textbook of Magnetohydrodynamics, p. 265. Pergamon Press, Oxford (1965) [Sects. 13.1.1, 16.2.4(c), 17.4.2, 20.2.2]Google Scholar
  362. Shkarofsky, I.P., Johnston, T.W., Bachynski, M.P.: The Particle Kinetics of Plasma, p. 518. Addison-Wesley, Reading (1966) [Sects. 1.1.4, 9.4.1, 9.6.2, 11.5.1, 12.2.3]Google Scholar
  363. Shmeleva, O.P., Syrovatskii, S.I.: Distribution of temperature and emission measure in a steadily heated solar atmosphere. Solar Phys. 33(2), 341–362 (1973) [Sect. 8.5]Google Scholar
  364. Shoub, E.C.: Invalidity of local thermodynamic equilibrium for electrons in solar transition region. Astrophys. J. 266(1), 339–369 (1983) [Sect. 8.4.3]Google Scholar
  365. Shoub, E.C.: Failure of the Fokker-Planck approximation to the Boltzmann integral for (1/r) potentials. Phys. Fluids 30(5), 1340–1352 (1987) [Sects. 3.1.4, 3.5]Google Scholar
  366. Shu, F.H.: The Physics of Astrophysics, vol. 2. Gas Dynamics, p. 476. California Univ. Science Books, Mill Valley (1992) [Sects. 6.2.2, 19.3.4]Google Scholar
  367. Silin, V.P.: Introduction to the Kinetic Theory of Gases, p. 332. Nauka, Moscow (in Russian) (1971) [Sects. 3.1.2, 3.5, 6.2.2]Google Scholar
  368. Simon, A.L.: An Introduction to Thermonuclear Research, p. 182. Pergamon Press, London (1959) [Intr.]Google Scholar
  369. Sirotina, E.P., Syrovatskii, S.I.: Structure of low intensity shock waves in MHD. Sov. Phys. JETP 12(3), 521–526 (1960) [Sects. 16.4, 17.3.1]Google Scholar
  370. Sivukhin, D.V.: Motion of charged particles in electromagnetic fields in the drift approximation. In: Leontovich, M.A. (ed.) Reviews of Plasma Physics, vol. 1, pp. 1–104. Consultants Bureau, New York (1965) [Sects. 5.2.3, 5.3.4]Google Scholar
  371. Sivukhin, D.V.: Coulomb collisions in a fully ionized plasma. In: Leontovich, M.A. (ed.) Reviews of Plasma Physics, vol. 4, pp. 93–341. Consultants Bureau, New York (1966) [Sects. 8.3.1, 8.4.1(b), 8.4.3]Google Scholar
  372. Sivukhin, D.V.: A Course of General Physics. Vol. II, Thermodynamics and Molecular Physics, 3rd edn. Nauka, Moscow (in Russian) (1990) [Sect. 9.6.1]Google Scholar
  373. Sivukhin, D.V.: A Course of General Physics. Vol. III, Electricity, 3rd edn. Nauka, Moscow (in Russian) (1996) [Sects. 11.4.2, 19.2.2]Google Scholar
  374. Smirnov, B.M.: Physics of Weakly Ionized Gases: Problems and Solutions, p. 432. Mir Publ., Moscow (1981) [Sect. 3.5]Google Scholar
  375. Smirnov, V.I.: A Course of Higher Mathematics, vol. 2. Pergamon Press, Oxford (1965) [Sects. 1.1.1, 12.3.1, 19.1.2, 19.6]Google Scholar
  376. Smith, E.J., Tsurutani, B.T., Rosenberg, R.L.: Observations of the interplanetary sector structure up to heliographic latitudes of 16 ∘ : Pioneer 11. J. Geophys. Res. 83, 717–724 (1978) [Sect. 12.4.2]Google Scholar
  377. Somov, B.V.: Fast reconnection and transient phenomena with particle acceleration in the solar corona. Bull. Acad. Sci. USSR, Phys. Ser. 45(4), 114–116 (1981) [Sects. 8.3.3, 9.7.2]Google Scholar
  378. Somov, B.V.: Accumulation and release of flare energy. In: Proc. 12th Leningrad Seminar on Space Physics: Complex Study of the Sun, pp. 6–49. LIYaF, Leningrad (in Russian) (1982) [Sects. 3.1.4, 4.1.2, 4.4]Google Scholar
  379. Somov, B.V.: Non-neutral current sheets and solar flare energetics. Astron. Astrophys. 163(1), 210–218 (1986) [Sect. 8.3.3]Google Scholar
  380. Somov, B.V.: Physical Processes in Solar Flares, p. 248. Kluwer Academic, Dordrecht (1992) [Sects. 4.5.6, 8.3.2, 8.4.3, 9.7.3, 19.4.3]Google Scholar
  381. Somov, B.V.: Cosmic Electrodynamics and Solar Physics, p. 288. Moscow State Univ. Publ., Moscow (in Russian) (1993) [Sect. 16.3]Google Scholar
  382. Somov, B.V.: Fundamentals of Cosmic Electrodynamics, p. 364. Kluwer Academic, Dordrecht (1994a) [Sects. 14.2, 16.3]Google Scholar
  383. Somov, B.V.: Features of mass supply and flows related with reconnection in the solar corona. Space Sci. Rev. 70(1), 161–166 (1994b) [Sects. 19.4.1, 20.4]Google Scholar
  384. Somov, B.V.: Plasma Astrophysics, Part II, Reconnection and Flares, p. 504. Springer Science + Business Media, New York (2012) [Intr.]Google Scholar
  385. Somov, B.V., Gritsyk, P.A.: Bremsstrahlung radiation of accelerated electrons in solar flares. Moscow Univ. Phys. Bull. 67(1), 110–116 (2012) [Sect. 4.5.5]Google Scholar
  386. Somov, B.V., Kosugi, T.: Collisionless reconnection and high-energy particle acceleration in solar flares. Astrophys. J. 485(2), 859–868 (1997) [Sect. 6.2.4]Google Scholar
  387. Somov, B.V., Syrovatskii, S.I.: Plasma motion in an increasing strong dipolar field. Sov. Phys. JETP 34(2), 332–335 (1972a) [Sects. 14.4.1, 14.4.2]Google Scholar
  388. Somov, B.V., Syrovatskii, S.I.: Appearance of a current sheet in a plasma moving in the field of a two-dimensional magnetic dipole. Sov. Phys. JETP 34(5), 992–997 (1972b) [Sect. 14.2.2(a)]Google Scholar
  389. Somov, B.V., Syrovatskii, S.I.: Physical processes in the solar atmosphere associated with flares. Sov. Phys. Usp. 19(10), 813–835 (1976a) [Sects. 8.3.3, 8.3.4, 12.1.3]Google Scholar
  390. Somov, B.V., Syrovatskii, S.I.: Hydrodynamic plasma flows in a strong magnetic field. In: Basov, N.G. (ed.) Neutral Current Sheets in Plasma, Proc. P.N. Lebedev Phys. Inst., vol. 74, pp. 13–71. Consultants Bureau, New York (1976b) [Sects. 12.1.3, 13.1.1, 14.1, 14.2.2(b), 14.4.2]Google Scholar
  391. Somov, B.V., Tindo, I.P.: Polarization of hard X-rays from solar flares. Cosmic Res. 16(5), 555–564 (1978) [Sect. 4.5.5]Google Scholar
  392. Somov, B.V., Titov, V.S.: Magnetic reconnection as a mechanism for heating the coronal loops. Sov. Astron. Lett. 9(1), 26–28 (1983) [Sect. 8.3.3]Google Scholar
  393. Somov, B.V., Spektor, A.R., Syrovatskii, S.I.: Gas dynamics of a flare plasma. Bull. Acad. Sci. USSR Phys. Ser. 41(2), 32–43 (1977) [Sect. 8.3.2]Google Scholar
  394. Somov, B.V., Spektor, A.R., Syrovatskii, S.I.: Hydrodynamics of an optically transparent plasma with a distributed heating source. In: Basov, N.G. (ed.) Flare Processes in Plasmas, Proc. P.N. Lebedev Phys. Inst., vol. 110, pp. 73–94. Nauka, Moscow (in Russian) (1979) [Sect. 8.3.2]Google Scholar
  395. Somov, B.V., Syrovatskii, S.I., Spektor, A.R.: Hydrodynamic response of the solar chromosphere to elementary flare burst. 1. Heating by accelerated electrons. Solar Phys. 73(1), 145–155 (1981) [Sect. 8.3.2]Google Scholar
  396. Somov, B.V., Sermulina, B.J., Spektor, A.R.: Hydrodynamic response of the solar chromosphere to elementary flare burst. 1. Thermal model. Solar Phys. 81(1), 281–292 (1982) [Sect. 8.3.3]Google Scholar
  397. Somov, B.V., Oreshina, A.V., Oreshina, I.V., et al.: Flares in accretion disk coronae. Adv. Space Res. 32(6), 1087–1096 (2003) [Sects. 14.2.2(a), 14.5]Google Scholar
  398. Somov, B.V., Dzhalilov, N.S., Staude, J.: Peculiarities of entropy and magnetosonic waves in optically thin cosmic plasma. Astron. Lett. 33(5), 309–318 (2007) [Sects. 12.1.3, 15.2.1, 15.4.4]Google Scholar
  399. Spicer, D.S, Emslie, A.G.: A new quasi-thermal trap model for solar hard X-ray bursts: An electrostatic trap model. Astrophys. J. 330(2), 997–1007 (1988) [Sect. 8.1.4]Google Scholar
  400. Spitzer, L.: The stability of isolated clusters. Mon. Not. Roy. Astron. Soc. 100(5), 396–413 (1940) [Sect. 8.3.1]Google Scholar
  401. Spitzer, L.: Physics of Fully Ionized Gases, p. 170. Wiley Interscience, New York (1962) [Sects. 8.3.1, 8.4.1(a), 9.6.2, 15.4.1, 15.4.4]Google Scholar
  402. Steinolfson, R.S., Cable, S.: Venus bow shock at unusually large distances from the planet. Geophys. Res. Lett. 20, 755–758 (1993) [Sect. 16.2.5]Google Scholar
  403. Steinolfson, R.S., Hundhausen, A.J.: MHD intermediate shocks in coronal mass ejections. J. Geophys. Res. 95, 6389–6401 (1990) [Sect. 16.2.5]Google Scholar
  404. Stewart, R.W., Grant, H.L.: Determination of the rate of dissipation of turbulent energy near the sea surface in the presence of waves. J. Geophys. Res. 67, 3177–3184 (1969) [Sect. 7.2.2]Google Scholar
  405. Stix, T.H.: Waves in Plasmas. American Institue of Physics, New York (1992) [Sect. 10.4]Google Scholar
  406. Störmer, C.: The Polar Aurora. Clarendon Press, Oxford (1955) [Sect. 6.4]MATHGoogle Scholar
  407. Strittmatter, P.A.: Gravitational collapse in the presence of a magnetic field. Monthly Not. Roy. Astron. Soc. 132(3), 359–378 (1966) [Sects. 19.1.2, 19.1.3]Google Scholar
  408. Strong, K.T., Saba, J.L.R., Haisch, B.M., et al. (eds.): The Many Faces of the Sun, p. 610. Springer, New York (1999) [Sect. 4.3.4]Google Scholar
  409. Subramanian, P., Becker, P.A., Kazanas, D.: Formation of relativistic outflows in shearing black hole accretion coronae. Astrophys. J. 523(1), 203–222 (1999) [Sect. 13.3.4]Google Scholar
  410. Suh, I.S., Mathews, G.J.: Cold ideal equation of state for strongly magnetized neutron star matter: Effects on muon production and pion condensation. Astrophys. J. 546(3), 1126–1136 (2001) [Sect. 19.1.3]Google Scholar
  411. Sutton, G.W., Sherman, A.: Engineering Magnetohydrodynamics, p. 548. McGraw-Hill Book Co., New York (1965) [Sects. 13.1.1, 20.2]Google Scholar
  412. Syrovatskii, S.I.: On the stability of tangential discontinuities in MHD medium. Zhur. Exper. Teor. Fiz. 24(6), 622–630 (in Russian) (1953) [Sects. 16.2.1, 16.2.2]Google Scholar
  413. Syrovatskii, S.I.: Instability of tangential discontinuities in a compressive medium. Zhur. Exper. Teor. Fiz. 27(1), 121–123 (in Russian) (1954) [Sect. 16.2.2]Google Scholar
  414. Syrovatskii, S.I.: Some properties of discontinuity surfaces in MHD. Proc. P.N. Lebedev Phys. Inst. 8, 13–64 (in Russian) (1956) [Sects. 16.2.1, 16.3, 20.1.1]Google Scholar
  415. Syrovatskii, S.I.: Magnetohydrodynamics. Uspehi Fiz. Nauk 62(3), 247–303 (in Russian) (1957) [Sects. 12.2.2, 15.4.2, 16.2.4(c), 19.1.3, 20.1.1]Google Scholar
  416. Syrovatskii, S.I.: The stability of shock waves in MHD. Sov. Phys. JETP 8(6), 1024–1028 (1959) [Sects. 17.1.2, 17.1.4]Google Scholar
  417. Syrovatskii, S.I.: Formation of current sheets in a plasma with a frozen-in strong field. Sov. Phys. JETP 33(5), 933–940 (1971) [Sect. 14.2.2(a)]Google Scholar
  418. Syrovatskii, S.I., Chesalin, L.S.: Electromagnetic generation of conductive fluid flows near bodies and expulsive force. Questions of Magnetohydrodynamics, pp. 17–22. Zinatne, Riga (in Russian) (1963) [Sects. 19.4.2, 20.3]Google Scholar
  419. Syrovatskii, S.I., Shmeleva, O.P.: Heating of plasma by high-energy electrons, and the non-thermal X-ray emission in solar flares. Sov. Astron. AJ 16(2), 273–283 (1972) [Sects. 4.3.3, 4.3.4, 8.3.2]Google Scholar
  420. Syrovatskii, S.I., Somov, B.V.: Physical driving forces and models of coronal responses. In: Dryer, M., Tandberg-Hanssen, E. (eds.) Solar and Interplanetary Dynamics, IAU Symp. vol. 91, pp. 425–441. Reidel, Dordrecht (1980) [Sect. 14.2.2(b)]Google Scholar
  421. Takahara, F., Kusunose, M.: Electron-positron pair production in a hot accretion plasma around a massive black hole. Progr. Theor. Phys. 73(6), 1390–1400 (1985) [Sect. 7.3]Google Scholar
  422. Takizawa, M.: A two-temperature model of the intracluster medium. Astrophys. J. 509(2), 579–584 (1998) [Sect. 8.3.4]Google Scholar
  423. Tamm, I.E.: Basic Theory of Electricity, 10th edn., p. 504. Nauka, Moscow (in Russian) (1989) [Sect. 19.3.1]Google Scholar
  424. Tandberg-Hanssen, E.: The Nature of Solar Prominences, p. 308. Kluwer Academic, Dordrecht (1995) [Sects. 19.3.4, 20.4]Google Scholar
  425. Thorne, K.: Gravitomagnetism, Jets in Quasars, and the Stanford Gyroscope Experiment. In: Fairbank, J.D., et al. (eds.) Near Zero: New Frontiers of Physics, pp. 573–586. W.H. Freeman and Co., New York (1988) [Sect. 13.3.2]Google Scholar
  426. Tidman, D.A., Krall, N.A.: Shock Waves in Collisionless Plasma, p. 175. Wiley-Interscience, New York (1971) [Sect. 16.4]Google Scholar
  427. Titov, V.S., Priest, E.R.: The collapse of an X-type neutral point to form a reconnecting current sheet. Geophys. Astrophys. Fluid Dyn. 72, 249–276 (1993) [Sect. 14.2.2(b)]Google Scholar
  428. Todd, L.: Evolution of the trans-Alfvénic normal shock in a gas of finite electrical conductivity. J. Fluid Mech. 18, 321–336 (1964) [Sect. 17.4.2]Google Scholar
  429. Toptyghin, I.N.: Acceleration of particles by shocks in a cosmic plasma. Space Sci. Rev. 26(1), 157–213 (1980) [Sect. 18.3.2(a)]Google Scholar
  430. Treumann, R.A., Baumjohann, W.: Advanced Space Plasma Physics, p. 381. Imperial College Press, London (1997) [Sect. 7.1]Google Scholar
  431. Trubnikov, B.A.: Particle interactions in a fully ionized plasma. In: Leontovich, M.A. (ed.) Reviews of Plasma Physics, vol. 1, pp. 105–204. Consultants Bureau, New York (1965) [Sect. 8.4.1(b)]Google Scholar
  432. Tsiklauri, D., Haruki, T.: Magnetic reconnection during collisionless, stressed, X-point collapse using particle-in-cell simulation. Phys. Plasma 14(11), 112905–112905-10 (2007) [Sect. 11.2]Google Scholar
  433. Tsuneta, S., Ichimoto, K., Katsukawa, Y., et al.: The Solar Optical Telescope for the Hinode mission: An overview. Solar Phys. 249(2), 167–196 (2008) [Sect. 8.3.2]Google Scholar
  434. Tverskoy, B.A.: Contribution to the theory of Fermi statistical acceleration. Soviet Phys. JETP. 25(2), 317–325 (1967) [Sect. 7.2]Google Scholar
  435. Tverskoy, B.A.: Theory of turbulent acceleration of charged particles in a plasma. Soviet Phys. JETP.26(4), 821–828 (1968) [Sect. 7.2]Google Scholar
  436. Tverskoy, B.A.: Main mechanisms in the formation of the Earth’s radiation belts. Rev. Geophys. 7(1), 219–231 (1969) [Sect. 6.4]Google Scholar
  437. UeNo, S.: Comparison between statistical features of X-ray fluctuations from the solar corona and accretion disks. In: Watanabe, T., Kosugi, T., Sterling, A.C. (eds.) Observational Plasma Astrophysics: Five Years of Yohkoh and Beyond, pp. 45–50. Kluwer Academic, Dordrecht (1998) [Sect. 13.2.4]Google Scholar
  438. Unti, T., Atkinson, G.: Two-dimensional Chapman-Ferraro problem with neutral sheet. 1. The boundary. J. Geophys. Res. Space Phys. 73(23), 7319–7327 (1968) [Sect. 14.2.2(a)]Google Scholar
  439. van de Hulst, H.C.: Interstellar polarization and MHD waves. In: Burgers, J.M., van de Hulst, H.C. (eds.) Problems of Cosmical Aerodynamics, pp. 45–57, Central Air Documents Office, Dayton, Ohio (1951) [Sects. 15.2.3, 15.3.2]Google Scholar
  440. van den Oord, G.H.J.: The electrodynamics of beam/return current systems in the solar corona. Astron. Astrophys. 234(2), 496–518 (1990) [Sects. 4.5.1, 4.5.2]Google Scholar
  441. Vink, J., Laming, J.M., Gu, M.F., et al.: The slow temperature equilibration behind the shock front of SN 1006. Astrophys. J. 587(1), L31–L34 (2003) [Sect. 16.4]Google Scholar
  442. Vladimirov, V.S.: Equations of Mathematical Physics, p. 418. M. Dekker, New York (1971) [Sects. 1.1.5, 1.2.2, 13.1.1]Google Scholar
  443. Vlasov, A.A.: On the oscillation properties of an electron gas. Zhur. Eksp. Teor. Fiz. 8(1), 29–33 (in Russian). English translation: 1968, The vibrational properties of an electron gas. Sov. Phys. Uspekhi 10(4), 721–733, see also Sov. Phys. Uspekhi 19(6), 545–546 (1938) [Sects. 3.1.2, 3.1.3, 10.2.2]Google Scholar
  444. Vlasov, A.A.: On the kinetic theory of an ensemble of particles with collective interactions. Soviet J. Phys. 9(1), 25–28 (1945) [Sect. 3.1.2]Google Scholar
  445. Volkov, T.F.: Hydrodynamic description of a collisionless plasma. In: Leontovich, M.A. (ed.) Reviews of Plasma Physics, vol. 4, pp. 1–21. Consultant Bureau, New York (1966) [Sects. 11.5.1, 16.4]Google Scholar
  446. Walt, M.: Introduction to Geomagnetically Trapped Radiation, p. 188. Cambridge University Press, Cambridge (1994) [Sect. 6.4]Google Scholar
  447. Webb, G.M.: Similarity considerations and conservation laws for magnetostatic atmospheres. Solar Phys.106(2), 287–313 (1986) [Sect. 19.4.3]Google Scholar
  448. Webb, G.M., Zank, G.P., Ko, C.M., et al.: Multi-dimensional Green’s functions and the statistics of diffusive shock acceleration. Astrophys. J. 453(1), 178–189 (1995) [Sect. 18.2.2]Google Scholar
  449. Wentzel, D.G.: Fermi acceleration of charged particles. Astrophys. J. 137(1), 135–146 (1963) [Sect. 18.3.2(b)]Google Scholar
  450. Wentzel, D.G.: Motion across magnetic discontinuities and Fermi acceleration of charged particles. Astrophys. J. 140(3), 1013–1024 (1964) [Sects. 6.2.4, 18.3.2(b)]Google Scholar
  451. Wiita, P.J.: Accretion disks around black holes. In: Iyer, B.R., Bhawal, B. (eds.) Black Holes, Gravitational Radiation and the Universe, pp. 249–263. Kluwer Academic, Dordrecht (1999) [Sect. 8.3.5]Google Scholar
  452. Will, C.M.: Finally, results from Gravity Probe B. Physics 4, 43 (2011) [Sect. 13.4]Google Scholar
  453. Woltjer, L.: A theorem on force-free magnetic fields. Proc. Nat. Acad. Sci. USA 44(6), 489–491 (1958) [Sect. 19.6]Google Scholar
  454. Yvon, J.: La Theorie des Fluids et l’Equation d’Etat. Hermann et Cie, Paris (1935) [Sect. 2.4]Google Scholar
  455. Zank, G.P.: Weyl’s theorem for MHD. J. Plasma Phys. 46(1), 11–14 (1991) [Sect. 16.2.4(c)]Google Scholar
  456. Zel’dovich, Ya.B., Novikov, I.D.: Relativistic Astrophysics. Vol. 1, Stars and Relativity. University of Chicago Press, Chicago (1971) [Sects. 12.2, 19.3.4]Google Scholar
  457. Zel’dovich, Ya.B., Raizer, Yu.P.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, vol. 1, p. 464, vol. 2, p. 452. Academic, New York (1966) [Sects. 8.3.4, 9.7.3, 16.1.3, 16.4, 16.5]Google Scholar
  458. Zel’dovich, Ya.B., Raizer, Yu.P.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Dover, Mineola (2002) [Sects. 8.3.4, 9.7.3, 16.1.3, 16.4, 16.5]Google Scholar
  459. Zel’dovich, Ya.B., Ruzmaikin, A.A., Sokolov, D.D.: Magnetic Fields in Astrophysics. Gordon and Breach, New York (1983) [Sect. 13.1.2]Google Scholar
  460. Zenitani, S., Hoshino, M.: The generation of nonthermal particles in the relativistic magnetic reconnection of pair plasmas. Astrophys. J. 562(1), L63–L66 (2001) [Sect. 7.3]Google Scholar
  461. Zenitani, S., Hoshino, M.: Particle acceleration and magnetic dissipation in relativistic current sheet of pair plasmas. Astrophys. J. 670(1), 702–726 (2007) [Sect. 7.3]Google Scholar
  462. Zheleznyakov, V.V.: Radiation in Astrophysical Plasmas, p. 462. Kluwer Academic, Dordrecht (1996) [Sects. 7.1, 7.4, 10.4]Google Scholar
  463. Zhou, Y., Matthaeus, W.H.: Models of inertial range spectra of MHD turbulence. J. Geophys. Res. 95(A9), 14881–14892 (1990) [Sect. 7.2]Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Boris V. Somov
    • 1
  1. 1.Astronomical Institute and Faculty of PhysicsM.V. Lomonosov Moscow State UniversityMoskvaRussia

Personalised recommendations