Skip to main content

Electrochemical Energy Storage: Applications, Processes, and Trends

  • Chapter
  • First Online:
Handbook of Industrial Chemistry and Biotechnology

Abstract

Energy consumption in the world has increased significantly over the past 20 years. In 2008, worldwide energy consumption was reported as 142,270 TWh [1], in contrast to 54,282 TWh in 1973; [2] this represents an increase of 262%. The surge in demand could be attributed to the growth of population and industrialization over the years. In 2009, energy consumption was reported as 140,700 TWh, a slight decrease (1.1%) when compared to 2008 due to the world financial crisis [1], while in 2010 there was a rise in the consumption to 149,469 TWh, due to the recovery of the economy at that time [3]. Conversely, the total supply of energy in the world had caught up with the consumption as shown in Table 38.1 [2, 4]. Approximately 10–14% of the total energy supply in the world is delivered as electric energy. In addition, the amount of power supplied by renewables had increased over the years, from 37 TWh in 1973 to 612 TWh in 2008 (as shown in Table 38.1), which represents a growth of 94%. However, the total amount of energy available from renewables based on current technology could reach up to 834,280 TWh (distributed as: 53.2% solar, 20.0% wind, 16.7% geothermal, 8.4% biomass, and 1.7% hydropower); [5] that is, 5.7 times the world energy supply in 2008. Nevertheless, renewable sources of energy such as solar and wind are intermittent and only abundant in certain regions, which causes a limitation on the use and distribution of such sources of energy. An undersized world energy surplus (based on a total energy balance including supply, consumption, and losses) is usually reported annually; a comprehensive analysis is presented in the literature [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 419.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ENERDATA (2010) World energy demand down for the first time in 30 years. Available at: http://www.enerdata.net/enerdatauk/press-and-publication/publications/. Accessed 1 Aug 2011

  2. IEA (2010) Key World Energy Statistics 2010. International Energy Agency. Available at: http://www.iea.org/textbase/nppdf/free/2010/key_stats_2010.pdf. Accessed 1 Aug 2011

  3. ENERDATA (2011) Enerdata releases its 2011 edition of its Global Energy Statistical Yearbook. Available at: http://www.enerdata.net/enerdatauk/press-and-publication/publications/. Accessed 1 Aug 2011

  4. Energimyndigheten (2010) Energy in Sweden—facts and figures 2010. Swedish Energy Agency. Available at: http://www.energimyndigheten.se/en/. Accessed 1 Aug 2011

  5. The World Watch Institute (2009) State of the World 2009: Into a Warming World. Available at: http://www.worldwatch.org/. Accessed 1 Aug 2011

  6. Wikipedia (2011) Energy Storage. Available at: http://en.wikipedia.org/wiki/Energy_storage. Accessed 7 Aug 2011

  7. Botte GG (2009) Vision of the Center for Electrochemical Engineering Research, Ohio University. Available at: http://www.ohio.edu/ceer/research/index.cfm. Accessed 1 Aug 2011

  8. McIntyre J (2002) 100 years of industrial electrochemistry. J Electrochem Soc 149:S79–S83

    CAS  Google Scholar 

  9. Richards JW (1902) A University Course in Electrochemistry, Trans Am Electrochem Soc 1:42

    Google Scholar 

  10. Newman JS, Thomas-Alyea KE (2004) Electrochemical systems, 3rd edn. Wiley—Interscience, New York

    Google Scholar 

  11. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  12. Pletcher D, Walsh F (1990) Industrial electrochemistry, 2nd edn. Chapman and Hall, New York

    Google Scholar 

  13. Botte GG (2007) Batteries: basic principles, technologies, and modeling. In: Bard AJ, Stratmann M (eds) Encyclopedia of electrochemistry: electrochemical engineering, vol 5. Wiley-VCH, New York, pp 377–423

    Google Scholar 

  14. Dobos D (1975) Electrochemical data. Akademiai Kiado, Budapest

    Google Scholar 

  15. Schmidt M, Heider U, Kuehner A, Oesten R, Jungnitz M, Ignat’ev N et al (2001) Lithium fluoroalkylphosphates: a new class of conducting salts for electrolytes for high energy lithium-ion batteries. J Power Sources 97–8:557–560

    Google Scholar 

  16. Gores HJ, Barthel JMG (1995) Nonaqueous electrolyte-solutions—new materials for devices and processes based on recent applied-research. Pure Appl Chem 67:919–930

    CAS  Google Scholar 

  17. Hives J, Thonstad J, Sterten A, Fellner P (1996) Electrical conductivity of molten cryolite-based mixtures obtained with a tube-type cell made of pyrolytic boron nitride. Metall Mater Trans B Proc Metall Mater Proc Sci 27:255–261

    Google Scholar 

  18. Yamamoto O (2000) Solid oxide fuel cells: fundamental aspects and prospects. Electrochim Acta 45:2423–2435

    CAS  Google Scholar 

  19. Haynes WM (2011) CRC handbook of chemistry and physics (Internet Version 2012), 92nd edn. CRC Press/Taylor and Francis, Boca Raton, FL

    Google Scholar 

  20. Linden D (1995) Handbook of batteries, 2nd edn. McGraw-Hill, Inc., New York

    Google Scholar 

  21. Zeng K, Zhang DK (2010) Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog Energy Combustion Sci 36:307–326

    CAS  Google Scholar 

  22. Tarcy GP, Kvande H, Tabereaux A (2011) Advancing the industrial aluminum process: 20th century breakthrough inventions and developments. JOM 63:101–108

    Google Scholar 

  23. Bard AJ, Inzelt G, Scholz F (2008) Electrochemical dictionary. Springer, Berlin

    Google Scholar 

  24. Ibrahim H, Ilinca A, Perron J (2008) Energy storage systems—characteristics and comparisons. Renew Sustain Energy Rev 12:1221–1250

    CAS  Google Scholar 

  25. Garche J (2001) Advanced battery systems—the end of the lead-acid battery? Phys Chem Chem Phys 3:356–367

    CAS  Google Scholar 

  26. de Leon CP, Frias-Ferrer A, Gonzalez-Garcia J, Szanto DA, Walsh FC (2006) Redox flow cells for energy conversion. J Power Sources 160:716–732

    Google Scholar 

  27. Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195:2419–2430

    CAS  Google Scholar 

  28. Naoi K (2010) ‘Nanohybrid capacitor’: the next generation electrochemical capacitors. Fuel Cells 10:825–833

    CAS  Google Scholar 

  29. Osaka T, Datta M (eds) (2000) Energy storage systems for electronics. Gordon and Breach Science Publishers, Singapore

    Google Scholar 

  30. Larminie J, Dicks A (2003) Fuel cell systems explained, 2nd edn. Wiley, West Sussex, England

    Google Scholar 

  31. Carrette L, Friedrich KA, Stimming U (2001) Fuel cells—fundamentals and applications. Fuel Cells 1:5–39

    CAS  Google Scholar 

  32. Srinivasan S, Mosdale R, Stevens P, Yang C (1999) Fuel cells: reaching the era of clean and efficient power generation in the twenty-first century. Annu Rev Energy Environ 24:281–328

    Google Scholar 

  33. Chen J, Cheng FY (2009) Combination of lightweight elements and nanostructured materials for batteries. Acc Chem Res 42:713–723

    CAS  Google Scholar 

  34. Zhou HB, Huang QM, Liang M, Lv DS, Xu MQ, Li H et al (2011) Investigation on synergism of composite additives for zinc corrosion inhibition in alkaline solution. Mater Chem Phys 128:214–219

    CAS  Google Scholar 

  35. Bailey MR, Donne SW (2011) Electrochemical impedance spectroscopy study into the effect of titanium dioxide added to the alkaline manganese dioxide cathode. J Electrochem Soc 158:A802–A808

    CAS  Google Scholar 

  36. Minakshi M, Ionescu M (2010) Anodic behavior of zinc in Zn-MnO2 battery using ERDA technique. Int J Hydrogen Energy 35:7618–7622

    CAS  Google Scholar 

  37. Pan JQ, Sun YZ, Wang ZH, Wan PY, Fan MH (2009) Mn3O4 doped with nano-NaBiO3: a high capacity cathode material for alkaline secondary batteries. J Alloys Compd 470:75–79

    CAS  Google Scholar 

  38. Raghuveer V, Manthiram A (2006) Role of TiB2 and Bi2O3 additives on the rechargeability of MnO2 in alkaline cells. J Power Sources 163:598–603

    CAS  Google Scholar 

  39. Beck F, Ruetschi P (2000) Rechargeable batteries with aqueous electrolytes. Electrochim Acta 45:2467–2482

    CAS  Google Scholar 

  40. Wen YH, Cheng J, Ning SQ, Yang YS (2009) Preliminary study on zinc-air battery using zinc regeneration electrolysis with propanol oxidation as a counter electrode reaction. J Power Sources 188:301–307

    CAS  Google Scholar 

  41. Goldstein J, Brown I, Koretz B (1999) New developments in the Electric Fuel Ltd zinc air system. J Power Sources 80:171–179

    CAS  Google Scholar 

  42. Dell RM, Rand DAJ (2004) Clean energy. Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  43. Rand DAJ, Woods R, Dell RM (1998) Batteries for electric vehicles. Research Studies Press Ltd., Somerset, England

    Google Scholar 

  44. Morioka Y, Narukawa S, Itou T (2001) State-of-the-art of alkaline rechargeable batteries. J Power Sources 100:107–116

    CAS  Google Scholar 

  45. Shukla AK, Venugopalan S, Hariprakash B (2001) Nickel-based rechargeable batteries. J Power Sources 100:125–148

    CAS  Google Scholar 

  46. Patil A, Patil V, Shin DW, Choi JW, Paik DS, Yoon SJ (2008) Issue and challenges facing rechargeable thin film lithium batteries. Mater Res Bull 43:1913–1942

    CAS  Google Scholar 

  47. Fergus JW (2010) Ceramic and polymeric solid electrolytes for lithium-ion batteries. J Power Sources 195:4554–4569

    CAS  Google Scholar 

  48. Shukla AK, Kumar TP (2008) Materials for next-generation lithium batteries. Curr Sci 94:314–331

    CAS  Google Scholar 

  49. Lu XC, Xia GG, Lemmon JP, Yang ZG (2010) Advanced materials for sodium-beta alumina batteries: status, challenges and perspectives. J Power Sources 195:2431–2442

    CAS  Google Scholar 

  50. Weber AZ, Mench MM, Meyers JP, Ross PN, Gostick JT, Liu QH (2011) Redox flow batteries: a review. J Appl Electrochem 41:1137–1164

    CAS  Google Scholar 

  51. Mellentine JA, Culver WJ, Savinell RF (2011) Simulation and optimization of a flow battery in an area regulation application. J Appl Electrochem 41:1167–1174

    CAS  Google Scholar 

  52. Aaron D, Tang ZJ, Papandrew AB, Zawodzinski TA (2011) Polarization curve analysis of all-vanadium redox flow batteries. J Appl Electrochem 41:1175–1182

    CAS  Google Scholar 

  53. Wu XW, Yamamura T, Ohta S, Zhang QX, Lv FC, Liu CM et al (2011) Acceleration of the redox kinetics of VO2+/VO +2 and V3+/V2+ couples on carbon paper. J Appl Electrochem 41:1183–1190

    CAS  Google Scholar 

  54. Shinkle AA, Sleightholme AES, Thompson LT, Monroe CW (2011) Electrode kinetics in non-aqueous vanadium acetylacetonate redox flow batteries. J Appl Electrochem 41:1191–1199

    CAS  Google Scholar 

  55. Kim S, Tighe TB, Schwenzer B, Yan JL, Zhang JL, Liu J et al (2011) Chemical and mechanical degradation of sulfonated poly(sulfone) membranes in vanadium redox flow batteries. J Appl Electrochem 41:1201–1213

    CAS  Google Scholar 

  56. Zhang JL, Li LY, Nie ZM, Chen BW, Vijayakumar M, Kim S et al (2011) Effects of additives on the stability of electrolytes for all-vanadium redox flow batteries. J Appl Electrochem 41:1215–1221

    CAS  Google Scholar 

  57. Menictas C, Skyllas-Kazacos M (2011) Performance of vanadium-oxygen redox fuel cell. J Appl Electrochem 41:1223–1232

    CAS  Google Scholar 

  58. Skyllas-Kazacos M, Milne N (2011) Evaluation of iodide and titanium halide redox couple combinations for common electrolyte redox flow cell systems. J Appl Electrochem 41:1233–1243

    CAS  Google Scholar 

  59. Zhang R, Weidner JW (2011) Analysis of a gas-phase Br2-H2 redox flow battery. J Appl Electrochem 41:1245–1252

    CAS  Google Scholar 

  60. Kiros Y (1996) Electrocatalytic properties of Co, Pt, and Pt-Co on carbon for the reduction of oxygen in alkaline fuel cells. J Electrochem Soc 143:2152–2157

    CAS  Google Scholar 

  61. Chrzanowski W, Wieckowski A (1998) Surface structure effects in platinum/ruthenium methanol oxidation electrocatalysis. Langmuir 14:1967–1970

    CAS  Google Scholar 

  62. Gasteiger HA, Markovic N, Ross PN, Cairns EJ (1994) CO electrooxidation on well-characterized Pt-Ru alloys. J Phys Chem 98:617–625

    CAS  Google Scholar 

  63. Gasteiger HA, Markovic N, Ross PN, Cairns EJ (1994) Electrooxidation of small organic-molecules on well-characterized Pt-Ru alloys. Electrochim Acta 39:1825–1832

    CAS  Google Scholar 

  64. Petukhov AV, Akemann W, Friedrich KA, Stimming U (1998) Kinetics of electrooxidation of a CO monolayer at the platinum/electrolyte interface. Surf Sci 402:182–186

    Google Scholar 

  65. Friedrich KA, Geyzers KP, Linke U, Stimming U, Stumper J (1996) CO adsorption and oxidation on a Pt(111) electrode modified by ruthenium deposition: an IR spectroscopic study. J Electroanal Chem 402:123–128

    Google Scholar 

  66. Alonso-Vante N, Tributsch H, Solorza-Feria O (1995) Kinetics studies of oxygen reduction in acid-medium on novel semiconducting transition-metal chalcogenides. Electrochim Acta 40:567–576

    CAS  Google Scholar 

  67. Solorza-Feria O, Ellmer K, Giersig M, Alonso-Vante N (1994) Novel low-temperature synthesis of semiconducting transition metal chalcogenide electrocatalyst for multielectron charge transfer: molecular oxygen reduction. Electrochim Acta 39:1647–1653

    CAS  Google Scholar 

  68. Dong SJ, Qiu QS (1991) Electrodeposition of platinum particles on glassy-carbon modified with cobalt porphyrin and Nafion film and their electrocatalytic reduction of dioxygen. J Electroanal Chem 314:223–239

    CAS  Google Scholar 

  69. Gupta S, Tryk D, Zecevic SK, Aldred W, Guo D, Savinell RF (1998) Methanol-tolerant electrocatalysts for oxygen reduction in a polymer electrolyte membrane fuel cell. J Appl Electrochem 28:673–682

    CAS  Google Scholar 

  70. DOE (2011) Phosphoric Acid Fuel Cell Technology. Available at: http://www.fossil.energy.gov/programs/powersystems/fuelcells/fuelscells_phosacid.html. Accessed 31 Oct 2011

  71. FCTec (2011) Phosphoric Acid Fuel Cells (PAFC). Available at: http://www.fctec.com/fctec_types_pafc.asp. Accessed 31 Oct 2011

  72. Yuh C, Johnsen R, Farooque M, Maru H (1995) Status of carbonate fuel-cell materials. J Power Sources 56:1–10

    CAS  Google Scholar 

  73. Badwal SPS, Giddey S, Ciacchi FT (2006) Hydrogen and oxygen generation with polymer electrolyte membrane (PEM)-based electrolytic technology. Ionics 12:7–14

    CAS  Google Scholar 

  74. Armaroli N, Balzani V (2011) The hydrogen issue. ChemSusChem 4:21–36

    CAS  Google Scholar 

  75. Farrauto R, Hwang S, Shore L, Ruettinger W, Lampert J, Giroux T et al (2003) New material needs for hydrocarbon fuel processing: generating hydrogen for the PEM fuel cell. Annu Rev Mater Res 33:1–27

    CAS  Google Scholar 

  76. Onsan ZI (2007) Catalytic processes for clean hydrogen production from hydrocarbons. Turk J Chem 31:531–550

    CAS  Google Scholar 

  77. Palo DR, Dagle RA, Holladay JD (2007) Methanol steam reforming for hydrogen production. Chem Rev 107:3992–4021

    CAS  Google Scholar 

  78. Ogden JM (1999) Prospects for building a hydrogen energy infrastructure. Annu Rev Energy Environ 24:227–279

    Google Scholar 

  79. Navarro RM, Pena MA, Fierro JLG (2007) Hydrogen production reactions from carbon feedstocks: fossils fuels and biomass. Chem Rev 107:3952–3991

    CAS  Google Scholar 

  80. Longwell JP, Rubin ES, Wilson J (1995) Coal: energy for the future. Prog Energy Combustion Sci 21:269–360

    CAS  Google Scholar 

  81. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    CAS  Google Scholar 

  82. Amatucci GG, Badway F, DuPasquier A (2000) Novel asymmetric hybrid cells and the use of pseudo-reference electrodes in three electrode cell characterization. The Electrochemical Society, Pennington, New Jersey, USA. In: Nazri GA, Thackeray M, Ohzuku T (eds) Intercalation Compounds for Battery Materials, Proceedings, vol 99. pp 344–359

    Google Scholar 

  83. Kuhn AT (1971) Industrial electrochemical processes. Elsevier Science Limited, Amsterdam

    Google Scholar 

  84. Bommaraju TV, O’Brien TF, Hine F (2005) Handbook of chlor-alkali technology. Springer Science+Business Media, Inc., New York

    Google Scholar 

  85. Moussallem I, Jorissen J, Kunz U, Pinnow S, Turek T (2008) Chlor-alkali electrolysis with oxygen depolarized cathodes: history, present status and future prospects. J Appl Electrochem 38:1177–1194

    CAS  Google Scholar 

  86. Venkatesh S, Tilak BV (1983) Chlor-alkali technology. J Chem Educ 60:276–278

    CAS  Google Scholar 

  87. Haupin WE (1983) Electrochemistry of the Hall-Heroult process for aluminum smelting. J Chem Educ 60:279–282

    CAS  Google Scholar 

  88. Ferreira BK (2008) Three-dimensional electrodes for the removal of metals from dilute solutions: a review. Mineral Proc Extr Metall Rev 29:330–371

    CAS  Google Scholar 

  89. Cooper WC (1985) Reviews of applied electrochemistry 11. Advances and future-prospects in copper electrowinning. J Appl Electrochem 15:789–805

    CAS  Google Scholar 

  90. Leroy RL (1983) Industrial water electrolysis—present and future. Int J Hydrogen Energy 8:401–417

    CAS  Google Scholar 

  91. Abe R (2010) Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. J Photochem Photobiol C Photochem Rev 11:179–209

    Google Scholar 

  92. Utley J (1997) Trends in organic electrosynthesis. Chem Soc Rev 26:157–167

    CAS  Google Scholar 

  93. Sequeira CAC, Santos DMF (2009) Electrochemical routes for industrial synthesis. J Braz Chem Soc 20:387–406

    CAS  Google Scholar 

  94. Srinivasan V, Arora P, Ramadass P (2006) Report on the electrolytic industries for the year 2004. J Electrochem Soc 153:K1–K14

    CAS  Google Scholar 

  95. Dukes RR (1970) Report of electrolytic industries for year 1968. J Electrochem Soc 117:C9–C14

    Google Scholar 

  96. Electrochemistry Encyclopedia (2002) Industrial Organic Electrosynthesis. Available at: http://electrochem.cwru.edu/encycl/art-o01-org-ind.htm. Accessed 5 Sept 2011

  97. Sivula K, Le Formal F, Gratzel M (2011) Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes. ChemSusChem 4:432–449

    CAS  Google Scholar 

  98. Boddy PJ (1968) Oxygen evolution on semiconducting TiO2. J Electrochem Soc 115:199

    CAS  Google Scholar 

  99. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    CAS  Google Scholar 

  100. Murphy AB, Barnes PRF, Randeniya LK, Plumb IC, Grey IE, Horne MD et al (2006) Efficiency of solar water splitting using semiconductor electrodes. Int J Hydrogen Energy 31:1999–2017

    CAS  Google Scholar 

  101. Gray HB (2009) Powering the planet with solar fuel. Nat Chem 1:7

    CAS  Google Scholar 

  102. CCI Solar (2011) Center for Chemical Innovation (CCI Solar), California Institute of Technology. Available at: http://ccisolar.caltech.edu. Accessed 28 Sept 2011

  103. Barbir F (2005) PEM electrolysis for production of hydrogen from renewable energy sources. Solar Energy 78:661–669

    CAS  Google Scholar 

  104. Phillips J (1995) Control and Pollution Prevention Options for Ammonia Emissions. Technical Rpt. EPA-456/R-95-002, ViGYAN Incorporated, Research Triangle Park, NC

    Google Scholar 

  105. Index Mundi (2011) Ammonia: Estimated World Production, By Country. Available at: http://www.indexmundi.com/en/commodities/minerals/nitrogen/nitrogen_t12.html. Accessed 30 Oct 2011

  106. Mansell GE (2005) An improved ammonia inventory for the WRAP Domain. Technical, ENVIRON International Corporation Novato, California, USA.

    Google Scholar 

  107. Bouwman AF, Lee DS, Asman WAH, Dentener FJ, VanderHoek KW, Olivier JGJ (1997) A global high-resolution emission inventory for ammonia. Global Biogeochem Cycles 11:561–587

    CAS  Google Scholar 

  108. Sommer SG, Hutchings NJ (2001) Ammonia emission from field applied manure and its reduction—invited paper. Eur J Agron 15:1–15

    CAS  Google Scholar 

  109. CEER (2009) Center for Electrochemical Engineering Research (CEER), Ohio University. Available at: http://www.ohio.edu/ceer/. Accessed 1 Aug 2011

  110. Botte GG, Vitse F, Cooper M (2009) Electro-catalysts for the oxidation of ammonia in alkaline media and its application to hydrogen production, ammonia fuel cells, ammonia electrochemical sensors, and purification process for ammonia-contained effluents. United States, US 7,485,211

    Google Scholar 

  111. Botte GG (2010) Electro-catalysts for the oxidation of ammonia in alkaline media. United States, US 7,803,264

    Google Scholar 

  112. Botte GG (2009) Electrochemical method for providing hydrogen using ammonia and ethanol. United States, Patent Pending US 2009/0050489

    Google Scholar 

  113. Botte GG (2010) Carbon fiber-electrocatalysts for the oxidation of ammonia, and ethanol in alkaline media and their application to hydrogen production, fuel cells, and purification processes. United States, Patent Pending WO 2007/047630

    Google Scholar 

  114. Vitse F, Cooper M, Botte GG (2005) On the use of ammonia electrolysis for hydrogen production. J Power Sources 142:18–26

    CAS  Google Scholar 

  115. Cooper M, Botte GG (2006) Hydrogen production from the electro-oxidation of ammonia catalyzed by platinum and rhodium on raney nickel substrate. J Electrochem Soc 153:A1894–A1901

    CAS  Google Scholar 

  116. Bonnin EP, Biddinger EJ, Botte GG (2008) Effect of catalyst on electrolysis of ammonia effluents. J Power Sources 182:284–290

    CAS  Google Scholar 

  117. Boggs BK, Botte GG (2009) On-board hydrogen storage and production: an application of ammonia electrolysis. J Power Sources 192:573–581

    CAS  Google Scholar 

  118. Boggs BK, Botte GG (2010) Optimization of Pt-Ir on carbon fiber paper for the electro-oxidation of ammonia in alkaline media. Electrochim Acta 55:5287–5293

    CAS  Google Scholar 

  119. Botte GG (2008) Urea electrolysis. United States, Provisional Patent US 61/104,478

    Google Scholar 

  120. Botte GG (2009) Electrolytic cells and methods for the production of ammonia and hydrogen. United States, Patent Pending US 2009/0095636

    Google Scholar 

  121. Boggs BK, King RL, Botte GG (2009) Urea electrolysis: direct hydrogen production from urine. Chem Commun 4859–4861

    Google Scholar 

  122. Daramola DA, Singh D, Botte GG (2010) Dissociation rates of urea in the presence of NiOOH catalyst: a DFT analysis. J Phys Chem A 114:11513–11521

    CAS  Google Scholar 

  123. King RL, Botte GG (2011) Hydrogen production via urea electrolysis using a gel electrolyte. J Power Sources 196:2773–2778

    CAS  Google Scholar 

  124. Wang D, Yan W, Botte GG (2011) Exfoliated nickel hydroxide nanosheets for urea electrolysis. Electrochem Commun 13:1135–1138

    CAS  Google Scholar 

  125. King RL, Botte GG (2011) Investigation of multi-metal catalysts for stable hydrogen production via urea electrolysis. J Power Sources 196:9579–9584

    CAS  Google Scholar 

  126. Coughlin RW, Farooque M (1979) Hydrogen production from coal, water and electrons. Nature 279:301–303

    CAS  Google Scholar 

  127. Farooque M, Coughlin RW (1979) Electrochemical gasification of coal (investigation of operating-conditions and variables). Fuel 58:705–712

    CAS  Google Scholar 

  128. Coughlin RW, Farooque M (1980) Electrochemical gasification of coal—simultaneous production of hydrogen and carbon-dioxide by a single reaction involving coal, water, and electrons. Ind Eng Chem Proc Design Dev 19:211–219

    CAS  Google Scholar 

  129. Coughlin RW, Farooque M (1980) Consideration of electrodes and electrolytes for electrochemical gasification of coal by anodic-oxidation. J Appl Electrochem 10:729–740

    CAS  Google Scholar 

  130. Coughlin RW, Farooque M (1982) Thermodynamic, kinetic, and mass balance aspects of coal-depolarized water electrolysis. Ind Eng Chem Proc Design Dev 21:559–564

    CAS  Google Scholar 

  131. Botte GG (2006) Electrocatalysts and additives for the oxidation of solid fuels and their application to hydrogen production, fuel cells, and water remediation processes. United States, Patent Pending WO 2006/121981

    Google Scholar 

  132. Botte GG, Jin X (2010) Electrochemical technique to measure concentration of multivalent cations simultaneously. United States, Patent Pending WO 2007/133534

    Google Scholar 

  133. Botte GG (2011) Pretreatment method for the synthesis of carbon nanotubes and carbon nanostructures from coal and carbon chars. United States, US 8,029,759

    Google Scholar 

  134. Patil P, De Abreu Y, Botte GG (2006) Electrooxidation of coal slurries on different electrode materials. J Power Sources 158:368–377

    CAS  Google Scholar 

  135. Sathe N, Botte GG (2006) Assessment of coal and graphite electrolysis on carbon fiber electrodes. J Power Sources 161:513–523

    CAS  Google Scholar 

  136. De Abreu Y, Patil P, Marquez AI, Botte GG (2007) Characterization of electrooxidized Pittsburgh No. 8 Coal. Fuel 86:573–584

    Google Scholar 

  137. Jin X, Botte GG (2007) Feasibility of hydrogen production from coal electrolysis at intermediate temperatures. J Power Sources 171:826–834

    CAS  Google Scholar 

  138. Jin X, Botte GG (2009) Electrochemical technique to measure Fe(II) and Fe(III) concentrations simultaneously. J Appl Electrochem 39:1709–1717

    CAS  Google Scholar 

  139. Jin X, Botte GG (2010) Understanding the kinetics of coal electrolysis at intermediate temperatures. J Power Sources 195:4935–4942

    CAS  Google Scholar 

  140. Lu XC, Lemmon JP, Sprenkle V, Yang ZG (2010) Sodium-beta alumina batteries: status and challenges. JOM 62:31–36

    CAS  Google Scholar 

  141. Wikipedia (2011) Electric double-layer capacitor. Available at: http://en.wikipedia.org/wiki/File:Supercapacitor_diagram.svg. Accessed 5 July 2011

  142. Roeb M, Neises M, Monnerie N, Sattler C, Pitz-Paal R (2011) Technologies and trends in solar power and fuels. Energy Environ Sci 4:2503–2511

    CAS  Google Scholar 

  143. Muthuvel M, Botte GG (2009) Trends in ammonia electrolysis. In: White RE (ed) Modern aspects of electrochemistry. Springer Science+Business Media, Inc., New York, pp 207–245

    Google Scholar 

Download references

Acknowledgments

The authors will like to acknowledge the financial support provided by the Center for Electrochemical Engineering Research (CEER) at Ohio University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerardine G. Botte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Botte, G.G., Muthuvel, M. (2012). Electrochemical Energy Storage: Applications, Processes, and Trends. In: Kent, J. (eds) Handbook of Industrial Chemistry and Biotechnology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4259-2_38

Download citation

Publish with us

Policies and ethics