Skip to main content

Industrial Production of Therapeutic Proteins: Cell Lines, Cell Culture, and Purification

  • Chapter
  • First Online:
Handbook of Industrial Chemistry and Biotechnology

Abstract

The biotechnology and pharmaceutical industries have seen a recent surge in the development of biological drug products manufactured from engineered mammalian cell lines. Since the hugely successful launch of human tissue plasminogen activator in 1987 and erythropoietin in 1988, the biopharmaceutical market has grown immensely. Global sales in 2003 exceeded US $30 billion [1]. Currently, a total of 108 biotherapeutics are approved and available to patients (Table 32.1). In addition, 324 medically related, biotechnology-derived medicines for nearly 150 diseases are in clinical trials or under review by the US Food and Drug Administration [2]. These biopharmaceutical candidates promise to bring more and better treatments to patients. Compared to small molecule drugs, biotherapeutics show exquisite specificity with fewer off-target interactions and improved safety profiles. Protein engineering technologies have advanced to create protein drugs with improved efficacy, specificity, stability, pharmacokinetics, and solubility. Strategies that have been employed to implement these changes include mutagenesis, recombination, and other directed evolution methods, as well as rational design and structure-based computational approaches [3–7]. These advanced protein engineering technologies are creating novel drug designs and clever treatment strategies that are fuelling the biopharmaceutical market growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 419.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Walsh G (2003) Biopharmaceutical benchmarks—2003. Nat Biotechnol 21:865–870

    Article  CAS  Google Scholar 

  2. PhRMA (2004) 324 biotechnology medicines in testing promise to bolster the arsenal against disease. New medicines in development. Accessed Oct 25, 2004. http://www.phrma.org/newmedicines/biotech/

  3. Graddis TJ, Remmele RL Jr, McGrew JT (2002) Designing proteins that work using recombinant technologies. Curr Pharm Biotechnol 3:285–297

    Article  CAS  Google Scholar 

  4. Brekke OH, Loset GA (2003) New technologies in therapeutic antibody development. Curr Opin Pharmacol 3:544–550

    Article  CAS  Google Scholar 

  5. Lazar GA, Marshall SA, Plecs JJ, Mayo SL, Desjarlais JR (2003) Designing proteins for therapeutic applications. Curr Opin Struct Biol 13:513–518

    Article  CAS  Google Scholar 

  6. Marshall SA, Lazar GA, Chirino AJ, Desjarlais JR (2003) Rational design and engineering of therapeutic proteins. Drug Discov Today 8:212–221

    Article  CAS  Google Scholar 

  7. Vasserot AP, Dickinson CD, Tang Y, Huse WD, Manchester KS, Watkins JD (2003) Optimization of protein therapeutics by directed evolution. Drug Discov Today 8:118–126

    Article  CAS  Google Scholar 

  8. Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22:1393–1398

    Article  CAS  Google Scholar 

  9. Arden N, Nivtchanyong T, Betenbaugh MJ (2004) Cell engineering blocks stress and improves biotherapeutic production. Bioprocessing 3:23–28

    Google Scholar 

  10. Running Deer J, Allison DS (2004) High-level expression of proteins in mammalian cells using transcription regulatory sequences from the Chinese hamster EF-1alpha gene. Biotechnol Prog 20:880–889

    Article  Google Scholar 

  11. Brinster RL, Allen JM, Behringer RR, Gelinas RE, Palmiter RD (1988) Introns increase transcriptional efficiency in transgenic mice. Proc Natl Acad Sci U S A 85:836–840

    Article  CAS  Google Scholar 

  12. Palmiter RD, Sandgren EP, Avarbock MR, Allen DD, Brinster RL (1991) Heterologous introns can enhance expression of transgenes in mice. Proc Natl Acad Sci U S A 88:478–482

    Article  CAS  Google Scholar 

  13. Pestova TV, Lomakin IB, Hellen CU (2004) Position of the CrPV IRES on the 40S subunit and factor dependence of IRES/80S ribosome assembly. EMBO Rep 5:906–913

    Article  CAS  Google Scholar 

  14. Zahn-Zabal M, Kobr M, Girod PA, Imhof M, Chatellard P, de Jesus M, Wurm F, Mermod N (2001) Development of stable cell lines for production or regulated expression using matrix attachment regions. J Biotechnol 87:29–42

    Article  CAS  Google Scholar 

  15. Kim JM, Kim JS, Park DH, Kang HS, Yoon J, Baek K, Yoon Y (2004) Improved recombinant gene expression in CHO cells using matrix attachment regions. J Biotechnol 107:95–105

    Article  CAS  Google Scholar 

  16. Harland L, Crombie R, Anson S, deBoer J, Ioannou PA, Antoniou M (2002) Transcriptional regulation of the human TATA binding protein gene. Genomics 79:479–482

    Article  CAS  Google Scholar 

  17. Wong TK, Newmann E (1982) Electric-field mediated gene-transfer. Biochem Biophys Res Commun 107:584–587

    Article  CAS  Google Scholar 

  18. Kichler A (2004) Gene transfer with modified polyethylenimines. J Gene Med 6(Suppl 1):S3–10

    Article  CAS  Google Scholar 

  19. Cockett MI, Bebbington CR, Yarranton GT (1990) High level expression of tissue inhibitor of metalloproteinases in Chinese hamster ovary cells using glutamine synthetase gene amplification. Biotechnol (N Y) 8:662–667

    Article  CAS  Google Scholar 

  20. Lucas BK, Giere LM, DeMarco RA, Shen A, Chisholm V, Crowley CW (1996) High-level production of recombinant proteins in CHO cells using a dicistronic DHFR intron expression vector. Nucleic Acids Res 24:1774–1779

    Article  CAS  Google Scholar 

  21. Kim SJ, Lee GM (1999) Cytogenetic analysis of chimeric antibody-producing CHO cells in the course of dihydrofolate reductase-mediated gene amplification and their5t stability in the absence of selective pressure. Biotechnol Bioeng 64:741–749

    Article  CAS  Google Scholar 

  22. Fann CH, Guirgis F, Chen G, Lao MS, Piret JM (2000) Limitations to the amplification and stability of human tissue-type plasminogen activator expression by Chinese hamster ovary cells. Biotechnol Bioeng 69:204–212

    Article  CAS  Google Scholar 

  23. Yoshikawa T, Nakanishi F, Ogura Y, Oi D, Omasa T, Katakura Y, Kishimoto M, Suga K (2000) Amplified gene location in chromosomal DNA affected recombinant protein production and stability of amplified genes. Biotechnol Prog 16:710–715

    Article  CAS  Google Scholar 

  24. Brezinsky SC, Chiang GG, Szilvasi A, Mohan S, Shapiro RI, MacLean A, Sisk W, Thill G (2003) A simple method for enriching populations of transfected CHO cells for cells of higher specific productivity. J Immunol Methods 277:141–155

    Article  CAS  Google Scholar 

  25. Ham RG (1981) Tissue growth factors. In: Baserga R (ed) Handbook of experimental pharmacology. Springer, New York, p 13

    Google Scholar 

  26. Sato GH, Pardee A, Sirbasku DA (eds) (1982) Growth of cells in hormonally defined media, cold spring harbor conference on cell proliferation, vol 9. Cold Spring Harbor Press, Cold Spring Harbor, NY

    Google Scholar 

  27. Fletcher T (2005) Designing culture media for recombinant protein production: A rational approach. BioProcess Int 3:30–36

    CAS  Google Scholar 

  28. Lee GM, Kim EJ, Kim NS, Yoon SK, Ahn YH, Song JY (1999) Development of a serum-free medium for the production of erythropoietin by suspension culture of recombinant Chinese hamster ovary cells using a statistical design. J Biotechnol 69:85–93

    Article  CAS  Google Scholar 

  29. Liu C, Chu I, Hwang S (2001) Factorial designs combined with the steepest ascent method to optimize serum-free media for CHO cells. Enzyme Microb Technol 28:314–321

    Article  CAS  Google Scholar 

  30. Chun C, Heineken K, Szeto D, Ryll T, Chamow S, Chung JD (2003) Application of factorial design to accelerate identification of CHO growth factor requirements. Biotechnol Prog 19:52–57

    Article  CAS  Google Scholar 

  31. Allison DW, Aboytes KA, Fong DK, Leugers SL, Johnson TK, Loke HN, Donahue LM (2005) Development and optimization of cell culture media: Genomic and proteomic approaches. BioProcess Int 31:38–45

    Google Scholar 

  32. Zhu MM, Lee ES, Hermans WR, Wasilko DJ (2001) Overview and serum-free medium development for mammalian cell culture. Fourth Conference on recent advances in fermentation technology (RAFTIV), Nov 11–13, Long Beach, CA

    Google Scholar 

  33. Varley J, Birch J (1999) Reactor design for large scale suspension animal cell culture. Cytotechnol 29:177–205

    Article  CAS  Google Scholar 

  34. Ozturk SS (1996) Engineering challenges in high density cell culture systems. Cytotechnol 22:3–16

    Article  CAS  Google Scholar 

  35. Myers KJ, Reeder MF, Fasano JB (2002) Optimize mixing by using the proper baffles. Chem Eng Progress 98:42–47

    CAS  Google Scholar 

  36. Chisti Y (1993) Animal cell culture in stirred bioreactors: Observations on scale-up. Bioprocess Eng 9:191–196

    Article  CAS  Google Scholar 

  37. Pattison RN, Swamy J, Mendenhall B, Hwang C, Frohlich BT (2000) Measurement and control of dissolved carbon dioxide in mammalian cell culture processes using an in situ fiber optic chemical sensor. Biotechnol Prog 16:769–774

    Article  CAS  Google Scholar 

  38. Dowd JE, Jubb A, Kwok KE, Piret JM (2003) Optimization and control of perfusion cultures using a viable cell probe and cell specific perfusion rates. Cytotechnol 42:35–45

    Article  CAS  Google Scholar 

  39. Noll T, Biselli M (1998) Dielectric spectroscopy in the cultivation of suspended and immobilized hybridoma cells. J Biotechnol 63:187–198

    Article  CAS  Google Scholar 

  40. Gupta A, Rao G (2003) A study of oxygen transfer in shake flasks using a non-invasive oxygen sensor. Biotechnol Bioeng 84:351–358

    Article  CAS  Google Scholar 

  41. Ge X, Kostov Y, Rao G (2005) Low-cost noninvasive optical CO2 sensing system for fermentation and cell culture. Biotechnol Bioeng 89:329–334

    Article  CAS  Google Scholar 

  42. Singh V (1999) Disposable bioreactor for cell culture using wave-induced agitation. Cytotechnol 30:149–158

    Article  CAS  Google Scholar 

  43. Ozturk SS (2005) Batch versus perfusion: a real case comparison of highly developed cell culture processes for the production of monoclonal antibodies. 229th National Meeting American Chemical Society, Mar 13–17, San Diego, CA

    Google Scholar 

  44. Voisard D, Meuwly F, Ruffieux PA, Baer G, Kadouri A (2003) Potential of cell retention techniques for large-scale high-density perfusion culture of suspended mammalian cells. Biotechnol Bioeng 82:751–765

    Article  CAS  Google Scholar 

  45. Alrubeai M, Singh RP, Emery AN, Zhang Z (1995) Cell cycle and cell size dependence of susceptibility to hydrodynamic forces. Biotechnol Bioeng 46:88–92

    Article  CAS  Google Scholar 

  46. Alrubeai M, Singh RP, Goldman MH, Emery AN (1995) Death mechanisms of animal cells in conditions of intensive agitation. Biotechnol Bioeng 45:463–472

    Article  CAS  Google Scholar 

  47. Gregoriades N, Clay J, Ma N, Koelling K, Chalmers JJ (2000) Cell damage of microcarrier cultures as a function of local energy dissipation created by a rapid extensional flow. Biotechnol Bioeng 69:171–182

    Article  CAS  Google Scholar 

  48. Ma N, Koelling KW, Chalmers JJ (2002) Fabrication and use of a transient contractional flow device to quantify the sensitivity of mammalian and insect cells to hydrodynamic forces. Biotechnol Bioeng 80:428–437

    Article  CAS  Google Scholar 

  49. Kunas KT, Papoutsakis ET (1990) Damage mechanisms of suspended animal cells in agitated bioreactors with and without bubble entrainment. Biotechnol Bioeng 36:476–483

    Article  CAS  Google Scholar 

  50. Chattopadhyay D, Rathman JF, Chalmers JJ (1995) Thermodynamic approach to explain cell adhesion to air-medium interfaces. Biotechnol Bioeng 48:649–658

    Article  CAS  Google Scholar 

  51. Ma N, Chalmers JJ, Aunins JG, Zhou W, Xie L (2004) Quantitative studies of cell-bubble interactions and cell damage at different Pluronic F-68 and cell concentrations. Biotechnol Prog 20:1183–1191

    Article  CAS  Google Scholar 

  52. Osman JJ, Birch J, Varley J (2001) The response of GS-NS0 myeloma cells to pH shifts and pH perturbations. Biotechnol Bioeng 75:63–73

    Article  CAS  Google Scholar 

  53. Sauer PW, Burky JE, Wesson MC, Sternard HD, Qu L (2000) A high-yielding, generic fed-batch cell culture process for production of recombinant antibodies. Biotechnol Bioeng 67:585–597

    Article  CAS  Google Scholar 

  54. Lao MS, Toth D (1997) Effects of ammonium and lactate on growth and metabolism of a recombinant Chinese hamster ovary cell culture. Biotechnol Prog 13:688–691

    Article  CAS  Google Scholar 

  55. Ozturk SS, Thrift JC, Blackie JD, Naveh D (1997) Real-time monitoring and control of glucose and lactate concentrations in a mammalian cell perfusion reactor. Biotechnol Bioeng 53:372–378

    Article  CAS  Google Scholar 

  56. Martinelle K, Westlund A, Haggstrom L (1996) Ammonium ion transport: A cause of cell death. Cytotechnol 22:251–254

    Article  CAS  Google Scholar 

  57. Genzel Y, Ritter JB, Konig S, Alt R, Reichl U (2005) Substitution of glutamine by pyruvate to reduce ammonia formation and growth inhibition of mammalian cells. Biotechnol Prog 21:58–69

    Article  CAS  Google Scholar 

  58. Yang M, Butler M (2000) Effect of ammonia on the glycosylation of human recombinant erythropoietin in culture. Biotechnol Prog 16:751–759

    Article  CAS  Google Scholar 

  59. Gray DR, Chen S, Howarth W, Inlow D, Maiorella BL (1996) CO2 in large-scale and high-density CHO cell perfusion culture. Cytotechnol 22:65–78

    Article  CAS  Google Scholar 

  60. deZengotita VM, Schmelzer AE, Miller WM (2002) Characterization of hybridoma cell responses to elevated pCO2 and osmolality: Intracellular pH, cell size, apoptosis, and metabolism. Biotechnol Bioeng 77:369–380

    Article  CAS  Google Scholar 

  61. Zhu MM, Goyal A, Rank DL, Gupta SK, Vanden Boom T, Lee SS (2005) Effects of elevated pCO2 and osmolality on growth of CHO cells and production of antibody-fusion protein B1: A case study. Biotechnol Prog 21:70–77

    Article  Google Scholar 

  62. Mostafa SS, Gu X (2003) Strategies for improved dCO2 removal in large-scale fed-batch cultures. Biotechnol Prog 19:45–51

    Article  CAS  Google Scholar 

  63. Chen ZL (2004) Temperature shift as a process optimization step for the production of pro-urokinase by a recombinant Chinese hamster ovary cell line in high-density perfusion culture. J Biosci Bioeng 97:239–243

    CAS  Google Scholar 

  64. Clark KJ, Chaplin FW, Harcum SW (2004) Temperature effects on product-quality-related enzymes in batch CHO cell cultures producing recombinant tPA. Biotechnol Prog 20:1888–1892

    Article  CAS  Google Scholar 

  65. Fox SR, Patel UA, Yap MG, Wang DI (2004) Maximizing interferon-gamma production by Chinese hamster ovary cells through temperature shift optimization: Experimental and modeling. Biotechnol Bioeng 85:177–184

    Article  CAS  Google Scholar 

  66. Bollati-Fogolin M, Forno G, Nimtz M, Conradt HS, Etcheverrigaray M, Kratje R (2005) Temperature reduction in cultures of hGM-CSF-expressing CHO cells: Effect on productivity and product quality. Biotechnol Prog 21:17–21

    Article  CAS  Google Scholar 

  67. Dempsey J, Ruddock S, Osborne M, Ridley A, Sturt S, Field R (2003) Improved fermentation processes for NS0 cell lines expressing human antibodies and glutamine synthetase. Biotechnol Prog 19:175–178

    Article  CAS  Google Scholar 

  68. Wong DCF, Wong KTK, Goh LT, Heng CK, Yap MGS (2005) Impact of dynamic online fed-batch strategies on metabolism, productivity and N-glycosylation quality in CHO cell cultures. Biotechnol Bioeng 89:164–177

    Article  CAS  Google Scholar 

  69. Dowd JE, Kwok KE, Piret JM (2000) Increased t-PA yields using ultrafiltration of an inhibitory product from CHO fed-batch culture. Biotechnol Prog 16:786–794

    Article  CAS  Google Scholar 

  70. Dowd JE, Kwok KE, Piret JM (2001) Predictive modeling and loose-loop control for perfusion bioreactors. Biochem Eng J 9:1–9

    Article  CAS  Google Scholar 

  71. Nienow AW, Langheinrich C, Stevenson NC, Emery AN, Clayton TM, Slater NKH (1996) Homogenisation and oxygen transfer rates in large agitated and sparged animal cell bioreactors: Some implications for growth and production. Cytotechnol 22:87–94

    Article  CAS  Google Scholar 

  72. Gardner AR, Smith TM (2000) Identification and establishment of operating ranges of critical process variables. In: Sofer G, Zabriskie DW (eds) Biopharmaceutical process validation. Marcel Dekker, New York, pp 61–76

    Google Scholar 

  73. Moran EB, McGowan ST, McGuire JM, Frankland JE, Oyebade IA, Waller W, Archer LC, Morris LO, Pandya J, Nathan SR, Smith L, Cadette ML, Michalowski JT (2000) A systematic approach to the validation of process control parameters for monoclonal antibody production in fed-batch culture of a murine myeloma. Biotechnol Bioeng 69:242–255

    Article  CAS  Google Scholar 

  74. Lyddiatt A (1981) Downstream processing: Protein recovery. In: Butler M (ed) Mammalian cell biotechnology: a practical approach. IRL Press at Oxford University Press, New York, pp 187–206

    Google Scholar 

  75. Bennan J, Bing F, Boone H, Fernandez J, Seely B, van Deinse H, Miller D (2002) Evaluation of extractables from product-contact surfaces. Biopharm Int 15:22–34

    Google Scholar 

  76. Kemp G, O’Neil P (2004) Large-scale production of therapeutic antibodies: Considerations for optimizing product capture and purification. In: Subramanian G (ed) Antibodies, vol 1, Production and purification. Kluwer, Boston, pp 75–100

    Chapter  Google Scholar 

  77. Burton S (2002) A generic approach to the purification of monoclonal antibodies: An alternative to protein A. IBC Conference: antibody production & downstream processing, Feb 13–15, San Diego, CA

    Google Scholar 

  78. Jacob LR, Frech M (2004) Scale-up of antibody purification. In: Subramanian G (ed) Antibodies, vol 1, Production and purification. Kluwer, Boston, pp 101–131

    Chapter  Google Scholar 

  79. Gattschalk U (2005) Large scale manufacturing of mAbs and the backlog in bioseparation technologies. IBC Conference: antibody production & downstream processing, March 8–11, San Diego, CA

    Google Scholar 

  80. Hubbard B (2005) Platform approaches to monoclonal antibody purification. IBC Conference: antibody production & downstream processing, Mar 8–11, San Diego, CA

    Google Scholar 

  81. Fish B (2002) Taking a monoclonal antibody from mg to kg scale: Production strategies, issues and successes. IBC Conference: Scaling-up From Bench to Clinic and Beyond, Aug 14–16, San Diego, CA

    Google Scholar 

  82. Aranha-Creado H (1998) Clearance of murine leukaemia virus from monoclonal antibody solutions by a hydrophilic PVDF microporous membrane filter. Biologicals 26:167–172

    Article  CAS  Google Scholar 

  83. Rathore A, Velaydhan A (2003) Guidelines for optimization and scale-up in preparative chromatography. Biopharm Int 16:34–42

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like thank all the colleagues who helped in many invaluable ways in the production of this chapter, in particular, Marie Ary, Kenton Abel, Bassil Dahiyat, Joyce Morrison, and Christopher O’Brien.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie M. Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zhu, M.M., Mollet, M., Hubert, R.S. (2012). Industrial Production of Therapeutic Proteins: Cell Lines, Cell Culture, and Purification. In: Kent, J. (eds) Handbook of Industrial Chemistry and Biotechnology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4259-2_32

Download citation

Publish with us

Policies and ethics