Skip to main content

Industrial Enzymes and Biocatalysis

  • Chapter
  • First Online:
Handbook of Industrial Chemistry and Biotechnology

Abstract

All life processes, whether plant, animal, or microbial, depend upon a complex network of enzyme-catalyzed chemical reactions for cellular growth and maintenance [1, 2]. As catalysts, enzymes facilitate reactions by enabling alternate reaction mechanisms with lower activation energy, but in no way modify the thermodynamic equilibrium constant or the free energy change of a chemical transformation. They generate enormous kinetic rate accelerations, often exceeding factors of 1012-fold relative to the rate of the uncatalyzed reaction. Enzymes are capable of performing many different chemistries, can be produced on a large scale, and typically operate at ambient temperatures and near neutral pH [3–5]. These attributes have captured the attention of generations of scientists and engineers alike and enabled the dramatic growth of the enzyme industry over the past century.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 419.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goodsell DS (2009) The machinery of life. Springer, New York

    Book  Google Scholar 

  2. Renneberg R (2008) Biotechnology for beginners. Academic, Amsterdam

    Google Scholar 

  3. Jencks WP (1987) Catalysis in chemistry and enzymology. McGraw-Hill, New York

    Google Scholar 

  4. Cook PF, Cleland WW (2007) Enzyme kinetics and mechanism. Garland Science, New York

    Google Scholar 

  5. Buchholz K, Kasche V, Bornscheuer UT (2005) Biocatalysts and enzyme technology. Wiley-VCH, Weinheim

    Google Scholar 

  6. Aehle W (ed) (2007) Enzymes in industry: production and applications, 3rd edn. Wiley-VCH, Weinheim

    Google Scholar 

  7. Polaina J, MacCabe AP (eds) (2007) Industrial enzymes, structure, functions and applications. Springer, Dordrecht

    Google Scholar 

  8. Whitehurst RJ, Van Oort M (eds) (2010) Enzymes in food technology, 2nd edn. Wiley-Blackwell, Oxford

    Google Scholar 

  9. Olempska-Beer ZS et al (2006) Food-processing enzymes from recombinant microorganisms—a review. Reg Toxicol Pharm 45:144–158

    Article  CAS  Google Scholar 

  10. Dewan SS, Enzymes in industrial applications: global markets (2011) Report BIO030F, BCC Research, Wellesley, MD

    Google Scholar 

  11. Sandhya C, Nampoothiri KM Pandey A (2005) Microbial proteases. In: Barredo JL (ed) Microbial enzymes and biotransformations, Methods in biotechnology, vol 17. Humana Press, Totawa, pp 165–179

    Google Scholar 

  12. Eggleston G (2007) Advances in the industrial application of enzymes on carbohydrate-based materials. In: Eggleston G, Vercellotti JR (eds) Industrial application of enzymes on carbohydrate-based materials, ACS symposium series, vol 972. American Chemical Society, New York, pp 1–16

    Google Scholar 

  13. Aehle W (ed) (2004) Nonindustrial enzyme usage. In: Enzymes in industry: production and applications (Ch. 6), 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  14. World enzymes (2007) Study #2229, The Freedonia Group, Cleveland, OH

    Google Scholar 

  15. Lairson LL et al (2008) Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem 77:521–555

    Article  CAS  Google Scholar 

  16. Straathof AJJ, Aldercreutz P (eds) (2001) Applied biocatalysis, 2nd edn. Harwood, Amsterdam

    Google Scholar 

  17. Bommarius AS, Riebel BR (2004) Biocatalysis—fundamentals and applications. Wiley-VCH, Weinheim

    Google Scholar 

  18. Liese A (2000) Industrial biotransformations. Wiley-VCH, Weinheim

    Book  Google Scholar 

  19. Kohler R (1972) The reception of Eduard Buchner’s discovery of cell-free fermentation. J Hist Biol 5:327–353

    Article  CAS  Google Scholar 

  20. Sumner JB (1946) The chemical nature of enzymes. Nobel Lecture, 12 Dec 1946

    Google Scholar 

  21. Phillips DC (1967) The hen egg-white lysozyme molecule. Proc Natl Acad Sci U S A 57:484–495

    Article  CAS  Google Scholar 

  22. Estell DA, Graycar TP, Wells JA (1985) Engineering an enzyme by site-directed mutagenesis to be resistant to chemical oxidation. J Biol Chem 260:6518–6521

    CAS  Google Scholar 

  23. Manz A, Pamme N, Lossifidis D (2004) Bioanalytical chemistry. World Scientific Publishing Company, Singapore

    Google Scholar 

  24. Houg DW, Danson MJ (1999) Extremozymes. Curr Opin Mol Biol 3:39–46

    Article  Google Scholar 

  25. Reymond J-L, Fluxa VS, Maillard N (2009) Enzyme assays. Chem Commun 1:34–46

    Article  CAS  Google Scholar 

  26. Chen LH et al (1992) 4-Oxalocrotonate tautomerase, an enzyme composed of 62 amino acid residues per monomer. J Biol Chem 267:17716–17721

    CAS  Google Scholar 

  27. Smith S, Witkowski A, Joshi AK (2003) Structural and functional organization of the animal fatty acid synthase. Prog Lipid Res 42:289–317

    Article  CAS  Google Scholar 

  28. Dill KA, Ozkan SB, Shell MS, Weiki TR (2008) The protein folding problem. Annu Rev Biophys 37:289–316

    Article  CAS  Google Scholar 

  29. Gevaert K, Vandekerkhove J (2000) Protein identification methods in proteomics. Electrophoresis 21:1145–1154

    Article  CAS  Google Scholar 

  30. Mittermaier A, Kay LE (2006) New tools provide new insights in NMR studies of protein dynamics. Science 312:224–228

    Article  CAS  Google Scholar 

  31. Masel RI (2001) Chemical kinetics and catalysis. Wiley-Interscience, Oxford

    Google Scholar 

  32. Bugg T (2004) Introduction to enzyme and coenzyme chemistry, 2nd edn. Wiley-Blackwell, Oxford, p 31

    Book  Google Scholar 

  33. Benkovic SJ, Hammes GG, Hammes-Schiffer S (2008) Free energy landscape of enzyme catalysis. Biochemistry 47:3317–3321

    Article  CAS  Google Scholar 

  34. Sauer J et al (2000) Glucoamylase: structure/function relationships and protein engineering. Biochim Biophys Acta 1543:275–293

    Article  CAS  Google Scholar 

  35. Messerschmidt A (ed) (2011) Handbook of metalloproteins. Wiley-Blackwell, Oxford

    Google Scholar 

  36. Eisenmesser EZ et al (2005) Intrinsic dynamics of an enzyme underlies catalysis. Nature 438:117–121

    Article  CAS  Google Scholar 

  37. Sutcliffe MJ, Scrutton NS (2002) A new conceptual framework for enzyme catalysis. Eur J Biochem 269:3096–3102

    Article  CAS  Google Scholar 

  38. Menten L, Michaelis MI (1913) Die kinetik der invertinwirkung. Biochem Z 49:333–369

    Google Scholar 

  39. Estell DA (1991) Liquid detergent with stabilized enzyme. US Patent 5,039,446

    Google Scholar 

  40. Yeh W-K, Yang H-C, McCarthy JR (eds) (2010) Enzyme technologies: metagenomics, evolution, biocatalysis and biosynthesis, Part A. Wiley, New York

    Google Scholar 

  41. Martin CH et al (2009) Synthetic metabolism: engineering biology at the protein and pathway scales. Chem Biol 16:277–286

    Article  CAS  Google Scholar 

  42. Warnecke F, Hess MA (2009) A perspective: metatranscriptomics as a tool for the discovery of novel biocatalysts. J Biotechnol 142:91–95

    Article  CAS  Google Scholar 

  43. Eggert T (2006) Optimization of industrial enzymes by molecular engineering. In: Liese A, Seelbach K, Wandrey C (eds) Industrial biotransformations (Ch. 4), 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  44. Rondon MR et al (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol 66:2541–2547

    Article  CAS  Google Scholar 

  45. Knietsch A et al (2003) Construction and screening of metagenomic libraries derived from enrichment cultures: generation of a gene bank for genes conferring alcohol oxidoreductase activity on Escherichia coli. Appl Environ Microbiol 69:1408–1416

    Article  CAS  Google Scholar 

  46. Ward DE et al (2002) Proteolysis in hyperthermophilic microorganisms. Archaea 1:63–74

    Article  CAS  Google Scholar 

  47. Böttcher D, Bornscheuer UT (2010) Protein engineering of microbial enzymes. Curr Opin Microbiol 13:274–282

    Article  CAS  Google Scholar 

  48. Dodge T (2009) Production of industrial enzymes. In: Whitehurst RJ, van Oort M (eds) Enzymes in food technology, 2nd edn. Wiley-Blackwell, Oxford, UK

    Google Scholar 

  49. Krishna C (2005) Solid-state fermentation system—an overview. Crit Rev Biotechnol 25:1–30

    Article  CAS  Google Scholar 

  50. Hood EE (2002) From green plants to industrial enzymes. Enzyme Microb Technol 30:279–283

    Article  CAS  Google Scholar 

  51. Kumar D et al (2008) Microbial proteases and application as laundry detergent additive. Res J Microbiol 3:661–672

    Article  CAS  Google Scholar 

  52. Outtrup H, Jørgensen ST (2008) The importance of bacillus species in the production of industrial enzymes. In: Berkeley R, Heyndrickx M, Logan N, De Vos P (eds) Applications and systematics of Bacillus and relatives. Blackwell Science, Oxford

    Google Scholar 

  53. Maurer K-H (2004) Detergent proteases. Curr Opin Biotechnol 15:330–334

    Article  CAS  Google Scholar 

  54. Choudhary RB, Jana AK, Jha MK (2004) Enzyme technology applications in leather processing. Indian J Chem Technol 11:659–671

    CAS  Google Scholar 

  55. De Souza PM, Magalhães PO (2010) Application of microbial α-amylase in industry—a review. Braz J Microbiol 41:850–861

    Google Scholar 

  56. Gupta R et al (2003) Microbial-amylases: a biotechnological perspective. Process Biochem 38:1599–1616

    Article  CAS  Google Scholar 

  57. Kumar P, Satyanarayana T (2009) Microbial glucoamylases: characteristics and applications. Crit Rev Biotechnol 29:225–255

    Article  CAS  Google Scholar 

  58. Ito S et al (2003) Carbohydrate-active enzymes from alkaliphiles. J Appl Glycosci 50:257–262

    Article  CAS  Google Scholar 

  59. Rausch KD, Belyea RL (2006) The future of co-products from corn processing. Appl Biochem Biotechnol 128:47–86

    Article  CAS  Google Scholar 

  60. Bhosale SH, Rao MB, Deshpande VV (1996) Molecular and industrial aspects of glucose isomerase. Microbiol Rev 60:280–300

    CAS  Google Scholar 

  61. Sukumaran RK, Singhania RR, Pandey A (2005) Microbial cellulases—production, applications and challenges. J Sci Ind Res 64:832–844

    CAS  Google Scholar 

  62. Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6:219–228

    Article  CAS  Google Scholar 

  63. Soundari SG, Sashi V (2009) Bacterial xylanases. Asian J Microbiol Biotechnol Environ Sci 11:677–682

    CAS  Google Scholar 

  64. Hoondal GS et al (2002) Microbial alkaline pectinases and their industrial applications: a review. Appl Microbiol Biotechnol 59:409–418

    Article  CAS  Google Scholar 

  65. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  CAS  Google Scholar 

  66. Shanmugam KT, Ingram LO (2008) Engineering biocatalysts for production of commodity chemicals. J Mol Microbiol Biotechnol 15:8–15

    Article  CAS  Google Scholar 

  67. Anuradha P et al (2009) Microbial lipases: a potential tool for industrial applications. J Pure Appl Microbiol 3:301–306

    CAS  Google Scholar 

  68. De Maria L et al (2007) Phospholipases and their industrial applications. Appl Microbiol Biotechnol 74:290–300

    Article  CAS  Google Scholar 

  69. Singh B, Kunze G, Satyanarayana T (2011) Developments in biochemical aspects and biotechnological applications of microbial phytases. Biotechnol Mol Biol Rev 6:69–87

    CAS  Google Scholar 

  70. Xu F (2005) Applications of oxidoreductases: recent progress. Ind Biotechnol 1:38–50

    Article  CAS  Google Scholar 

  71. Bankar SB, Bule MV, Singhal RS, Ananthanarayan L (2009) Glucose oxidase—an overview. Biotechnol Adv 27:489–501

    Article  CAS  Google Scholar 

  72. Chelikani P, Fita I, Loewen PC (2004) Diversity of structures and properties among catalases. Cell Mol Life Sci 61:19–208

    Article  CAS  Google Scholar 

  73. Riva S (2006) Laccases: blue enzymes for green chemistry. Trends Biotechnol 24:219–226

    Article  CAS  Google Scholar 

  74. Majeau J-A, Brar SK, Tyagi RD (2010) Laccases for removal of recalcitrant and emerging pollutants. Bioresour Technol 101:2331–2350

    Article  CAS  Google Scholar 

  75. Theriot CM, Grunden AM (2010) Hydrolysis of organophosphorus compounds by microbial enzymes. Appl Microbiol Biotechnol 89:35–43

    Article  CAS  Google Scholar 

  76. Pedreschi F, Kaack K, Granby K (2008) The effect of asparaginase in the formation of acrylamide in French fries. Food Chem 109:386–392

    Article  CAS  Google Scholar 

  77. Mathews I et al (2007) Structure of a novel enzyme that catalyzes acyl transfer to alcohols in aqueous conditions. Biochemistry 46:8969–8979

    Article  CAS  Google Scholar 

  78. Ager DJ, May O (2008) Pharmaceutical industry: biocatalysts and chemocatalysts. In: Begley TP (ed) Wiley encyclopedia of chemical biology. Wiley, New York, pp 1–15

    Google Scholar 

  79. Takasaki Y, Tanabe O. Enzyme method for converting glucose in glucose syrups to fructose. US Patent 3,616,221

    Google Scholar 

  80. Davis BG, Boyer V (2001) Biocatalysis and enzymes in organic synthesis. Nat Prod Rep 18:618–640

    Article  CAS  Google Scholar 

  81. Kirk O, Christensen MW (2002) Lipases from Candida antarctica—unique biocatalysts from a unique origin. Org Proc Res Dev 6:446–451

    Article  CAS  Google Scholar 

  82. Greenberg WA et al (2009) Aldolase enzymes for complex synthesis. In: Whittall J, Sutton P (eds) Practical methods for biocatalysis and biotransformations (Ch. 6). Wiley, Chichester

    Google Scholar 

  83. Guisan JM (ed) (2006) Immobilization of enzymes and cells (Methods in biotechnology), 2nd edn. Humana Press, Totowa

    Google Scholar 

  84. Přenosil JE, Kut ÖM, Dunn IJ, Heinzle E (2009) Biocatalysis, 2. Immobilized biocatalysts. In: Bellussi G et al (eds) Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  85. Berendsen WR, Lapin A, Reuss M (2006) Investigations of reaction kinetics for immobilized enzymes—identification of parameters in the presence of diffusion limitation. Biotechnol Prog 22:1305–1312

    Article  CAS  Google Scholar 

  86. Fernandez-Lafuente R (2010) Lipase from Thermomyces lanuginosus: uses and prospects as an industrial biocatalyst. J Mol Catal B: Enzym 62:197–212

    Article  CAS  Google Scholar 

  87. Mateo C et al (2007) Advances in the design of new epoxy supports for enzyme immobilization-stabilization. Biochem Soc Trans 35:1593–1601

    Article  CAS  Google Scholar 

  88. Kim J, Grate JW, Wang P (2008) Nanobiocatalysis and its potential applications. Trends Biotechnol 26:639–646

    Article  CAS  Google Scholar 

  89. Betancor L, Luckarift HR (2008) Bioinspired enzyme encapsulation for biocatalysis. Trends Biotechnol 26:566–572

    Article  CAS  Google Scholar 

  90. Kristenen JB et al (2010) Biomimetic silica encapsulation of enzymes for replacement of biocides in antifouling coatings. Green Chem 12:387–394

    Article  CAS  Google Scholar 

  91. Becker U et al (2008) Industrial applications of whole-cell biocatalysis. Pharm Technol 41(S6):S8–S11

    Google Scholar 

  92. Bechtold M, Panke S (2009) In situ product recovery integrated with biotransformations. Chimia 63:345–348

    Article  CAS  Google Scholar 

  93. Shuler ML, Kargi F (2002) Bioprocess engineering: basic concepts, 2nd edn. Prentice-Hall, Upper Saddle River

    Google Scholar 

  94. Koskinen AMP, Klibanov AM (eds) (1995) Enzymatic reactions in organic media. Springer, Berlin

    Google Scholar 

  95. Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409:241–246

    Article  CAS  Google Scholar 

  96. Adlercreutz P (2008) Fundamentals of biocatalysis in neat organic solvents. In: Carrea G, Riva S (eds) Organic synthesis with enzymes in non-aqueous media (Ch. 1). Wiley-VCH, Weinheim

    Google Scholar 

  97. Drauz K, Waldmann H (eds) (2002) Enzyme catalysis in organic synthesis, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  98. Krieger N et al (2004) Non-aqueous biocatalysis in heterogeneous solvent systems. Food Technol Biotechnol 42:279–286

    CAS  Google Scholar 

  99. Tufvesson P et al (2010) Process considerations for the scale-up and implementation of biocatalysis. Food Bioprod Process 88:3–11

    Article  CAS  Google Scholar 

  100. Parker K, Salas N, Nwosu VC (2010) High fructose corn syrup: production, uses and public health concerns. Biotechnol Mol Biol Rev 5:71–78

    CAS  Google Scholar 

  101. Yamada H, Kobayashi M (1996) Nitrile hydratase and its application to industrial production of acrylamide. Biosci Biotechnol Biochem 60:391–1400

    Google Scholar 

  102. Bruggink A (ed) (2001) Synthesis of β-lactam antibiotics: chemistry, biocatalysis & process integration. Kluwer Academic, Dordrecht

    Google Scholar 

  103. Sonke T, Kaptein B, Schoemaker HE (2009) Use of enzymes in the synthesis of amino acids. In: Hughes AB (ed) Amino acids, peptides and proteins in organic chemistry: origins and synthesis of amino acids (Ch. 3), vol 1. Wiley-VCH, Weinheim

    Google Scholar 

  104. Tosa T, Mori T, Fuse N, Chibata I (1969) Studies on continuous enzyme reactions 6: enzymatic properties of DEAE-sepharose aminoacylase complex. Agr Biol Chem 33:1047–1056

    Article  CAS  Google Scholar 

  105. Patel R (ed) (2006) Biocatalysis in the pharmaceutical and biotechnology industries. CRC Press, Florida

    Google Scholar 

  106. Woodley JM (2008) New opportunities for biocatalysis: making pharmaceutical processes greener. Trends Biotechnol 26:321–327

    Article  CAS  Google Scholar 

  107. Erb S (2006) Single-enantiomer drugs poised for further market growth. Pharm Technol 30(suppl):s14–s18

    Google Scholar 

  108. Meyer H-P, Turner NJ (2009) Biotechnological manufacturing options for organic chemistry. Mini-Rev Org Chem 6:300–306

    Article  CAS  Google Scholar 

  109. Stinson SC (2001) Chiral pharmaceuticals. Chem Eng News 79:79–97

    Article  Google Scholar 

  110. Tao J, Xu J-H (2009) Biocatalysis in development of green pharmaceutical processes. Curr Opin Chem Biol 13:43–50

    Article  CAS  Google Scholar 

  111. Pollard DJ, Woodley JM (2007) Biocatalysis for pharmaceutical intermediates: the future is now. Trends Biotechnol 25:66–73

    Article  CAS  Google Scholar 

  112. Liljeblad A, Kallinen A, Kanerva LT (2009) Biocatalysis in the preparation of the statin side chain. Curr Org Synth 6:362–379

    Article  CAS  Google Scholar 

  113. Chen X, Kowal P, Wang PG (2000) Large-scale enzymatic synthesis of oligosaccharides. Curr Opin Drug Discov Devel 3:756–763

    CAS  Google Scholar 

  114. Taniguchi H (2008) Biocatalysis-based development of oligosaccharides in Japan. In: Hou CT, Shaw J-F (eds) Biocatalysis and bioenergy (Ch. 17). Wiley, New York

    Google Scholar 

  115. Monsan P, Paul F, Pelenc V, Boures E (1996) Enzymatic production of α-butylglucoside and its fatty acid esters. Ann New York Acad Sci 799:633–641

    Article  CAS  Google Scholar 

  116. Wong C-H, Whitesides G (1994) Enzymes in synthetic organic chemistry. In: Wong C-H et al (eds) Tetrahedron organic chemistry, vol 12. Pergamon, Oxford

    Google Scholar 

  117. Kumar L, Awasthi G, Singh B (2011) Extremophiles: a novel source of industrially important enzymes. Biotechnology 2011:1–15

    Google Scholar 

  118. Gomes J, Steiner W (2004) The biocatalytic potential of extremophiles and extremozymes. Food Technol Biotechnol 42:279–286

    Google Scholar 

  119. Arnold U (2009) Incorporation of non-natural modules into proteins: structural features beyond the genetic code. Biotechnol Lett 31:1129–1139

    Article  CAS  Google Scholar 

  120. Tang Y, Tirrell DA (2001) Biosynthesis of a highly stable coiled-coil protein containing hexafluoroleucine in an engineered bacterial host. J Am Chem Soc 123:11089–11090

    Article  CAS  Google Scholar 

  121. Marti S et al (2008) Computational design of biological catalysts. Chem Soc Rev 37:2634–2643

    Article  CAS  Google Scholar 

  122. Vieceli J, Muellegger J, Tehrani A (2006) Computer-assisted design of industrial enzymes. The resurgence of rational design and in silico mutagenesis. Ind Biotechnol 2:303–308

    Article  CAS  Google Scholar 

  123. Gorke J, Srienc F, Kazlauskas R (2010) Toward advanced ionic liquids. Polar, enzyme-friendly solvents for biocatalysis. Biotechnol Bioprocess Eng 15:40–53

    Article  CAS  Google Scholar 

  124. van Rantwijk F, Madeira Lau R, Sheldon RA (2003) Biocatalytic transformations in ionic liquids. Trends Biotechnol 21:131

    Article  CAS  Google Scholar 

  125. Cantone S, Hanefeld U, Basso A (2007) Biocatalysis in non-conventional media—ionic liquids, supercritical fluids and the gas phase. Green Chem 9:954–971

    Article  CAS  Google Scholar 

  126. Matsuda T, Harada T, Nakamura K (2005) Biocatalysis in supercritical CO2. Curr Org Chem 9:299

    Article  CAS  Google Scholar 

  127. Matsuda T, Ohashi Y, Harada T, Yanagihara R, Nagasawa T, Nakamura K (2001) Conversion of pyrrole to pyrrole-2-carboxylate by cells of Bacillus megaterium in supercritical CO2. Chem Commun 21:2194–2195

    Article  CAS  Google Scholar 

  128. Reetz MT, Wiesenhoefer W, Francio G, Leitner W (2002) Biocatalysis in ionic liquids: batchwise and continuous flow processes using supercritical carbon dioxide as the mobile phase. Chem Commun 9:992–993

    Article  CAS  Google Scholar 

  129. Cheng HN, Gross RA (2008) Polymer biocatalysis and biomaterials: current trends and developments. In: Cheng HN, Gross RA (eds) Polymer biocatalysis and biomaterials II, ACS symposium series, vol 999, pp 1–20

    Google Scholar 

  130. Wohlgemuth R (2007) Interfacing biocatalysis and organic synthesis. J Chem Technol Biotechnol 82:1055–1062

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph C. McAuliffe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

McAuliffe, J.C. (2012). Industrial Enzymes and Biocatalysis. In: Kent, J. (eds) Handbook of Industrial Chemistry and Biotechnology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4259-2_31

Download citation

Publish with us

Policies and ethics