Skip to main content

Industrial Biotechnology: Discovery to Delivery

  • Chapter
  • First Online:
Handbook of Industrial Chemistry and Biotechnology

Abstract

Fermentation products have penetrated almost every sector of our daily lives. They are used in ethical and generic drugs, clinical and home diagnostics, defense products, nutritional supplements, personal care products, food and animal feed ingredients, cleaning and textile processing, and in industrial applications such as fuel ethanol production. Even before knowing about the existence of microorganisms, for thousands of years ancient people routinely used them for making cheese, soy sauces, yogurt, and bread. Although humans have used fermentation as the method of choice for manufacturing for a long time, it is only now being recognized for its potential towards sustainable industrial development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 419.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Industrial Biotechnology and Sustainable Chemistry (2004) Royal Belgian Academy Council, Jan 2004. www.kvab.be

  2. Theil EC (ed) (1998) Principles of chemistry in biology. American Chemical Society, Washington, DC

    Google Scholar 

  3. Aiba S, Humphrey AE, Milis N (1973) Biochemical engineering, 2nd edn. University of Tokyo Press, Tokyo

    Google Scholar 

  4. Ingram JL, Maaloe O, Neidhart FC (1983) Growth of the bacterial cell. Sinauer Associates, Sunderland, MA

    Google Scholar 

  5. Baumberg S, Hunter I, Rhodes M (eds) (1989) Microbial products: new approaches. Cambridge University Press, Cambridge, England

    Google Scholar 

  6. Flickinger MC, Drew SW (eds) (1999) The encyclopedia of bioprocess technology: fermentation, biocatalysis and bioseparation. Wiley, New York

    Google Scholar 

  7. MolecularCloning.com. A laboratory manual on the Web. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  8. Stephanopoulos GN, Aristidou AA, Nielsen J (eds) (1998) Metabolic Engineering: Principles and Methodologies, Academic Press, San Diego, Calif, USA

    Google Scholar 

  9. Bailey JE (2001) Reflections on the scope and the future of metabolic engineering and its connections to functional genomics and drug discovery. Metab Eng 3(2):111–114

    Article  CAS  Google Scholar 

  10. Lee L-Q, Jeff Varner, and Kwok Ko (2004) Parallel Extreme Pathway Computation for Metabolic Networks, IEEE Conference Proceedings, Computational Systems Bioinformatics Conference, 636–639

    Google Scholar 

  11. Chotani G, Dodge T, Hsu A, Kumar M, LaDuca R, Trimbur D, Weyler W, Sanford K (2000) Commercial production of chemicals using pathway engineering. Biochem Biophys Acta 1543(2):434–455

    Article  CAS  Google Scholar 

  12. Bader FG (1986) Sterilization: prevention of contamination. In: Manual of industrial microbiology and biotechnology. American Society for Microbiology, Washington, DC

    Google Scholar 

  13. Raju GK, Cooney CL (1993) Media and air sterilization. In: Stephanopoulos G (ed) Biotechnology, vol 3. VCH, New York

    Chapter  Google Scholar 

  14. Bailey JE, Ollis DF (1977) Biochemical engineering fundamentals. McGraw-Hill, New York

    Google Scholar 

  15. Demain AL, Solomon NA (1985) Biology of industrial microorganisms. Biotechnology series. Benjamin/Cummings, Redwood City, CA

    Google Scholar 

  16. Shuler ML, Kargi F (eds) (2002) Bioprocess engineering: basic concepts, 2nd edn. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  17. Roels JA (1983) Energetics and kinetics in biotechnology. Elsevier Biomedical Press, Amsterdam

    Google Scholar 

  18. Hughes MN, Poole RK (1989) Metals and microorganisms. Chapman and Hall, New York

    Google Scholar 

  19. Neway JO (ed) (1989) Fermentation process development of industrial organisms. Marcel Dekker, New York

    Google Scholar 

  20. Monod J (1974) in P. S. S. Dawson (Ed.): Microbiol. Growth, Halsted Press, New York, pp 88–110

    Google Scholar 

  21. Luedeking R, Piret EL (1959) A kinetic study of the lactic acid fermentation. Batch process at controlled pH. J Biochem Microbiol Tech Engr 1:393

    Google Scholar 

  22. Van’t Riet K, Tramper J (eds) (1991) Basic bioreactor design. Marcel Dekker, New York

    Google Scholar 

  23. Arbige M, Bulthuis B, Schultz J, Crabb D (1993) Bacillus subtilis and other gram-positive bacteria: biochemistry, physiology and molecular genetics. ASM, Washington, DC, pp 871–895

    Google Scholar 

  24. Asenjo JA, Merchuk JC (eds) (1991) Bioreactor system design. Marcel Dekker, New York

    Google Scholar 

  25. Blanch HW, Clark DS (1996) Biochemical Engineering, Marcel Dekker, New York

    Google Scholar 

  26. Lyderson BK, D’Ella NA, Nelson KL (eds) (1994) Bioprocess engineering: systems, equipment, and facilities. Wiley, New York

    Google Scholar 

  27. Rushton JH et al (1959) Chem Eng Prog 46:467

    Google Scholar 

  28. Rothberg A, Weegar J, von Schalien R, Fagervik K, Rydstr@#x00C2;@#x00AD;m M, Lind K (1999) Optimization of an Aspergillus niger glucose oxidase production process. Bioprocess Engineering 21(4):307–312

    Google Scholar 

  29. Lyddiatt A (2002) Process chromatography: current constraints and future options for the adsorptive recovery of bioproducts. Curr Opin Biotechnol 2:95–103

    Article  Google Scholar 

  30. Chotani GK, Dodge TC, Herman A, van Scheltinga T, Gölker C, Heng MH, Kan J, Becker T, Fukui S, Tanaka A, Schmuck R (2003) General production. In: Aehle W (ed) Enzymes in industry—production and applications. Wiley-VCH, Weinheim

    Google Scholar 

  31. Weelright SM (1991) Protein purification: design and scale up of downstream processes. Wiley, New York

    Google Scholar 

  32. Becker T, Park G, Gaertner AL (1997) Formulation of detergent enzymes. In: Ee JH, Misset O, Baas EJ (eds) Enzymes in detergency. Marcel Dekker, New York, pp 299–325

    Google Scholar 

  33. Ebner H, Follmann H, Seller S (1995) Vinegar. In: Reed G, Nagodawithana TW (eds) Biotechnology, vol 9. VCH, New York

    Google Scholar 

  34. Schierholt J (1977) Fermentation processes for the production of citric acid. Process Biochem 12(9):20

    Google Scholar 

  35. Willke T, Vorlop KD (2001) Biotechnological production of itaconic acid. Appl Microbiol Biotechnol 56(3–4):289–295

    Article  CAS  Google Scholar 

  36. Werpy T, Pedersen G (eds) Top value added chemicals from biomass. Volume 1. Results of screening for potential candidates from sugars and synthesis gas, NREL, Aug 2004. http://www.osti.gov/bridge

  37. Anderson S, Marks CB, Lazarus R, Miller J, Stafford K, Seymour J, Light D, Rastetter W, Estell DA (1985) Production of 2-keto-L-gulonate, an intermediate in L-ascorbate synthesis, by a genetically modified Erwinia herbicola. RL Science 230:144−149

    Article  CAS  Google Scholar 

  38. García-Ochoa F, Santosa VE, Casasb JA, Gómeza E (2000) Xanthan gum: production, recovery, and properties. Biotechnol Adv 18(7):549–579

    Article  Google Scholar 

  39. Lee JW, Kim HU, Choi S, Yi J, Lee SY (2011) Microbial production of building block chemicals and polymers. Curr Opin Biotechnol 22:1–10

    Article  Google Scholar 

  40. Nakamura C, Whited G (2003) Metabolic engineering for the microbial production of 1,3 propanediol. Curr Opin Biotechnol 14(5):454–459

    Article  CAS  Google Scholar 

  41. Bothast RJ, Schlicher MA (2005) Biotechnological processes for conversion of corn into ethanol. Appl Microbiol Biotechnol 67:19@#x00E2;@#x20AC;@#x201C;25

    Article  CAS  Google Scholar 

  42. Ghose TK, Bisaria VS (1979) Studies on the mechanism of enzymatic hydrolysis of cellulosic substances. Biotechnol Bioeng 21:131–146

    Article  CAS  Google Scholar 

  43. Ho N (1980) Yeast alcohol tolerance and recombinant DNA for improved alcohol production. Ann Rep Ferment Process 4:235

    CAS  Google Scholar 

  44. Ingram LO, Gomez PF, Lai X, Moniruzzaman M, Wood BE, Yomano LP, York SW (1998) Metabolic engineering of bacteria for ethanol production. Biotechnol Bioeng 58:204–213

    Article  CAS  Google Scholar 

  45. Mitchinson C (2004) Improved cellulases for the BioRefinery: a review of Genencor’s progress in the DOE subcontract for ignocell cost reduction for bioethanol. In: Stanford GCEP biomass energy workshop, April 2004

    Google Scholar 

  46. Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocelluloses: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56:17–34

    Article  CAS  Google Scholar 

  47. Whited GW, Feher FJ, Benko DA, Cervin MA, Chotani GK, McAuliffe JC, LaDuca RJ, Ben-Shoshan EA, Sanford KJ (2010) Development of a gas-phase bioprocess for isoprene-monomer production using metabolic pathway engineering. Ind Biotechnol 6:152–163

    Article  CAS  Google Scholar 

  48. Peralta-Yahya PP, Keasling JD (2010) Advanced biofuel production in microbes. Biotechnol J 5:147–162

    Article  CAS  Google Scholar 

  49. Rude MA, Schirmer A (2009) New microbial fuels: a biotech perspective. Curr Opin Microbiol 12:274–281

    Article  CAS  Google Scholar 

  50. Yan Y, Liao JC (2009) Engineering metabolic systems for production of advanced fuels. J Ind Microbiol Biotechnol 36:471–479

    Article  CAS  Google Scholar 

  51. Zhang K, Sawaya MR, Eisenberg DS, Liao JC (2008) Expanding metabolism for biosynthesis of nonnatural alcohols. Proc Natl Acad Sci U S A 105(52):20653–20658

    Article  CAS  Google Scholar 

  52. Kalscheuer R, Stölting T, Steinbüchel A (2006) Microdiesel: Escherichia coli engineered for fuel production. Microbiology 152:2529–2536

    Article  CAS  Google Scholar 

  53. Keasling JD, Hu Z, Somerville C, Church G, Berry D, Friedman L, Schirmer A, Brubaker S, Del Cardayre SB (2007) Production of fatty acids and derivatives thereof. WO/2007/136762

    Google Scholar 

  54. Chappell J (1995) The biochemistry and molecular biology of isoprenoid metabolism. Plant Physiol 107:1–6

    CAS  Google Scholar 

  55. Ro D-K, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MCY, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943

    Article  CAS  Google Scholar 

  56. Clomburg JM, Gonzalez R (2010) Biofuel production in Escherichia coli: the role of metabolic engineering and synthetic biology. Appl Microbiol Biotechnol 86:419–434

    Article  CAS  Google Scholar 

  57. Zhang M, Eddy C, Deanda K, Finkelstein M, Picattagio S (1995) Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267:240–243

    Article  CAS  Google Scholar 

  58. Ho NWY, Chen Z, Brainard A (1998) Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl Environ Microbiol 64(5):1852–1859

    CAS  Google Scholar 

  59. Alterthum F, Ingram LO (1989) Efficient ethanol production from glucose, lactose, and xylose by recombinant Escherichia coli. Appl Environ Microbiol 55(8):1943–1948

    CAS  Google Scholar 

  60. Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenerg Res 1:20–43

    Article  Google Scholar 

  61. Aida K, Ichiba I, Nakayama K, Takinami K, Yamada H (eds) (1986) Biotechnology of amino acid production. Elsevier, Amsterdam

    Google Scholar 

  62. deBoer L, Dijkhuizen L (1990) Microbial and enzymatic processes for L-phenylalanine production. Adv Biochem Eng Biotechnol 41:1–27

    CAS  Google Scholar 

  63. Dodge T, Pepsin M, Berry A (1999) Proceedings of the 13th Forum for Applied Biotechnology, 22@#x00E2;@#x20AC;@#x201C;23 September, Gent, Belgium. Med Fac Landbouw Univ Gent pp 281–288

    Google Scholar 

  64. Stahmann KP, Revuelta JL, Seulberger H (2000) Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production. Appl Microbiol Biotechnol 53(5):509–516

    Article  CAS  Google Scholar 

  65. Martens JH, Barg H, Warren MJ, Jahn D (2002) Microbial production of vitamin B12. Appl Microbiol Biotechnol 58(3):275–285

    Article  CAS  Google Scholar 

  66. Long RA, Parlin NJ. Production of vitamin B12. US Patent 3,018,225

    Google Scholar 

  67. Bijl HL. Production and use of compositions comprising high concentrations of vitamin B12 activity. US Patent 5,955,321

    Google Scholar 

  68. Strohl WR (1997) Industrial antibiotics: today and the future. In: Strohl WR (ed) Biotechnology of antibiotics. Marcel Dekker, New York

    Google Scholar 

  69. Weinstein MJ, Wagman GH (Eds.) (1978), Antibiotics. Isolation, Separation and Purification (Journal of Chromatography Library, Vol. 15) Elsevier, Amsterdam

    Google Scholar 

  70. Martin JF, Demain AL (1980) Control of antibiotic biosynthesis. Microbiol Rev 44(2):230

    CAS  Google Scholar 

  71. Martin JF, Liras P (1989) Enzymes involved in penicillin, cephalosporin and cephamycin biosynthesis. Adv Biochem Eng Biotechnol 39:153

    CAS  Google Scholar 

  72. DiMarco A, Pennella P (1959) The fermentation of the tetracyclines. Prog Ind Microbiol 1:45

    CAS  Google Scholar 

  73. Perlman D (1975) Influence of penicillin fermentation technology to processes for production of other antibiotics. Process Biochem 10(9):23

    CAS  Google Scholar 

  74. Foster KA, Frackman S, Jolly JF (1995) Production of enzymes as fine chemicals. In: Reed G, Nagodawithana TW (eds) Biotechnology, vol 9. VCH, New York

    Google Scholar 

  75. Godfrey T, Reichelt J (1983) Industrial enzymology. Nature Press, New York

    Google Scholar 

  76. Aunstrup K (1979) Production, isolation and economics of extracellular enzymes. In: Wingard L, Katchalski-Katzir E, Goldstein L (eds) Applied biochemistry and bioengineering, vol 2. Academic Press, London, pp 27–69

    Google Scholar 

  77. Lilly MD (1979) Production of intracellular microbial enzymes L.B. Wingard Jr, E. Katchalski-Katzir, L. Goldstein (Eds.), Applied Biochemistry and Bioengineering (9th edn), vol 2. Academic Press, NewYork, p. 1

    Google Scholar 

Download references

Acknowledgment

The subject of biotechnology first appeared in an earlier edition of this Handbook as a chapter titled “Industrial Fermentation: Principles, Processes and Product,” written by Dr. Arthur E. Humphrey of Lehigh University. In later editions he was joined first by Dr. S. Edward Lee and then by Dr. Lewis Ho, both of Pfizer. Chaps. 30 and Chaps. 31 in this edition are an outgrowth of that earlier work, some of which is used in the new chapters. Grateful acknowledgment of this use is made to the authors of that work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gopal K. Chotani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chotani, G.K., Dodge, T.C., Arbige, M.V. (2012). Industrial Biotechnology: Discovery to Delivery. In: Kent, J. (eds) Handbook of Industrial Chemistry and Biotechnology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4259-2_30

Download citation

Publish with us

Policies and ethics