Skip to main content

Abstract

The nonlinear viscoelastic behavior of POM was characterized in tensile and compression tests. Digital image correlation strain measurements were used the determine the axial and transverse strain, thus providing the necessary data for three-dimensional modeling. The nonlinear viscoelastic model of Schapery was chosen to describe the time-dependent mechanical behavior. A parameter identification procedure using nonlinear optimization is presented. It is shown that the Schapery model is capable of describing the nonlinear viscoelastic relaxation behavior in tension and compression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Silano A, Pae K, Sauer J (1977) Effects of hydrostatic pressure on shear deformation of polymers. J Appl Phys 48(10):4076–4084

    Article  Google Scholar 

  2. Jerabek M, Tscharnuter D, Major Z, Ravi-Chandar K, Lang R (2010) Relaxation behavior of neat and particulate filled polypropylene in uniaxial and multiaxial compression. Mech Time Depend Mater 14(1):47–68

    Article  Google Scholar 

  3. Rabinowitz S, Ward I, Parry J (1970) The effect of hydrostatic pressure on the shear yield behaviour of polymers. J Mater Sci 5:29–39

    Article  Google Scholar 

  4. Pae K (1977) The macroscopic yielding behaviour of polymers in multiaxial stress fields. J Mater Sci 12:1209–1214

    Article  Google Scholar 

  5. Qvale D, Ravi-Chandar K (2004) Viscoelastic characterization of polymers under multiaxial compression. Mech Time Depend Mater 8(3):193–214

    Article  Google Scholar 

  6. Lévesque M, Derrien K, Baptiste D, Gilchrist M (2008) On the development and parameter identification of schapery-type constitutive theories. Mech Time Depend Mater 12(2):95–127

    Article  Google Scholar 

  7. Nordin L-O, Varna J (2005) Nonlinear viscoelastic behavior of paper fiber composites. Compos Sci Technol 65(10):1069–1625

    Article  Google Scholar 

  8. Sawant S, Muliana A (2008) A thermo-mechanical viscoelastic analysis of orthotropic materials. Compos Struct 83(1):61–72

    Article  Google Scholar 

  9. Schapery R (1969) On the characterization of nonlinear viscoelastic materials. Polym Eng Sci 9(4):295–310

    Article  Google Scholar 

  10. Nordin L-O, Varna J (2005) Methodology for parameter identification in nonlinear viscoelastic material model. Mech Time Depend Mater 9(4):57–78

    Article  Google Scholar 

  11. Henriksen M (1984) Nonlinear viscoelastic stress analysis – a finite element approach. Comput Struct 18(1):133–139

    Google Scholar 

  12. Tscharnuter D, Jerabek M, Major Z, Pinter G (In Press) Uniaxial nonlinear viscoelastic viscoplastic modeling of polypropylene. Mech Time Depend Mater

    Google Scholar 

  13. Jerabek M, Major Z, Lang R (2010) Strain determination of polymeric materials using digital image correlation. Polym Test 29(3):407–416

    Article  Google Scholar 

  14. Jerabek M, Major Z, Lang R (2010) Uniaxial compression testing of polymeric materials. Polym Test 29(3):302–309

    Article  Google Scholar 

  15. Sutton M, Yan J, Tiwari V, Schreier H, Orteu J (2008) The effect of out-of-plane motion on 2d and 3d digital image correlation measurements. Opt Lasers Eng 46(10):746–757

    Article  Google Scholar 

  16. Crochon T, Schönherr T, Li C, Lévesque M (2010) On finite-element implementation strategies ofschapery-type constitutive theories. Mech Time Depend Mater 14:359–387

    Article  Google Scholar 

  17. Rao S (1996) Engineering optimization – theory and practice, 3rd edn. Wiley, New York

    Google Scholar 

  18. Tscharnuter D, Jerabek M, Major Z, Pinter G (2011) Irreversible deformation of isotactic polypropylene in the pre-yield regime. Eur Polym J 47(5):989–996

    Article  Google Scholar 

Download references

Acknowledgements

The research work of this paper was performed at the Polymer Competence Center Leoben GmbH (PCCL, Austria) within the framework of the COMET-program of the Austrian Ministry of Traffic, Innovation and Technology with contributions by the University of Leoben. The PCCL is funded by the Austrian Government and the State Governments of Styria and Upper Austria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Tscharnuter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Society for Experimental Mechanics

About this paper

Cite this paper

Tscharnuter, D., Gastl, S., Pinter, G. (2013). A Pressure-Dependent Nonlinear Viscoelastic Schapery Model for POM. In: Antoun, B., Qi, H., Hall, R., Tandon, G., Lu, H., Lu, C. (eds) Challenges in Mechanics of Time-Dependent Materials and Processes in Conventional and Multifunctional Materials, Volume 2. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4241-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4241-7_20

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4240-0

  • Online ISBN: 978-1-4614-4241-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics