Challenges for Implementing Polymer Gels in Defense Applications

  • Joseph L. Lenhart
  • Randy A. Mrozek
  • Kenneth R. Shull
  • Kathryn J. Otim
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)


Polymer gels are soft, lightly crosslinked polymers that are highly swollen with solvent. The gel properties can be tuned by manipulating the polymer and solvent chemistry, solvent loading, polymer and solvent chain architecture, and the incorporation of various fillers and additives. This tunability provides broad utility in military applications including electronic devices, sensors, robotics, multi-functional textiles, responsive coatings, combat medical care, and tissue surrogates for ballistic testing. While potentially useful, a number of challenges can hinder gel utility for the Army. This paper describes recent efforts that offer promise to overcome these obstacles, including improving operational temperature performance and gel toughness.


Polymer gel Gelatin Toughness 



K. Otim was funded by the U.S. Army Research Laboratory (ARL) and the National Physical Sciences Consortium Fellowship program. R. A. Mrozek was funded at ARL through a contract with the Oak Ridge Institute of Science and Engineering (ORISE). Certain commercial equipment and materials are identified in this paper in order to specify adequately the experimental procedure. In no case does such identification imply recommendations by the Army Research Laboratory nor does it imply that the material or equipment identified is necessarily the best available for this purpose.


  1. 1.
    Flory PJ (1953) Principles of polymer chemistry, vol 1. Cornell University, Ithaca, p 576Google Scholar
  2. 2.
    Kwon IC, Bae YH, Kim SW (1991) Electrically erodible polymer gel for controlled release of drugs. Nature 354:291–293CrossRefGoogle Scholar
  3. 3.
    Miyata T, Asami N, Uragami T (1999) A reversibly antigen-responsive hydrogel. Nature 399:766–769CrossRefGoogle Scholar
  4. 4.
    Murdan S (2003) Electro-responsive drug delivery from hydrogels. J Control Release 92:1–17CrossRefGoogle Scholar
  5. 5.
    Peppas NA, Huang Y, Torres-Lugo M, Ward JH, Zhang J (2000) Physicochemical, foundations and structural design of hydrogels in medicine and biology. Annu Rev Biomed Eng 2:9–29CrossRefGoogle Scholar
  6. 6.
    Jiang H, Su W, Mather PT, Bunning TJ (1999) Rheology of highly swollen chitosan/polyacrylate hydrogels. Polymer 40:4593–4602CrossRefGoogle Scholar
  7. 7.
    Hu Z, Chen Y, Wang C, Zheng Y, Li Y (1998) Polymer gels with engineered environmentally responsive surface patterns. Nature 393:149–152CrossRefGoogle Scholar
  8. 8.
    Holtz JH, Asher SA (1997) Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 389:829–832CrossRefGoogle Scholar
  9. 9.
    Li J, Hong X, Liu Y, Li D, Wang Y-W, Li J-H, Bai Y-B, Li T-J (2005) Highly photoluminescent CdTe/Poly(N-isopropylacrylamide) temperature-sensitive gels. Adv Mater 17:163–166CrossRefGoogle Scholar
  10. 10.
    Park TG (1999) Temperature modulated protein release from pH/temperature-sensitive hydrogels. Biomaterials 20:517–521CrossRefGoogle Scholar
  11. 11.
    Schmaljohann D, Oswald J, Jorgensen B, Nitschke M, Beyerlein D, Werner C (2003) Thermo-responsive PNiAAm-g-PEG films for controlled cell detachment. Biomacromolecules 4:1733–1739CrossRefGoogle Scholar
  12. 12.
    Elarssari A, Rodrigue M, Meunier F, Herve C (2001) Hydrophilic magnetic latex for nucleic acid extraction, purification and concentration. J Magn Magnetic Mater 225:127–133CrossRefGoogle Scholar
  13. 13.
    Lenhart JL, Cole PJ (2006) Adhesion properties of lightly crosslinked solvent-swollen polymer gels. J Adhes 82:945–971CrossRefGoogle Scholar
  14. 14.
    Lenhart JL, Cole PJ, Unal B, Hedden R (2007) Development of nonaqueous polymer gels that exhibit broad temperature performance. Appl Phys Lett 91:061929CrossRefGoogle Scholar
  15. 15.
    Zosel A (1998) The effect of fibrilation on the tack of pressure sensitive adhesives. Int J Adhes Adhes 18:265–271CrossRefGoogle Scholar
  16. 16.
    Lakrout H, Sergot P, Creton C (1999) Direct observation of cavitation and fibrillation in a probe tack experiment on model acrylic pressure-sensitive-adhesives. J Adhes 69:307–359CrossRefGoogle Scholar
  17. 17.
    Mrozek R, Otim K, Shull K, Lenhart JL (2011) Influence of solvent size on the mechanical properties and rheology of polydimethylsiloxane-based polymeric gels. Polymer 52:3422–3430CrossRefGoogle Scholar
  18. 18.
    Gent AN, Lai SM (1994) Interfacial bonding, energy dissipation, and adhesion. J Polym Sci B 32:1543–1555CrossRefGoogle Scholar
  19. 19.
    Lake GJ, Thomas AG (1967) Strength of highly elastic materials. Proc R Soc London A Math Phys Sci 300:108CrossRefGoogle Scholar
  20. 20.
    Mazich KA, Samus MA, Smith CA, Rossi G (1991) Threshold fracture of lightly crosslinked networks. Macromolecules 24:2766–2769CrossRefGoogle Scholar
  21. 21.
    Hui CY, Jagota A, Bennison SJ, Londono JD (2003) Crack blunting and the strength of soft elastic solids. Proc R Soc Lond A Math Phys Eng Sci 459:1489–1516MATHCrossRefGoogle Scholar
  22. 22.
    Krishnan VR, Hui CY, Long R (2008) Finite strain crack tip fields in soft incompressible elastic solids. Langmuir 24:14245–14253CrossRefGoogle Scholar
  23. 23.
    Tanaka Y, Kuwabara R, Na YH, Kurakawa T, Gong JP, Osada Y (2005) Determination of fracture energy of high strength double network hydrogels. J Phys Chem B 109:11559–11562CrossRefGoogle Scholar
  24. 24.
    Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater 15:1155–1158CrossRefGoogle Scholar
  25. 25.
    Baumberger T, Caroli C, Martina D (2006) Solvent control of crack dynamics in a reversible hydrogel. Nature Mater 5:552–555CrossRefGoogle Scholar
  26. 26.
    Baumberger T, Caroli C, Martina D (2006) Fracture of a biopolymer gel as a viscoplastic disentanglement process. Eur Phys J E 21:81–89CrossRefGoogle Scholar
  27. 27.
    Seitz ME, Martina D, Baumberger T, Krishnan VR, Hui CY, Shull KR (2009) Fracture and large strain behavior of self-assembled triblock copolymer gels. Soft Matter 5:447–456CrossRefGoogle Scholar
  28. 28.
    Creton C, Hu GJ, Deplace F, Morgret L, Shull KR (2009) Large-strain mechanical behavior of model block copolymer adhesives. Macromolecules 42:7605–7615CrossRefGoogle Scholar
  29. 29.
    Hirokawa Y, Tanaka T (1984) Volume phase transition in a nonionic gel. J Chem Phys 81(12):6379–6380CrossRefGoogle Scholar
  30. 30.
    Mrozek RA, Cole PJ, Cole SM, Schroeder JL, Schneider DA, Hedden RC, Lenhart JL (2010) Design of nonaqueous polymer gels with broad temperature performance: impact of solvent quality and processing conditions. J Mater Res 25:1105–1117CrossRefGoogle Scholar
  31. 31.
    O’Connor AE, Willenbacher N (2004) The effect of molecular weight and temperature on tack properties of model polyisobutylenes. Int J Adhes Adhes 24:335–346CrossRefGoogle Scholar

Copyright information

© The Society for Experimental Mechanics, Inc. 2013

Authors and Affiliations

  • Joseph L. Lenhart
    • 1
  • Randy A. Mrozek
    • 1
  • Kenneth R. Shull
    • 2
  • Kathryn J. Otim
    • 2
  1. 1.US Army Research LaboratoryAberdeen Proving GroundAberdeenUSA
  2. 2.Northwestern UniversityEvanstonUSA

Personalised recommendations