Advertisement

Artifact Correction for DVC Measurements Using a Laboratory X-Ray Source

  • J. Adrien
  • J.-Y. Buffière
  • F. Hild
  • N. Limodin
  • J. Réthoré
  • S. Roux
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)

Abstract

The effects of temperature elevation of the X-ray tube of a lab tomograph during image acquisition are analyzed in terms of their induced biases for Digital Volume Correlation (DVC) from a series of reconstructed volumes acquired successively. Spurious dilatational strains are induced by temperature variations in the tomograph. If not accounted for, any quantitative kinematic measurement is impossible for strain levels below 0.5%. When corrected, it is possible to determine the elastic parameters of nodular graphite cast iron.

Keywords

Stress Intensity Factor Cast Iron Displacement Field Graphite Nodule Reconstructed Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was funded under the grant ANR-09-BLAN-0009-01 (RUPXCUBE Project).

References

  1. 1.
    Baruchel J, Buffière JY, Maire E, Merle P, Peix G (2000) X-ray tomography in material sciences. Hermes Science, ParisGoogle Scholar
  2. 2.
    Bernard D (ed) (2008) In: Proceedings of the 1st conference on 3D-imaging of materials and systems 2008, BordeauxGoogle Scholar
  3. 3.
    Nielsen SF, Poulsen HF, Beckmann F, Thorning C, Wert JA (2003) Measurements of plastic displacement gradient components in three dimensions using marker particles and synchrotron X-ray absorption microtomography. Acta Mater 51(8):2407–2415CrossRefGoogle Scholar
  4. 4.
    Bay BK, Smith TS, Fyhrie DP, Saad M (1999) Digital volume correlation: three-dimensional strain mapping using X-ray tomography. Exp Mech 39:217–226CrossRefGoogle Scholar
  5. 5.
    Roux S, Hild F, Viot P, Bernard D (2008) Three dimensional image correlation from X-ray computed tomography of solid foam. Compos Part A 39(8):1253–1265CrossRefGoogle Scholar
  6. 6.
    Limodin N, Réthoré J, Adrien J, Buffière JY, Hild F, Roux S (2011) Analysis and artifact correction for volume correlation measurements using tomographic images from a laboratory X-ray source. Exp Mech 51(6):959–970CrossRefGoogle Scholar
  7. 7.
    Feldkamp LA, Davis LC, Kress JW (1984) Practical cone beam algorithm. J Opt Soc Am A1:612–619CrossRefGoogle Scholar
  8. 8.
    Dierickx P (1996) Etude de la microstructure et des mecanismes d’endommagement de fontes G.S. ductiles: influence des traitements thermiques de ferritisation. Ph.D. thesis, INSA de LyonGoogle Scholar
  9. 9.
    Limodin N, Réthoré J, Buffière JY, Gravouil A, Hild F, Roux S (2009) Crack closure and stress intensity factor measurements in nodular graphite cast iron using 3D correlation of laboratory X ray microtomography images. Acta Mater 57(14):4090–4101CrossRefGoogle Scholar

Copyright information

© The Society for Experimental Mechanics, Inc. 2013

Authors and Affiliations

  • J. Adrien
    • 1
  • J.-Y. Buffière
    • 1
  • F. Hild
    • 2
  • N. Limodin
    • 1
  • J. Réthoré
    • 3
  • S. Roux
    • 2
  1. 1.MATEIS, Université de Lyon, INSA-Lyon/CNRSVilleurbanneFrance
  2. 2.LMT-Cachan, ENS Cachan/CNRS/Université Paris 6/PRES UniverSud ParisCachan CedexFrance
  3. 3.LaMCoS, Université de Lyon INSA-Lyon/CNRSVilleurbanneFrance

Personalised recommendations