Stress Intensity Factors for Viscoelastic Axisymmetric Problems Applied to Wood

  • Rostand Moutou Pitti
  • Claude Chazal
  • Florence Labesse-Jied
  • Yuri Lapusta
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)

Abstract

Many materials used in engineering applications obey to time-dependent behaviours and the mechanical fields are affected by the time effects. As a result, the evolution of the stresses and strains in these materials appear still very complex and difficult to study. Among such cases is the situation when the material has an axisymmetric shape and when it is submitted to a complex fracture loading. In this paper, the creep loading is applied on an axisymmetric viscoelastic orthotropic material and the stress intensity factors are computed in the opening mode, in the shear mode and in the mixed mode using to a finite element approach. The uncoupling method is based on M integral, combining the virtual and real mechanical fields. In the same time, the viscoelastic effects are introduced according to the generalized Kelvin-Voigt model composed by four branches. The numerical solution is obtained with an incremental viscoelastic formulation in the time domain. Using a Compact Tension Shear (CTS) specimen, the evolutions of stress intensity factor versus time are posted in each fracture mode configuration. The obtained results demonstrate the efficiency of the proposed model.

Keywords

Stress intensity factors Axisymmetric problems Viscoelasticity Wood materials 

Notes

Acknowledgements

The work at the Institut Pascal and IFMA is supported by Laboratoire d’excellence IMobS 3.

References

  1. 1.
    Moutou Pitti R, Alaa C, Chazal C (2011) Reliability analysis of mixed mode cracking with viscoelastic orthotropic behaviour. Mechanics of time-dependent materials and processes in conventional and multifunctional materials, vol 3. In: Conference proceedings of the society for experimental mechanics series, 2011, vol 99999, pp 249–256, doi:  10.1007/978-1-4614-0213-8_36
  2. 2.
    Yasniy P, Maruschak P, Lapusta Y (2006) Experimental study of crack growth in a bimetal under fatigue and fatigue-creep conditions. Int J Fract 139(3–4):545–552. doi: 10.1007/s10704-006-0102-7 MATHCrossRefGoogle Scholar
  3. 3.
    Lapusta YN, Henaff-Gardin C (2000) An analytical model for periodic α°-layer cracking in composite laminates. Int J Fract 102(3):73–76. doi: 10.1023/A:1007696725543 CrossRefGoogle Scholar
  4. 4.
    Sarler B (1998) Axisymmetric augmented thin plate splines. Eng Anal Bound Elem 21:81–85. doi: 0955-7997/981519.00 MATHCrossRefGoogle Scholar
  5. 5.
    Jiang Q, Gao CF (2010) Axisymmetric stress in an electrostrictive hollow cylinder under electric loading. Acta Mech 211:309–321. doi: 10.1007/s00707-009-0228-6 MATHCrossRefGoogle Scholar
  6. 6.
    Yosibash Z, Hartmann S, Heisserer U, Düster A, Rank E, Szanto M (2007) Axisymmetric pressure boundary loading for finite deformation analysis using p-FEM. Comput Methods Appl Mech Eng 196:1261–1277. doi: 10.1016/j.cma.2006.09.006 MATHCrossRefGoogle Scholar
  7. 7.
    Thibauta B, Gril J, Fournier M (2001) Mechanics of wood and trees: some new highlights for an old story, Mécanique du bois et biomécanique des arbres: nouveaux regards sur une vieille question. CR Mecanique 329:701–716Google Scholar
  8. 8.
    Atkinson C, Eftaxiopoulos DA (1992) Crack tip stress intensities in viscoelastic anisotropic bimaterials and the use of the M-integral. Int J Fract 57:61–83CrossRefGoogle Scholar
  9. 9.
    Chalivendra VB (2009) Mixed-mode crack-tip stress fields for orthotropic functionally graded materials. Acta Mech 204:51–60. doi: 10.1007/s00707-008-0047-1 MATHCrossRefGoogle Scholar
  10. 10.
    Assous F, Ciarlet P Jr, Labrunie S, Segré J (2003) Numerical solution to the time-dependent Maxwell equations in axisymmetric singular domains: the singular complement method. J Comput Phys 191:147–176. doi: 10.1016/S0021-9991(03)00309-7 MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Moutou Pitti R, Dubois F, Petit C, Sauvat N, Pop O (2008) A new M-integral parameter for mixed-mode crack growth in orthotropic viscoelastic material. Eng Fract Mech 75:4450–4465. doi: 10.1016/j.engfracmech.2008.04.021 CrossRefGoogle Scholar
  12. 12.
    Moutou Pitti R, Dubois F, Petit C (2010) Generalisation of T and A integrals to time dependent materials: analytical formulations. Int J Fract 161:187–198. doi: 10.1007/s10704-010-9453-1 CrossRefGoogle Scholar
  13. 13.
    Ormarsson S, Dahlblom O, Petersson H (1998) Numerical study of the shape of Sawn timber subjected to moisture variation, Part 1: theory. Wood Sci Technol 32:325–334CrossRefGoogle Scholar
  14. 14.
    Chen FMK, Shield RT (1977) Conservation laws in elasticity of J-integral type. J Appl Mech Phys 28:1–22MathSciNetMATHGoogle Scholar
  15. 15.
    Noether E (1983) Invariant variations problems. Trans Theory Stat Phys 1:183–207MathSciNetGoogle Scholar
  16. 16.
    Moutou Pitti R, Chazal C, Labesse-Jied F, Lapusta Y (2011) A generalization of Mv integral to axisymmetric problems for viscoelastic materials. Acta Mech 220:365–373. doi: 10.1007/s00707-011-0460-8 MATHCrossRefGoogle Scholar
  17. 17.
    Dubois F, Moutou Pitti R, Picoux B, Petit C (2012) Finite element model for crack growth process in concrete bituminous. Adv Eng Softw 44(1):35–43. doi: 10.1016/j.advengsoft.2011.05.039 CrossRefGoogle Scholar
  18. 18.
    Chazal C, Moutou Pitti R (2011) Incremental constitutive formulation for time dependent materials: creep integral approach. Mech Time Depend Mater 15(3):239–253. doi: 10.1007/s11043-011-9135-z CrossRefGoogle Scholar

Copyright information

© The Society for Experimental Mechanics, Inc. 2013

Authors and Affiliations

  • Rostand Moutou Pitti
    • 1
    • 2
    • 3
  • Claude Chazal
    • 4
  • Florence Labesse-Jied
    • 1
    • 2
  • Yuri Lapusta
    • 5
    • 2
  1. 1.Clermont Université, Université Blaise Pascal, Institut PascalClermont-FerrandFrance
  2. 2.CNRS, UMR 6602, Institut PascalAubièreFrance
  3. 3.CENAREST, IRTLibrevilleGabon
  4. 4.GEMH LaboratoryUniversité de Limoges, Centre Universitaire Génie CivilEgletonsFrance
  5. 5.French Institute of Advanced MechanicsInstitut Pascal / IFMA / Clermont UniversitéAubièreFrance

Personalised recommendations