Decompositional Methods

  • Tuğrul Dayar
Chapter
Part of the SpringerBriefs in Mathematics book series (BRIEFSMATH)

Abstract

Among the iterative methods discussed in the previous chapter, ML methods perform better on a larger number of problems in the literature [33, 35]. However, there are certain classes of problems for which other methods could be preferred. The first such method we present in this chapter is iterative and based on decomposing a system into its subsystems, analyzing the subsystems individually for their steady state, and putting back the individual solutions together using disaggregation in a correction step [4].

Keywords

Convolution Summing 

References

  1. 1.
    Akyildiz, I.F.: Mean value analysis for blocking queueing networks. IEEE Trans. Softw. Eng. 14, 418–428 (1988)CrossRefGoogle Scholar
  2. 2.
    Aldous, D., Shepp, L.: The least variable phase type distribution is Erlang. Stoch. Model. 3, 467–473 (1987)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    APNN–Toolbox. http://www4.cs.uni-dortmund.de/APNN-TOOLBOX/ (2004). Accessed 4 Apr 2012
  4. 4.
    Bao, Y., Bozkurt, I.N., Dayar, T., Sun, X., Trivedi, K.S.: Decompositional analysis of Kronecker structured Markov chains. Electron. Trans. Numer. Anal. 31, 271–294 (2008)MathSciNetMATHGoogle Scholar
  5. 5.
    Barker, V.A.: Numerical solution of sparse singular linear systems of equations arising from ergodic Markov chains. Comm. Stat. Stoch. Model. 5, 355–381 (1989)MathSciNetGoogle Scholar
  6. 6.
    Baumann, H., Sandmann, W.: Numerical solution of level dependent quasi-birth-and-death processes. In: International Conference on Computational Science, Procedia Computer Science, vol. 1, pp. 1555–1563. Elsevier, Amsterdam (2010)Google Scholar
  7. 7.
    Bause, F., Buchholz, P., Kemper, P.: A toolbox for functional and quantitative analysis of DEDS. In: Puigjaner, R., Savino, N.N., Serra, B. (eds.) Quantitative Evaluation of Computing and Communication Systems, Lecture Notes in Computer Science, vol. 1469, pp. 356–359. Springer, Berlin Heidelberg New York (1998)Google Scholar
  8. 8.
    Benoit, A., Brenner, L., Fernandes, P., Plateau, B., Stewart, W.J.: The Peps software tool. In: Kemper, P., Sanders, W.H. (eds.) Computer Performance Evaluation: Modelling Techniques and Tools, Lecture Notes in Computer Science, vol. 2794, pp. 98–115. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Benoit, A., Brenner, L., Fernandes, P., Plateau, B.: Aggregation of stochastic automata networks with replicas. Linear Algebr. Appl. 386, 111–136 (2004)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Benoit, A., Fernandes, P., Plateau, B., Stewart, W.J.: On the benefits of using functional transitions and Kronecker algebra. Perform. Eval. 58, 367–390 (2004)CrossRefGoogle Scholar
  11. 11.
    Benoit, A., Plateau, B., Stewart, W.J.: Memory-efficient Kronecker algorithms with applications to the modelling of parallel systems. Futur. Gener. Comput. Syst. 22, 838–847 (2006)CrossRefGoogle Scholar
  12. 12.
    Benzi, M: Preconditioning techniques for large linear systems: a survey. J. Comput. Phys. 182, 418–477 (2002)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences. SIAM, Philadelphia, Pennslyvania (1994)MATHCrossRefGoogle Scholar
  14. 14.
    Bini, D.A., Latouche, G., Meini, B.: Numerical Methods for Structured Markov Chains. Oxford University, Oxford (2005)MATHCrossRefGoogle Scholar
  15. 15.
    Brenner, L., Fernandes, P., Plateau, B., Sbeity, I.: PEPS 2007 – Stochastic automata networks software tool. In: Proceedings of the Fourth International Conference on Quantitative Evaluation of Computer Systems and Technologies, pp. 163–164. IEEE Computer Society, Edinburgh (2007)Google Scholar
  16. 16.
    Brenner, L., Fernandes, P., Fourneau, J.-M., Plateau, B.: Modelling Grid5000 point availability with SAN. Electron. Notes Theor. Comput. Sci. 232, 165–178 (2009)CrossRefGoogle Scholar
  17. 17.
    Briggs, W.L., Henson, V.E., McCormick, S.F.: A Multigrid Tutorial, 2nd edn. SIAM, Philadelphia, Pennslyvania (2000)MATHCrossRefGoogle Scholar
  18. 18.
    Bright, L., Taylor, P.G.: Calculating the equilibrium distribution in level dependent quasi-birth-and-death processes. Stoch. Model. 11, 497–525 (1995)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Buchholz, P.: A class of hierarchical queueing networks and their analysis. Queue. Syst. 15, 59–80 (1994)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Buchholz, P.: Exact and ordinary lumpability in finite Markov chains. J. Appl. Probab. 31, 59–75 (1994)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Buchholz, P.: Hierarchical Markovian models: symmetries and reduction. Perform. Eval. 22, 93–110 (1995)CrossRefGoogle Scholar
  22. 22.
    Buchholz, P.: An aggregation ∖ disaggregation algorithm for stochastic automata networks. Probab. Eng. Inf. Sci. 11, 229–253 (1997)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Buchholz, P.: Exact performance equivalence: An equivalence relation for stochastic automata. Theor. Comput. Sci. 215, 263–287 (1999)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Buchholz, P.: Hierarchical structuring of superposed GSPNs. IEEE Trans. Softw. Eng. 25, 166–181 (1999)CrossRefGoogle Scholar
  25. 25.
    Buchholz, P.: Structured analysis approaches for large Markov chains. Appl. Numer. Math. 31, 375–404 (1999)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Buchholz, P.: Projection methods for the analysis of stochastic automata networks. In: Plateau, B., Stewart, W.J., Silva, M. (eds.) Numerical Solution of Markov Chains, pp. 149–168. Prensas Universitarias de Zaragoza, Zaragoza (1999)Google Scholar
  27. 27.
    Buchholz, P.: An adaptive aggregation/disaggregation algorithm for hierarchical Markovian models. Eur. J. Oper. Res. 116, 545–564 (1999)MATHCrossRefGoogle Scholar
  28. 28.
    Buchholz, P.: Multilevel solutions for structured Markov chains. SIAM J. Matrix Anal. Appl. 22, 342–357 (2000)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Buchholz, P.: Efficient computation of equivalent and reduced representations for stochastic automata. Comput. Syst. Sci. Eng. 15, 93–103 (2000)MathSciNetMATHGoogle Scholar
  30. 30.
    Buchholz, P.: An iterative bounding method for stochastic automata networks. Perform. Eval. 49, 211–226 (2002)MATHCrossRefGoogle Scholar
  31. 31.
    Buchholz, P.: Adaptive decomposition and approximation for the analysis of stochastic Petri nets. Perform. Eval. 56, 23–52 (2004)CrossRefGoogle Scholar
  32. 32.
    Buchholz, P., Dayar, T.: Block SOR for Kronecker structured Markovian representations. Linear Algebr. Appl. 386, 83–109 (2004)MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Buchholz, P., Dayar, T.: Comparison of multilevel methods for Kronecker structured Markovian representations. Computing 73, 349–371 (2004)MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Buchholz, P., Dayar, T.: Block SOR preconditioned projection methods for Kronecker structured Markovian representations. SIAM J. Sci. Comput. 26, 1289–1313 (2005)MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Buchholz, P., Dayar, T.: On the convergence of a class of multilevel methods for large, sparse Markov chains. SIAM J. Matrix Anal. Appl. 29, 1025–1049 (2007)MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Buchholz, P., Kemper, P.: On generating a hierarchy for GSPN analysis. Perform. Eval. Rev. 26, 5–14 (1998)CrossRefGoogle Scholar
  37. 37.
    Buchholz, P., Kemper, P.: Kronecker based representations of large Markov chains. In: Haverkort, B., Hermanns, H., Siegle, M. (eds.) Validation of Stochastic Systems, Lecture Notes in Computer Science, vol. 2925, pp. 256–295. Springer, Berlin Heidelberg New York (2004)Google Scholar
  38. 38.
    Buchholz, P., Ciardo, G., Donatelli, S., Kemper, P.: Complexity of memory-efficient Kronecker operations with applications to the solution of Markov models. INFORMS J. Comput. 12, 203–222 (2000)MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Campos, J., Donatelli, S., Silva, M.: Structured solution of asynchronously communicating stochastic models. IEEE Trans. Softw. Eng. 25, 147–165 (1999)CrossRefGoogle Scholar
  40. 40.
    Cao, W.-L., Stewart, W.J.: Aggregation/disaggregation methods for nearly uncoupled Markov chains. J. ACM 32, 702–719 (1985)MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Chan, R.H., Ching, W.K.: Circulant preconditioners for stochastic automata networks. Numer. Math. 87, 35–57 (2000)MathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    Chung, M.-Y., Ciardo, G., Donatelli, S., He, N., Plateau, B., Stewart, W., Sulaiman, E., Yu, J.: A comparison of structural formalisms for modeling large Markov models. In: Proceedings of the 18th International Parallel and Distributed Processing Symposium, pp. 196b. IEEE Computer Society, Edinburgh (2004)Google Scholar
  43. 43.
    Ciardo, G., Miner, A.S.: A data structure for the efficient Kronecker solution of GSPNs. In: Buchholz, P., Silva, M. (eds.) Proceedings of the 8th International Workshop on Petri Nets and Performance Models, pp. 22–31. IEEE Computer Society, Edinburgh (1999)Google Scholar
  44. 44.
    Ciardo, G., Jones, R.L., Miner, A.S., Siminiceanu, R.: Logical and stochastic modeling with SMART. In: Kemper, P., Sanders, W.H. (eds.) Computer Performance Evaluation: Modelling Techniques and Tools, Lecture Notes in Computer Science, vol. 2794, pp. 78–97. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  45. 45.
    Clark, G., Gilmore, S., Hillston, J., Thomas, N.: Experiences with the PEPA performance modelling tools. IEE Softw. 146, 11–19 (1999)CrossRefGoogle Scholar
  46. 46.
    Courtois, P.-J., Semal, P.: Bounds for the positive eigenvectors of nonnegative matrices and for their approximations by decomposition. J. ACM 31, 804-825 (1984)MathSciNetMATHCrossRefGoogle Scholar
  47. 47.
    Czekster, R.M., Fernandes, P., Vincent, J.-M., Webber, T.: Split: a flexible and efficient algorithm to vector–descriptor product. In: Glynn, P.W. (ed.) Proceedings of the 2nd International Conference on Performance Evaluation Methodologies and Tools, 83. Nantes, ACM International Conference Proceeding Series (2007)Google Scholar
  48. 48.
    Czekster, R.M., Fernandes, P., Webber, T.: GTAexpress: A software package to handle Kronecker descriptors. In: Proceedings of the Sixth International Conference on Quantitative Evaluation of Computer Systems and Technologies, pp. 281–282. IEEE Computer Society, Budapest (2009)Google Scholar
  49. 49.
    Dao-Thi, T.-H., Fourneau, J.-F.: Stochastic automata networks with master/slave synchronization: Product form and tensor. In: Al-Begain, K., Fiems, D., Horvaáthe, G. (eds.) Proceedings of the 16th International Conference on Analytical and Stochastic Modeling Techniques and Applications, Lecture Notes in Computer Science, vol. 5513, pp. 279–293. Springer, Heidelberg (2009)Google Scholar
  50. 50.
    Davio, M.: Kronecker products and shuffle algebra. IEEE Trans. Comput. C-30, 116–125 (1981)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Davis, T.A., Gilbert, J.R., Larimore, S., Ng, E.: Algorithm 836: COLAMD, a column approximate minimum degree ordering algorithm. ACM Trans. Math. Softw. 30, 377–380 (2004)MathSciNetMATHCrossRefGoogle Scholar
  52. 52.
    Dayar, T.: State space orderings for Gauss–Seidel in Markov chains revisited. SIAM J. Sci. Comput. 19, 148–154 (1998)MathSciNetMATHCrossRefGoogle Scholar
  53. 53.
    Dayar, T.: Permuting Markov chains to nearly completely decomposable form. Technical Report BU–CEIS–9808, Department of Computer Engineering and Information Science, Bilkent University, Ankara (1998)Google Scholar
  54. 54.
    Dayar, T.: Effects of reordering and lumping in the analysis of discrete–time SANs. In: Gardy, D., Mokkadem, A. (eds.) Mathematics and Computer Science: Algorithms, Trees, Combinatorics and Probabilities, pp. 209–220. Birkhauser, Switzerland (2000)Google Scholar
  55. 55.
    Dayar, T.: Analyzing Markov chains based on Kronecker products. In: Langville, A.N., Stewart, W.J. (eds.) MAM 2006: Markov Anniversary Meeting, pp. 279–300. Boson Books, Raleigh, North Carolina (2006)Google Scholar
  56. 56.
    Dayar, T., Meriç, A.: Kronecker representation and decompositional analysis of closed queueing networks with phase-type service distributions and arbitrary buffer sizes. Ann. Oper. Res. 164, 193–210 (2008)MathSciNetMATHCrossRefGoogle Scholar
  57. 57.
    Dayar, T., Orhan, M.C.: LDQBD solver version 2. http://www.cs.bilkent.edu.tr/~tugrul/software.html (2011). Accessed 4 Apr 2012
  58. 58.
    Dayar, T., Stewart, W.J.: Quasi lumpability, lower-bounding coupling matrices, and nearly completely decomposable Markov chains. SIAM J. Matrix Anal. Appl. 18, 482–498 (1997)MathSciNetMATHCrossRefGoogle Scholar
  59. 59.
    Dayar, T., Stewart, W.J.: Comparison of partitioning techniques for two-level iterative solvers on large, sparse Markov chains. SIAM J. Sci. Comput. 21, 1691–1705 (2000)MathSciNetMATHCrossRefGoogle Scholar
  60. 60.
    Dayar, T., Pentakalos, O.I., Stephens, A.B.: Analytical modeling of robotic tape libraries using stochastic automata. Technical Report TR–97–189, Center of Excellence in Space Data & Information Systems, NASA/Goddard Space Flight Center, Greenbelt, Maryland (1997)Google Scholar
  61. 61.
    Dayar, T., Hermanns, H., Spieler, D., Wolf, V.: Bounding the equilibrium distribution of Markov population models. Numer. Linear Algebr. Appl. 18, 931–946 (2011)MathSciNetCrossRefGoogle Scholar
  62. 62.
    Dayar, T., Sandmann, W., Spieler, D., Wolf, V.: Infinite level–dependent QBDs and matrix analytic solutions for stochastic chemical kinetics. Adv. Appl. Probab. 43, 1005–1026 (2011)MathSciNetMATHCrossRefGoogle Scholar
  63. 63.
    Donatelli, S.: Superposed stochastic automata: a class of stochastic Petri nets with parallel solution and distributed state space. Perform. Eval. 18, 21–26 (1993)MathSciNetMATHCrossRefGoogle Scholar
  64. 64.
    Duff, I.S., Erisman, A.M., Reid, J.K.: Direct Methods for Sparse Matrices. Clarendon, Oxford (1986)MATHGoogle Scholar
  65. 65.
    Fernandes, P., Plateau, B.: Triangular solution of linear systems in tensor product format. Perform. Eval. Rev. 28(4), 30–32 (2001)CrossRefGoogle Scholar
  66. 66.
    Fernandes, P., Plateau, B., Stewart, W.J.: Efficient descriptor–vector multiplications in stochastic automata networks. J. ACM 45, 381–414 (1998)MathSciNetMATHCrossRefGoogle Scholar
  67. 67.
    Fernandes, F., Plateau, B., Stewart, W.J.: Optimizing tensor product computations in stochastic automata networks. RAIRO Oper. Res. 32, 325–351 (1998)MathSciNetGoogle Scholar
  68. 68.
    Fletcher, R.: Conjugate gradient methods for indefinite systems. In: Watson, G.A. (ed.) Proceedings of the Dundee Conference on Numerical Analysis, Lecture Notes in Mathematics, vol. 506, pp. 73–89. Springer, Heidelberg (1976)Google Scholar
  69. 69.
    Fourneau, J.-M.: Discrete time stochastic automata networks: using structural properties and stochastic bounds to simplify the SAN. In: Glynn, P.W. (ed.) Proceedings of the 2nd International Conference on Performance Evaluation Methodologies and Tools, 84. Nantes, ACM International Conference Proceeding Series (2007)Google Scholar
  70. 70.
    Fourneau, J.-M.: Product form steady-state distribution for stochastic automata networks with domino synchronizations. In: Thomas, N., Juiz, C. (eds.) Proceedings of the 5th European Performance Engineering Workshop, Lecture Notes in Computer Science, vol. 5261, pp. 110–124. Springer, Berlin Heidelberg New York (2008)Google Scholar
  71. 71.
    Fourneau, J.-M.: Collaboration of discrete-time Markov chains: tensor and product form. Perform Eval. 67, 779–796 (2010)CrossRefGoogle Scholar
  72. 72.
    Fourneau, J.-M., Quessette, F.: Graphs and stochastic automata networks. In: Stewart, W.J. (ed.) Computations with Markov Chains. In: Proceedings of the 2nd International Workshop on the Numerical Solution of Markov Chains, pp. 217–235. Kluwer, Boston (1995)Google Scholar
  73. 73.
    Fourneau, J.-M., Maisonniaux, H., Pekergin, N., Véque, V.: Performance evaluation of a buffer policy with stochastic automata networks. In: IFIP Workshop on Modelling and Performance Evaluation of ATM Technology, vol. C–15, pp. 433–451. La Martinique, IFIP Transactions North-Holland, Amsterdam (1993)Google Scholar
  74. 74.
    Fourneau, J.-M., Kloul, L., Pekergin, N., Quessette, F., Véque, V.: Modelling buffer admission mechanisms using stochastic automata networks. Rev. Ann. Télécommun. 49, 337–349 (1994)Google Scholar
  75. 75.
    Fourneau, J.-M., Plateau, B., Stewart, W.J.: An algebraic condition for product form in stochastic automata networks without synchronizations. Perform. Eval. 65, 854–868 (2008)CrossRefGoogle Scholar
  76. 76.
    Freund, R.W., Nachtigal, N.M.: QMR: a quasi-minimal residual method for non-Hermitian linear systems. Numer. Math. 60, 315–339 (1991)MathSciNetMATHCrossRefGoogle Scholar
  77. 77.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361 (1977)CrossRefGoogle Scholar
  78. 78.
    Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University, Baltimore (1996)MATHGoogle Scholar
  79. 79.
    Gordon, J.W., Newell, G.F.: Closed queueing systems with exponential servers. Oper. Res. 15, 252–267 (1967)Google Scholar
  80. 80.
    Grassmann, W.K.: Transient solutions in Markovian queueing systems. Comput. Oper. Res. 4, 47–56 (1977)CrossRefGoogle Scholar
  81. 81.
    Grassmann, W.K. (ed.): Computational Probability. Kluwer, Norwell, MA (2000)MATHGoogle Scholar
  82. 82.
    Grassmann, W.K., Stanford, D.A.: Matrix analytic methods. In: Grassmann, W.K. (ed.) Computational Probability, pp. 153–204. Kluwer, Norwell, MA (2000)Google Scholar
  83. 83.
    Greenbaum, A.: Iterative Methods for Solving Linear Systems. SIAM, Philadelphia, Pennslyvania (1997)MATHCrossRefGoogle Scholar
  84. 84.
    Gross, D., Miller, D.R.: The randomization technique as a modeling tool and solution procedure for transient Markov processes. Oper. Res. 32, 343–361 (1984)MathSciNetMATHCrossRefGoogle Scholar
  85. 85.
    Gusak, O., Dayar, T.: Iterative aggregation–disaggregation versus block Gauss–Seidel on continuous-time stochastic automata networks with unfavorable partitionings. In: Obaidat, M.S., Davoli, F. (eds.) Proceedings of the 2001 International Symposium on Performance Evaluation of Computer and Telecommunication Systems, pp. 617–623. Orlando, Florida (2001)Google Scholar
  86. 86.
    Gusak, O., Dayar, T., Fourneau, J.-M.: Stochastic automata networks and near complete decomposability. SIAM J. Matrix Anal. Appl. 23, 581–599 (2001)MathSciNetMATHCrossRefGoogle Scholar
  87. 87.
    Gusak, O., Dayar, T., Fourneau, J.-M.: Lumpable continuous-time stochastic automata networks. Eur. J. Oper. Res. 148, 436–451 (2003)MathSciNetMATHCrossRefGoogle Scholar
  88. 88.
    Gusak, O., Dayar, T., Fourneau, J.-M.: Iterative disaggregation for a class of lumpable discrete-time stochastic automata networks. Perform. Eval. 53, 43–69 (2003)CrossRefGoogle Scholar
  89. 89.
    Haddad, S., Moreaux, P.: Asynchronous composition of high–level Petri nets: a quantitative approach. In: Billington, J., Reisig, W. (eds.) Proceedings of the 17th International Conference on Application and Theory of Petri Nets, Lecture Notes in Computer Science, vol. 1091, pp. 192–211. Springer, Heidelberg (1996)Google Scholar
  90. 90.
    Haverkort, B.R.: Performance of Computer Communication Systems: A Model-Based Approach. Wiley, New York (1998)CrossRefGoogle Scholar
  91. 91.
    Hillston, J., Kloul, L.: An efficient Kronecker representation for PEPA models. In: de Alfaro, L., Gilmore, S. (eds.) Proceedings of the 1st Process Algebras and Performance Modeling, Probabilistic Methods in Verification Workshop, Lecture Notes in Computer Science, vol. 2165, pp. 120–135. Springer, Berlin Heidelberg New York (2001)Google Scholar
  92. 92.
    Horton, G., Leutenegger, S.: A multi-level solution algorithm for steady state Markov chains. Perform. Eval. Rev. 22(1), 191–200 (1994)CrossRefGoogle Scholar
  93. 93.
    Kemeny, J.G., Snell, J.L.: Finite Markov Chains. Springer, Berlin Heidelberg New York (1983)MATHGoogle Scholar
  94. 94.
    Kemper, P.: Numerical analysis of superposed GSPNs. IEEE Trans. Softw. Eng. 22, 615–628 (1996)CrossRefGoogle Scholar
  95. 95.
    Koury, J.R., McAllister, D.F., Stewart, W.J.: Iterative methods for computing stationary distributions of nearly completely decomposable Markov chains. SIAM J. Algebr. Discrete Math. 5, 164–186 (1984)MathSciNetMATHCrossRefGoogle Scholar
  96. 96.
    Krieger, U.: Numerical solution of large finite Markov chains by algebraic multigrid techniques. In: Stewart, W.J. (ed.) Computations with Markov Chains, pp. 403–424. Kluwer, Boston (1995)CrossRefGoogle Scholar
  97. 97.
    Kurtz, T.G.: The relationship between stochastic and deterministic models for chemical reactions. J. Chem. Phys. 57, 2976–2978 (1972)CrossRefGoogle Scholar
  98. 98.
    Langville, A.N., Stewart, W.J.: The Kronecker product and stochastic automata networks. J. Comput. Appl. Math. 167, 429–447 (2004)MathSciNetMATHCrossRefGoogle Scholar
  99. 99.
    Langville, A.N., Stewart, W.J.: Testing the nearest Kronecker product preconditioner on Markov chains and stochastic automata networks. INFORMS J. Comput. 16, 300–315 (2004)MathSciNetMATHCrossRefGoogle Scholar
  100. 100.
    Langville, A.N., Stewart, W.J.: A Kronecker product approximate preconditioner for SANs. Numer. Linear Algebr. Appl. 11, 723–752 (2004)MathSciNetMATHCrossRefGoogle Scholar
  101. 101.
    Latouche, G., Ramaswami, V.: Introduction to Matrix Analytic Methods in Stochastic Modeling. SIAM, Philadelphia, Pennslyvania (1999)MATHCrossRefGoogle Scholar
  102. 102.
    Lee, T.L., Li, T.Y., Tsai, C.H.: HOM4PS-2.0: A software package for solving polynomial systems by the polyhedral homotopy continuation method. Computing 83, 109–133 (2008)MathSciNetMATHCrossRefGoogle Scholar
  103. 103.
    Li, H., Cao, Y., Petzold, L.R., Gillespie, D.: Algorithms and software for stochastic simulation of biochemical reacting systems. Biotechnol. Prog. 24, 56–62 (2008)CrossRefGoogle Scholar
  104. 104.
    Loinger, A., Biham, O.: Stochastic simulations of the repressilator circuit. Phys. Rev. E 76, 051917 (2007)CrossRefGoogle Scholar
  105. 105.
    Marek, I., Mayer, P.: Convergence analysis of an iterative aggregation/disaggregation method for computing stationary probability vectors of stochastic matrices. Numer. Linear Algebr. Appl. 5, 253–274 (1998)MathSciNetMATHCrossRefGoogle Scholar
  106. 106.
    Marek, I., Pultarová, I.: A note on local and global convergence analysis of iterative aggregation–disaggregation methods. Linear Algebra Appl. 413, 327-341 (2006)MathSciNetMATHCrossRefGoogle Scholar
  107. 107.
    Marie, A.R.: An approximate analytical method for general queueing networks. IEEE Trans. Softw. Eng. 5, 530–538 (1979)MathSciNetMATHCrossRefGoogle Scholar
  108. 108.
    Meriç, A.: Kronecker Representation and Decompositional Analysis of Closed Queueing Networks with Phase–Type Service Distributions and Arbitrary Buffer Sizes. M.S. Thesis, Department of Computer Engineering, Bilkent University, Ankara, Turkey (2007)Google Scholar
  109. 109.
    Meriç, A.: Software for Kronecker Representation and Decompositional Analysis of Closed Queueing Networks with Phase-Type Service Distributions and Arbitrary Buffer Sizes. http://www.cs.bilkent.edu.tr/~tugrul/software.html (2007). Accessed 4 Apr 2012
  110. 110.
    Meyer, C.D.: Stochastic complementation, uncoupling Markov chains, and the theory of nearly reducible systems. SIAM Rev. 31, 240–272 (1989)MathSciNetMATHCrossRefGoogle Scholar
  111. 111.
    Meyer, C.D.: Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia (2000)MATHCrossRefGoogle Scholar
  112. 112.
    Migallón, V., Penadés, J., Syzld, D.B.: Block two-stage methods for singular systems and Markov chains. Numer. Linear Algebr. Appl. 3, 413–426 (1996)MATHCrossRefGoogle Scholar
  113. 113.
    Neuts, M.F.: Matrix-Geometric Solutions in Stochastic Models: An Algorithhmic Approach. Johns Hopkins University Press, Baltimore (1981)Google Scholar
  114. 114.
    Neuts, M.F.: Structured Stochastic Matrices of M/G/1 Type and Their Applications. Marcel Dekker, New York (1989)MATHGoogle Scholar
  115. 115.
    Orhan, M.C.: Kronecker-based Infinite Level-Dependent QBDs: Matrix Analytic Solution versus Simulation. M.S. Thesis, Department of Computer Engineering, Bilkent University, Ankara, Turkey (2011)Google Scholar
  116. 116.
    Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Comput. 16, 973–989 (1987)MathSciNetMATHCrossRefGoogle Scholar
  117. 117.
    PEPA Home Page. http://www.dcs.ed.ac.uk/pepa/tools/ (2005). Accessed 4 Apr 2012
  118. 118.
    PEPS Home Page. http://www-id.imag.fr/Logiciels/peps (2007). Accessed 4 Apr 2012
  119. 119.
    Plateau, B.: On the stochastic structure of parallelism and synchronization models for distributed algorithms. Perform. Eval. Rev. 13(2), 147–154 (1985)CrossRefGoogle Scholar
  120. 120.
    Plateau, B., Atif, K.: Stochastic automata network for modeling parallel systems. IEEE Trans. Softw. Eng. 17, 1093–1108 (1991)MathSciNetCrossRefGoogle Scholar
  121. 121.
    Plateau, B., Fourneau, J.-M.: A methodology for solving Markov models of parallel systems. J. Parallel Distrib. Comput. 12, 370–387 (1991)CrossRefGoogle Scholar
  122. 122.
    Plateau, B., Stewart, W.J.: Stochastic automata networks. In: W.K. Grassmann, W.K. (ed.) Computational Probability, pp. 113–152. Kluwer, Norwell, MA (2000)Google Scholar
  123. 123.
    Plateau, B.D., Tripathi, S.K.: Performance analysis of synchronization for two communicating processes. Perform. Eval. 8, 305–320 (1988)MATHCrossRefGoogle Scholar
  124. 124.
    Plateau, B., Fourneau, J.-M., Lee, K.-H.: PEPS: A package for solving complex Markov models of parallel systems. In: Puigjaner, R., Ptier, D. (eds.) Modeling Techniques and Tools for Computer Performance Evaluation, pp. 291–305. Palma de Mallorca (1988)Google Scholar
  125. 125.
    Pultarová, I., Marek, I.: Convergence of multi-level iterative aggregation–disaggregation methods. J. Comp. Appl. Math 236, 354–363 (2011)MATHCrossRefGoogle Scholar
  126. 126.
    Ramaswami, V., Taylor, P.G.: Some properties of the rate operators in level dependent quasi-birth-and-death processes with a countable number of phases. Stoch. Model. 12, 143–164 (1996)MathSciNetMATHCrossRefGoogle Scholar
  127. 127.
    Ruge, J.W., Stüben, K.: Algebraic multigrid. In: McCormick, S.F. (ed.) Multigrid Methods, Frontiers in Applied Mathematics 3, pp. 73–130. SIAM, Philadelphia (1987)Google Scholar
  128. 128.
    Saad, Y.: Projection methods for the numerical solution of Markov chain models. In: Stewart, W.J. (ed.) Numerical Solution of Markov Chains, pp. 455–471. Marcel Dekker, New York (1991)Google Scholar
  129. 129.
    Saad, Y.: Preconditioned Krylov subspace methods for the numerical solution of Markov chains. In: Stewart, W.J. (ed.) Computations with Markov Chains. In: Proceedings of the 2nd International Workshop on the Numerical Solution of Markov Chains, pp. 49–64. Kluwer, Boston (1995)Google Scholar
  130. 130.
    Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003)MATHCrossRefGoogle Scholar
  131. 131.
    Saad, Y., Schultz, M.H.: GMRES: a generalized minimum residual algorithm for nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)MathSciNetMATHCrossRefGoogle Scholar
  132. 132.
    Sbeity, I., Plateau, B.: Structured stochastic modeling and performance analysis of a multiprocessor system. In: Langville, A.N., Stewart, W.J. (eds.) MAM 2006: Markov Anniversary Meeting, pp. 301–314. Boson Books, Raleigh, NC (2006)Google Scholar
  133. 133.
    Sbeity, I., Brenner, L., Plateau, B., Stewart, W.J.: Phase-type distributions in stochastic automata networks. Eur. J. Oper. Res. 186, 1008–1028 (2008)MathSciNetMATHCrossRefGoogle Scholar
  134. 134.
    Scarpa, M., Bobbio, A.: Kronecker representation of stochastic Petri nets with discrete PH distributions. In: Proceedings of the IEEE International Computer Performance and Dependability Symposium, pp. 52–61. IEEE Computer Society, Budapest (1998)Google Scholar
  135. 135.
    Seneta E.: Non-negative Matrices: An Introduction to Theory and Applications. Allen & Unwin, London (1973)MATHGoogle Scholar
  136. 136.
    SMART Project Home page. http://www.cs.ucr.edu/~ciardo/SMART (2004). Accessed 4 April 2012
  137. 137.
    Sonneveld, P.: CGS: A fast Lanczos-type solver for nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 10, 36–52 (1989)MathSciNetMATHCrossRefGoogle Scholar
  138. 138.
    Stewart, G.W., Stewart, W.J., McAllister, D.F.: A two-stage iteration for solving nearly completely decomposable Markov chains. In: Golub, G.H., Greenbaum, A., Luskin, M. (eds.) The IMA Volumes in Mathematics and its Applications 60: Recent Advances in Iterative Methods, pp. 201–216. Springer, Berlin Heidelberg New York (1994)Google Scholar
  139. 139.
    Stewart, W.J.: Introduction to the Numerical Solution of Markov Chains. Princeton University Press, Princeton, NJ (1994)MATHGoogle Scholar
  140. 140.
    Stewart, W.J.: Probability, Markov Chains, Queues, and Simulation: The Mathematical Basis of Performance Modeling. Princeton University Press, Princeton, NJ (2009)MATHGoogle Scholar
  141. 141.
    Stewart, W.J., Atif, K., Plateau, B.: The numerical solution of stochastic automata networks. Eur. J. Oper. Res. 86, 503–525 (1995)MATHCrossRefGoogle Scholar
  142. 142.
    StochKit. http://engineering.ucsb.edu/~cse/StochKit/ (2012). Accessed 4 Apr 2012
  143. 143.
    Tewarson, R.P.: Sparse Matrices. Academic, New York (1973)MATHGoogle Scholar
  144. 144.
    Touzene, A.: A tensor sum preconditioner for stochastic automata networks. INFORMS J. Comput. 20, 234–242 (2008)MathSciNetMATHCrossRefGoogle Scholar
  145. 145.
    Tweedie, R.L.: Sufficient conditions for regularity, recurrence and ergodicity of Markov processes. Math. Proc. Camb. Philos. Soc. 78, 125–136 (1975)MathSciNetMATHCrossRefGoogle Scholar
  146. 146.
    Uysal, E., Dayar, T.: Iterative methods based on splittings for stochastic automata networks. Eur. J. Oper. Res. 110, 166–186 (1998)MATHCrossRefGoogle Scholar
  147. 147.
    van der Vorst, H.A.: BI-CGSTAB: a fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13, 631–644 (1992)MATHCrossRefGoogle Scholar
  148. 148.
    Van Loan, C.F.: The ubiquitous Kronecker product. J. Comput. Appl. Math. 123, 85–100 (2000)MathSciNetMATHCrossRefGoogle Scholar
  149. 149.
    Vèque, V., Ben–Othman, J.: MRAP: A multiservices resource allocation policy for wireless ATM network. Comput. Netw. ISDN Syst. 29, 2187–2200 (1998)Google Scholar
  150. 150.
    Wesseling, P.: An Introduction to Multigrid Methods. Wiley, Chichester (1992)MATHGoogle Scholar
  151. 151.
    Wolf, V.: Modelling of biochemical reactions by stochastic automata networks. Electron. Notes Theor. Comput. Sci. 171, 197–208 (2007)CrossRefGoogle Scholar
  152. 152.
    Yao, D.D., Buzacott, J.A.: The exponentialization approach to flexible manufacturing systems models with general processing times. Eur. J. Oper. Res. 24, 410–416 (1986)MATHCrossRefGoogle Scholar

Copyright information

© Tugrul Dayar 2012

Authors and Affiliations

  • Tuğrul Dayar
    • 1
  1. 1.Department of Computer EngineeringBilkent UniversityAnkaraTurkey

Personalised recommendations