Skip to main content

Part of the book series: SpringerBriefs in Mathematics ((BRIEFSMATH))

  • 1208 Accesses

Abstract

Classical iterative methods for the solution of a linear system of equations as in (1.3) start with an initial approximation. At each iteration, they multiply the current approximation with a particular matrix to obtain a new approximation with the objective that the approximations eventually converge to the true solution [83, 130]. These methods are the building blocks of all advanced iterative methods. The matrix used in the iterative multiplication process is obtained at the outset by splitting the coefficient matrix of the linear system, which is Q in our setting. Therefore, we begin by splitting the smaller matrices that form the Kronecker products as in [146] and show how classical iterative methods can be formulated in terms of these smaller matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akyildiz, I.F.: Mean value analysis for blocking queueing networks. IEEE Trans. Softw. Eng. 14, 418–428 (1988)

    Google Scholar 

  2. Aldous, D., Shepp, L.: The least variable phase type distribution is Erlang. Stoch. Model. 3, 467–473 (1987)

    MathSciNet  MATH  Google Scholar 

  3. APNN–Toolbox. http://www4.cs.uni-dortmund.de/APNN-TOOLBOX/ (2004). Accessed 4 Apr 2012

  4. Bao, Y., Bozkurt, I.N., Dayar, T., Sun, X., Trivedi, K.S.: Decompositional analysis of Kronecker structured Markov chains. Electron. Trans. Numer. Anal. 31, 271–294 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Barker, V.A.: Numerical solution of sparse singular linear systems of equations arising from ergodic Markov chains. Comm. Stat. Stoch. Model. 5, 355–381 (1989)

    MathSciNet  Google Scholar 

  6. Baumann, H., Sandmann, W.: Numerical solution of level dependent quasi-birth-and-death processes. In: International Conference on Computational Science, Procedia Computer Science, vol. 1, pp. 1555–1563. Elsevier, Amsterdam (2010)

    Google Scholar 

  7. Bause, F., Buchholz, P., Kemper, P.: A toolbox for functional and quantitative analysis of DEDS. In: Puigjaner, R., Savino, N.N., Serra, B. (eds.) Quantitative Evaluation of Computing and Communication Systems, Lecture Notes in Computer Science, vol. 1469, pp. 356–359. Springer, Berlin Heidelberg New York (1998)

    Google Scholar 

  8. Benoit, A., Brenner, L., Fernandes, P., Plateau, B., Stewart, W.J.: The Peps software tool. In: Kemper, P., Sanders, W.H. (eds.) Computer Performance Evaluation: Modelling Techniques and Tools, Lecture Notes in Computer Science, vol. 2794, pp. 98–115. Springer, Heidelberg (2003)

    Google Scholar 

  9. Benoit, A., Brenner, L., Fernandes, P., Plateau, B.: Aggregation of stochastic automata networks with replicas. Linear Algebr. Appl. 386, 111–136 (2004)

    MathSciNet  MATH  Google Scholar 

  10. Benoit, A., Fernandes, P., Plateau, B., Stewart, W.J.: On the benefits of using functional transitions and Kronecker algebra. Perform. Eval. 58, 367–390 (2004)

    Google Scholar 

  11. Benoit, A., Plateau, B., Stewart, W.J.: Memory-efficient Kronecker algorithms with applications to the modelling of parallel systems. Futur. Gener. Comput. Syst. 22, 838–847 (2006)

    Google Scholar 

  12. Benzi, M: Preconditioning techniques for large linear systems: a survey. J. Comput. Phys. 182, 418–477 (2002)

    MathSciNet  MATH  Google Scholar 

  13. Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences. SIAM, Philadelphia, Pennslyvania (1994)

    MATH  Google Scholar 

  14. Bini, D.A., Latouche, G., Meini, B.: Numerical Methods for Structured Markov Chains. Oxford University, Oxford (2005)

    MATH  Google Scholar 

  15. Brenner, L., Fernandes, P., Plateau, B., Sbeity, I.: PEPS 2007 – Stochastic automata networks software tool. In: Proceedings of the Fourth International Conference on Quantitative Evaluation of Computer Systems and Technologies, pp. 163–164. IEEE Computer Society, Edinburgh (2007)

    Google Scholar 

  16. Brenner, L., Fernandes, P., Fourneau, J.-M., Plateau, B.: Modelling Grid5000 point availability with SAN. Electron. Notes Theor. Comput. Sci. 232, 165–178 (2009)

    Google Scholar 

  17. Briggs, W.L., Henson, V.E., McCormick, S.F.: A Multigrid Tutorial, 2nd edn. SIAM, Philadelphia, Pennslyvania (2000)

    MATH  Google Scholar 

  18. Bright, L., Taylor, P.G.: Calculating the equilibrium distribution in level dependent quasi-birth-and-death processes. Stoch. Model. 11, 497–525 (1995)

    MathSciNet  MATH  Google Scholar 

  19. Buchholz, P.: A class of hierarchical queueing networks and their analysis. Queue. Syst. 15, 59–80 (1994)

    MathSciNet  MATH  Google Scholar 

  20. Buchholz, P.: Exact and ordinary lumpability in finite Markov chains. J. Appl. Probab. 31, 59–75 (1994)

    MathSciNet  MATH  Google Scholar 

  21. Buchholz, P.: Hierarchical Markovian models: symmetries and reduction. Perform. Eval. 22, 93–110 (1995)

    Google Scholar 

  22. Buchholz, P.: An aggregation ∖ disaggregation algorithm for stochastic automata networks. Probab. Eng. Inf. Sci. 11, 229–253 (1997)

    MathSciNet  MATH  Google Scholar 

  23. Buchholz, P.: Exact performance equivalence: An equivalence relation for stochastic automata. Theor. Comput. Sci. 215, 263–287 (1999)

    MathSciNet  MATH  Google Scholar 

  24. Buchholz, P.: Hierarchical structuring of superposed GSPNs. IEEE Trans. Softw. Eng. 25, 166–181 (1999)

    Google Scholar 

  25. Buchholz, P.: Structured analysis approaches for large Markov chains. Appl. Numer. Math. 31, 375–404 (1999)

    MathSciNet  MATH  Google Scholar 

  26. Buchholz, P.: Projection methods for the analysis of stochastic automata networks. In: Plateau, B., Stewart, W.J., Silva, M. (eds.) Numerical Solution of Markov Chains, pp. 149–168. Prensas Universitarias de Zaragoza, Zaragoza (1999)

    Google Scholar 

  27. Buchholz, P.: An adaptive aggregation/disaggregation algorithm for hierarchical Markovian models. Eur. J. Oper. Res. 116, 545–564 (1999)

    MATH  Google Scholar 

  28. Buchholz, P.: Multilevel solutions for structured Markov chains. SIAM J. Matrix Anal. Appl. 22, 342–357 (2000)

    MathSciNet  MATH  Google Scholar 

  29. Buchholz, P.: Efficient computation of equivalent and reduced representations for stochastic automata. Comput. Syst. Sci. Eng. 15, 93–103 (2000)

    MathSciNet  MATH  Google Scholar 

  30. Buchholz, P.: An iterative bounding method for stochastic automata networks. Perform. Eval. 49, 211–226 (2002)

    MATH  Google Scholar 

  31. Buchholz, P.: Adaptive decomposition and approximation for the analysis of stochastic Petri nets. Perform. Eval. 56, 23–52 (2004)

    Google Scholar 

  32. Buchholz, P., Dayar, T.: Block SOR for Kronecker structured Markovian representations. Linear Algebr. Appl. 386, 83–109 (2004)

    MathSciNet  MATH  Google Scholar 

  33. Buchholz, P., Dayar, T.: Comparison of multilevel methods for Kronecker structured Markovian representations. Computing 73, 349–371 (2004)

    MathSciNet  MATH  Google Scholar 

  34. Buchholz, P., Dayar, T.: Block SOR preconditioned projection methods for Kronecker structured Markovian representations. SIAM J. Sci. Comput. 26, 1289–1313 (2005)

    MathSciNet  MATH  Google Scholar 

  35. Buchholz, P., Dayar, T.: On the convergence of a class of multilevel methods for large, sparse Markov chains. SIAM J. Matrix Anal. Appl. 29, 1025–1049 (2007)

    MathSciNet  MATH  Google Scholar 

  36. Buchholz, P., Kemper, P.: On generating a hierarchy for GSPN analysis. Perform. Eval. Rev. 26, 5–14 (1998)

    Google Scholar 

  37. Buchholz, P., Kemper, P.: Kronecker based representations of large Markov chains. In: Haverkort, B., Hermanns, H., Siegle, M. (eds.) Validation of Stochastic Systems, Lecture Notes in Computer Science, vol. 2925, pp. 256–295. Springer, Berlin Heidelberg New York (2004)

    Google Scholar 

  38. Buchholz, P., Ciardo, G., Donatelli, S., Kemper, P.: Complexity of memory-efficient Kronecker operations with applications to the solution of Markov models. INFORMS J. Comput. 12, 203–222 (2000)

    MathSciNet  MATH  Google Scholar 

  39. Campos, J., Donatelli, S., Silva, M.: Structured solution of asynchronously communicating stochastic models. IEEE Trans. Softw. Eng. 25, 147–165 (1999)

    Google Scholar 

  40. Cao, W.-L., Stewart, W.J.: Aggregation/disaggregation methods for nearly uncoupled Markov chains. J. ACM 32, 702–719 (1985)

    MathSciNet  MATH  Google Scholar 

  41. Chan, R.H., Ching, W.K.: Circulant preconditioners for stochastic automata networks. Numer. Math. 87, 35–57 (2000)

    MathSciNet  MATH  Google Scholar 

  42. Chung, M.-Y., Ciardo, G., Donatelli, S., He, N., Plateau, B., Stewart, W., Sulaiman, E., Yu, J.: A comparison of structural formalisms for modeling large Markov models. In: Proceedings of the 18th International Parallel and Distributed Processing Symposium, pp. 196b. IEEE Computer Society, Edinburgh (2004)

    Google Scholar 

  43. Ciardo, G., Miner, A.S.: A data structure for the efficient Kronecker solution of GSPNs. In: Buchholz, P., Silva, M. (eds.) Proceedings of the 8th International Workshop on Petri Nets and Performance Models, pp. 22–31. IEEE Computer Society, Edinburgh (1999)

    Google Scholar 

  44. Ciardo, G., Jones, R.L., Miner, A.S., Siminiceanu, R.: Logical and stochastic modeling with SMART. In: Kemper, P., Sanders, W.H. (eds.) Computer Performance Evaluation: Modelling Techniques and Tools, Lecture Notes in Computer Science, vol. 2794, pp. 78–97. Springer, Heidelberg (2003)

    Google Scholar 

  45. Clark, G., Gilmore, S., Hillston, J., Thomas, N.: Experiences with the PEPA performance modelling tools. IEE Softw. 146, 11–19 (1999)

    Google Scholar 

  46. Courtois, P.-J., Semal, P.: Bounds for the positive eigenvectors of nonnegative matrices and for their approximations by decomposition. J. ACM 31, 804-825 (1984)

    MathSciNet  MATH  Google Scholar 

  47. Czekster, R.M., Fernandes, P., Vincent, J.-M., Webber, T.: Split: a flexible and efficient algorithm to vector–descriptor product. In: Glynn, P.W. (ed.) Proceedings of the 2nd International Conference on Performance Evaluation Methodologies and Tools, 83. Nantes, ACM International Conference Proceeding Series (2007)

    Google Scholar 

  48. Czekster, R.M., Fernandes, P., Webber, T.: GTAexpress: A software package to handle Kronecker descriptors. In: Proceedings of the Sixth International Conference on Quantitative Evaluation of Computer Systems and Technologies, pp. 281–282. IEEE Computer Society, Budapest (2009)

    Google Scholar 

  49. Dao-Thi, T.-H., Fourneau, J.-F.: Stochastic automata networks with master/slave synchronization: Product form and tensor. In: Al-Begain, K., Fiems, D., Horvaáthe, G. (eds.) Proceedings of the 16th International Conference on Analytical and Stochastic Modeling Techniques and Applications, Lecture Notes in Computer Science, vol. 5513, pp. 279–293. Springer, Heidelberg (2009)

    Google Scholar 

  50. Davio, M.: Kronecker products and shuffle algebra. IEEE Trans. Comput. C-30, 116–125 (1981)

    MathSciNet  Google Scholar 

  51. Davis, T.A., Gilbert, J.R., Larimore, S., Ng, E.: Algorithm 836: COLAMD, a column approximate minimum degree ordering algorithm. ACM Trans. Math. Softw. 30, 377–380 (2004)

    MathSciNet  MATH  Google Scholar 

  52. Dayar, T.: State space orderings for Gauss–Seidel in Markov chains revisited. SIAM J. Sci. Comput. 19, 148–154 (1998)

    MathSciNet  MATH  Google Scholar 

  53. Dayar, T.: Permuting Markov chains to nearly completely decomposable form. Technical Report BU–CEIS–9808, Department of Computer Engineering and Information Science, Bilkent University, Ankara (1998)

    Google Scholar 

  54. Dayar, T.: Effects of reordering and lumping in the analysis of discrete–time SANs. In: Gardy, D., Mokkadem, A. (eds.) Mathematics and Computer Science: Algorithms, Trees, Combinatorics and Probabilities, pp. 209–220. Birkhauser, Switzerland (2000)

    Google Scholar 

  55. Dayar, T.: Analyzing Markov chains based on Kronecker products. In: Langville, A.N., Stewart, W.J. (eds.) MAM 2006: Markov Anniversary Meeting, pp. 279–300. Boson Books, Raleigh, North Carolina (2006)

    Google Scholar 

  56. Dayar, T., Meriç, A.: Kronecker representation and decompositional analysis of closed queueing networks with phase-type service distributions and arbitrary buffer sizes. Ann. Oper. Res. 164, 193–210 (2008)

    MathSciNet  MATH  Google Scholar 

  57. Dayar, T., Orhan, M.C.: LDQBD solver version 2. http://www.cs.bilkent.edu.tr/~tugrul/software.html (2011). Accessed 4 Apr 2012

  58. Dayar, T., Stewart, W.J.: Quasi lumpability, lower-bounding coupling matrices, and nearly completely decomposable Markov chains. SIAM J. Matrix Anal. Appl. 18, 482–498 (1997)

    MathSciNet  MATH  Google Scholar 

  59. Dayar, T., Stewart, W.J.: Comparison of partitioning techniques for two-level iterative solvers on large, sparse Markov chains. SIAM J. Sci. Comput. 21, 1691–1705 (2000)

    MathSciNet  MATH  Google Scholar 

  60. Dayar, T., Pentakalos, O.I., Stephens, A.B.: Analytical modeling of robotic tape libraries using stochastic automata. Technical Report TR–97–189, Center of Excellence in Space Data & Information Systems, NASA/Goddard Space Flight Center, Greenbelt, Maryland (1997)

    Google Scholar 

  61. Dayar, T., Hermanns, H., Spieler, D., Wolf, V.: Bounding the equilibrium distribution of Markov population models. Numer. Linear Algebr. Appl. 18, 931–946 (2011)

    MathSciNet  Google Scholar 

  62. Dayar, T., Sandmann, W., Spieler, D., Wolf, V.: Infinite level–dependent QBDs and matrix analytic solutions for stochastic chemical kinetics. Adv. Appl. Probab. 43, 1005–1026 (2011)

    MathSciNet  MATH  Google Scholar 

  63. Donatelli, S.: Superposed stochastic automata: a class of stochastic Petri nets with parallel solution and distributed state space. Perform. Eval. 18, 21–26 (1993)

    MathSciNet  MATH  Google Scholar 

  64. Duff, I.S., Erisman, A.M., Reid, J.K.: Direct Methods for Sparse Matrices. Clarendon, Oxford (1986)

    MATH  Google Scholar 

  65. Fernandes, P., Plateau, B.: Triangular solution of linear systems in tensor product format. Perform. Eval. Rev. 28(4), 30–32 (2001)

    Google Scholar 

  66. Fernandes, P., Plateau, B., Stewart, W.J.: Efficient descriptor–vector multiplications in stochastic automata networks. J. ACM 45, 381–414 (1998)

    MathSciNet  MATH  Google Scholar 

  67. Fernandes, F., Plateau, B., Stewart, W.J.: Optimizing tensor product computations in stochastic automata networks. RAIRO Oper. Res. 32, 325–351 (1998)

    MathSciNet  Google Scholar 

  68. Fletcher, R.: Conjugate gradient methods for indefinite systems. In: Watson, G.A. (ed.) Proceedings of the Dundee Conference on Numerical Analysis, Lecture Notes in Mathematics, vol. 506, pp. 73–89. Springer, Heidelberg (1976)

    Google Scholar 

  69. Fourneau, J.-M.: Discrete time stochastic automata networks: using structural properties and stochastic bounds to simplify the SAN. In: Glynn, P.W. (ed.) Proceedings of the 2nd International Conference on Performance Evaluation Methodologies and Tools, 84. Nantes, ACM International Conference Proceeding Series (2007)

    Google Scholar 

  70. Fourneau, J.-M.: Product form steady-state distribution for stochastic automata networks with domino synchronizations. In: Thomas, N., Juiz, C. (eds.) Proceedings of the 5th European Performance Engineering Workshop, Lecture Notes in Computer Science, vol. 5261, pp. 110–124. Springer, Berlin Heidelberg New York (2008)

    Google Scholar 

  71. Fourneau, J.-M.: Collaboration of discrete-time Markov chains: tensor and product form. Perform Eval. 67, 779–796 (2010)

    Google Scholar 

  72. Fourneau, J.-M., Quessette, F.: Graphs and stochastic automata networks. In: Stewart, W.J. (ed.) Computations with Markov Chains. In: Proceedings of the 2nd International Workshop on the Numerical Solution of Markov Chains, pp. 217–235. Kluwer, Boston (1995)

    Google Scholar 

  73. Fourneau, J.-M., Maisonniaux, H., Pekergin, N., Véque, V.: Performance evaluation of a buffer policy with stochastic automata networks. In: IFIP Workshop on Modelling and Performance Evaluation of ATM Technology, vol. C–15, pp. 433–451. La Martinique, IFIP Transactions North-Holland, Amsterdam (1993)

    Google Scholar 

  74. Fourneau, J.-M., Kloul, L., Pekergin, N., Quessette, F., Véque, V.: Modelling buffer admission mechanisms using stochastic automata networks. Rev. Ann. Télécommun. 49, 337–349 (1994)

    Google Scholar 

  75. Fourneau, J.-M., Plateau, B., Stewart, W.J.: An algebraic condition for product form in stochastic automata networks without synchronizations. Perform. Eval. 65, 854–868 (2008)

    Google Scholar 

  76. Freund, R.W., Nachtigal, N.M.: QMR: a quasi-minimal residual method for non-Hermitian linear systems. Numer. Math. 60, 315–339 (1991)

    MathSciNet  MATH  Google Scholar 

  77. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361 (1977)

    Google Scholar 

  78. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University, Baltimore (1996)

    MATH  Google Scholar 

  79. Gordon, J.W., Newell, G.F.: Closed queueing systems with exponential servers. Oper. Res. 15, 252–267 (1967)

    Google Scholar 

  80. Grassmann, W.K.: Transient solutions in Markovian queueing systems. Comput. Oper. Res. 4, 47–56 (1977)

    Google Scholar 

  81. Grassmann, W.K. (ed.): Computational Probability. Kluwer, Norwell, MA (2000)

    MATH  Google Scholar 

  82. Grassmann, W.K., Stanford, D.A.: Matrix analytic methods. In: Grassmann, W.K. (ed.) Computational Probability, pp. 153–204. Kluwer, Norwell, MA (2000)

    Google Scholar 

  83. Greenbaum, A.: Iterative Methods for Solving Linear Systems. SIAM, Philadelphia, Pennslyvania (1997)

    MATH  Google Scholar 

  84. Gross, D., Miller, D.R.: The randomization technique as a modeling tool and solution procedure for transient Markov processes. Oper. Res. 32, 343–361 (1984)

    MathSciNet  MATH  Google Scholar 

  85. Gusak, O., Dayar, T.: Iterative aggregation–disaggregation versus block Gauss–Seidel on continuous-time stochastic automata networks with unfavorable partitionings. In: Obaidat, M.S., Davoli, F. (eds.) Proceedings of the 2001 International Symposium on Performance Evaluation of Computer and Telecommunication Systems, pp. 617–623. Orlando, Florida (2001)

    Google Scholar 

  86. Gusak, O., Dayar, T., Fourneau, J.-M.: Stochastic automata networks and near complete decomposability. SIAM J. Matrix Anal. Appl. 23, 581–599 (2001)

    MathSciNet  MATH  Google Scholar 

  87. Gusak, O., Dayar, T., Fourneau, J.-M.: Lumpable continuous-time stochastic automata networks. Eur. J. Oper. Res. 148, 436–451 (2003)

    MathSciNet  MATH  Google Scholar 

  88. Gusak, O., Dayar, T., Fourneau, J.-M.: Iterative disaggregation for a class of lumpable discrete-time stochastic automata networks. Perform. Eval. 53, 43–69 (2003)

    Google Scholar 

  89. Haddad, S., Moreaux, P.: Asynchronous composition of high–level Petri nets: a quantitative approach. In: Billington, J., Reisig, W. (eds.) Proceedings of the 17th International Conference on Application and Theory of Petri Nets, Lecture Notes in Computer Science, vol. 1091, pp. 192–211. Springer, Heidelberg (1996)

    Google Scholar 

  90. Haverkort, B.R.: Performance of Computer Communication Systems: A Model-Based Approach. Wiley, New York (1998)

    Google Scholar 

  91. Hillston, J., Kloul, L.: An efficient Kronecker representation for PEPA models. In: de Alfaro, L., Gilmore, S. (eds.) Proceedings of the 1st Process Algebras and Performance Modeling, Probabilistic Methods in Verification Workshop, Lecture Notes in Computer Science, vol. 2165, pp. 120–135. Springer, Berlin Heidelberg New York (2001)

    Google Scholar 

  92. Horton, G., Leutenegger, S.: A multi-level solution algorithm for steady state Markov chains. Perform. Eval. Rev. 22(1), 191–200 (1994)

    Google Scholar 

  93. Kemeny, J.G., Snell, J.L.: Finite Markov Chains. Springer, Berlin Heidelberg New York (1983)

    MATH  Google Scholar 

  94. Kemper, P.: Numerical analysis of superposed GSPNs. IEEE Trans. Softw. Eng. 22, 615–628 (1996)

    Google Scholar 

  95. Koury, J.R., McAllister, D.F., Stewart, W.J.: Iterative methods for computing stationary distributions of nearly completely decomposable Markov chains. SIAM J. Algebr. Discrete Math. 5, 164–186 (1984)

    MathSciNet  MATH  Google Scholar 

  96. Krieger, U.: Numerical solution of large finite Markov chains by algebraic multigrid techniques. In: Stewart, W.J. (ed.) Computations with Markov Chains, pp. 403–424. Kluwer, Boston (1995)

    Google Scholar 

  97. Kurtz, T.G.: The relationship between stochastic and deterministic models for chemical reactions. J. Chem. Phys. 57, 2976–2978 (1972)

    Google Scholar 

  98. Langville, A.N., Stewart, W.J.: The Kronecker product and stochastic automata networks. J. Comput. Appl. Math. 167, 429–447 (2004)

    MathSciNet  MATH  Google Scholar 

  99. Langville, A.N., Stewart, W.J.: Testing the nearest Kronecker product preconditioner on Markov chains and stochastic automata networks. INFORMS J. Comput. 16, 300–315 (2004)

    MathSciNet  MATH  Google Scholar 

  100. Langville, A.N., Stewart, W.J.: A Kronecker product approximate preconditioner for SANs. Numer. Linear Algebr. Appl. 11, 723–752 (2004)

    MathSciNet  MATH  Google Scholar 

  101. Latouche, G., Ramaswami, V.: Introduction to Matrix Analytic Methods in Stochastic Modeling. SIAM, Philadelphia, Pennslyvania (1999)

    MATH  Google Scholar 

  102. Lee, T.L., Li, T.Y., Tsai, C.H.: HOM4PS-2.0: A software package for solving polynomial systems by the polyhedral homotopy continuation method. Computing 83, 109–133 (2008)

    MathSciNet  MATH  Google Scholar 

  103. Li, H., Cao, Y., Petzold, L.R., Gillespie, D.: Algorithms and software for stochastic simulation of biochemical reacting systems. Biotechnol. Prog. 24, 56–62 (2008)

    Google Scholar 

  104. Loinger, A., Biham, O.: Stochastic simulations of the repressilator circuit. Phys. Rev. E 76, 051917 (2007)

    Google Scholar 

  105. Marek, I., Mayer, P.: Convergence analysis of an iterative aggregation/disaggregation method for computing stationary probability vectors of stochastic matrices. Numer. Linear Algebr. Appl. 5, 253–274 (1998)

    MathSciNet  MATH  Google Scholar 

  106. Marek, I., Pultarová, I.: A note on local and global convergence analysis of iterative aggregation–disaggregation methods. Linear Algebra Appl. 413, 327-341 (2006)

    MathSciNet  MATH  Google Scholar 

  107. Marie, A.R.: An approximate analytical method for general queueing networks. IEEE Trans. Softw. Eng. 5, 530–538 (1979)

    MathSciNet  MATH  Google Scholar 

  108. Meriç, A.: Kronecker Representation and Decompositional Analysis of Closed Queueing Networks with Phase–Type Service Distributions and Arbitrary Buffer Sizes. M.S. Thesis, Department of Computer Engineering, Bilkent University, Ankara, Turkey (2007)

    Google Scholar 

  109. Meriç, A.: Software for Kronecker Representation and Decompositional Analysis of Closed Queueing Networks with Phase-Type Service Distributions and Arbitrary Buffer Sizes. http://www.cs.bilkent.edu.tr/~tugrul/software.html (2007). Accessed 4 Apr 2012

  110. Meyer, C.D.: Stochastic complementation, uncoupling Markov chains, and the theory of nearly reducible systems. SIAM Rev. 31, 240–272 (1989)

    MathSciNet  MATH  Google Scholar 

  111. Meyer, C.D.: Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia (2000)

    MATH  Google Scholar 

  112. Migallón, V., Penadés, J., Syzld, D.B.: Block two-stage methods for singular systems and Markov chains. Numer. Linear Algebr. Appl. 3, 413–426 (1996)

    MATH  Google Scholar 

  113. Neuts, M.F.: Matrix-Geometric Solutions in Stochastic Models: An Algorithhmic Approach. Johns Hopkins University Press, Baltimore (1981)

    Google Scholar 

  114. Neuts, M.F.: Structured Stochastic Matrices of M/G/1 Type and Their Applications. Marcel Dekker, New York (1989)

    MATH  Google Scholar 

  115. Orhan, M.C.: Kronecker-based Infinite Level-Dependent QBDs: Matrix Analytic Solution versus Simulation. M.S. Thesis, Department of Computer Engineering, Bilkent University, Ankara, Turkey (2011)

    Google Scholar 

  116. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Comput. 16, 973–989 (1987)

    MathSciNet  MATH  Google Scholar 

  117. PEPA Home Page. http://www.dcs.ed.ac.uk/pepa/tools/ (2005). Accessed 4 Apr 2012

  118. PEPS Home Page. http://www-id.imag.fr/Logiciels/peps (2007). Accessed 4 Apr 2012

  119. Plateau, B.: On the stochastic structure of parallelism and synchronization models for distributed algorithms. Perform. Eval. Rev. 13(2), 147–154 (1985)

    Google Scholar 

  120. Plateau, B., Atif, K.: Stochastic automata network for modeling parallel systems. IEEE Trans. Softw. Eng. 17, 1093–1108 (1991)

    MathSciNet  Google Scholar 

  121. Plateau, B., Fourneau, J.-M.: A methodology for solving Markov models of parallel systems. J. Parallel Distrib. Comput. 12, 370–387 (1991)

    Google Scholar 

  122. Plateau, B., Stewart, W.J.: Stochastic automata networks. In: W.K. Grassmann, W.K. (ed.) Computational Probability, pp. 113–152. Kluwer, Norwell, MA (2000)

    Google Scholar 

  123. Plateau, B.D., Tripathi, S.K.: Performance analysis of synchronization for two communicating processes. Perform. Eval. 8, 305–320 (1988)

    MATH  Google Scholar 

  124. Plateau, B., Fourneau, J.-M., Lee, K.-H.: PEPS: A package for solving complex Markov models of parallel systems. In: Puigjaner, R., Ptier, D. (eds.) Modeling Techniques and Tools for Computer Performance Evaluation, pp. 291–305. Palma de Mallorca (1988)

    Google Scholar 

  125. Pultarová, I., Marek, I.: Convergence of multi-level iterative aggregation–disaggregation methods. J. Comp. Appl. Math 236, 354–363 (2011)

    MATH  Google Scholar 

  126. Ramaswami, V., Taylor, P.G.: Some properties of the rate operators in level dependent quasi-birth-and-death processes with a countable number of phases. Stoch. Model. 12, 143–164 (1996)

    MathSciNet  MATH  Google Scholar 

  127. Ruge, J.W., Stüben, K.: Algebraic multigrid. In: McCormick, S.F. (ed.) Multigrid Methods, Frontiers in Applied Mathematics 3, pp. 73–130. SIAM, Philadelphia (1987)

    Google Scholar 

  128. Saad, Y.: Projection methods for the numerical solution of Markov chain models. In: Stewart, W.J. (ed.) Numerical Solution of Markov Chains, pp. 455–471. Marcel Dekker, New York (1991)

    Google Scholar 

  129. Saad, Y.: Preconditioned Krylov subspace methods for the numerical solution of Markov chains. In: Stewart, W.J. (ed.) Computations with Markov Chains. In: Proceedings of the 2nd International Workshop on the Numerical Solution of Markov Chains, pp. 49–64. Kluwer, Boston (1995)

    Google Scholar 

  130. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003)

    MATH  Google Scholar 

  131. Saad, Y., Schultz, M.H.: GMRES: a generalized minimum residual algorithm for nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)

    MathSciNet  MATH  Google Scholar 

  132. Sbeity, I., Plateau, B.: Structured stochastic modeling and performance analysis of a multiprocessor system. In: Langville, A.N., Stewart, W.J. (eds.) MAM 2006: Markov Anniversary Meeting, pp. 301–314. Boson Books, Raleigh, NC (2006)

    Google Scholar 

  133. Sbeity, I., Brenner, L., Plateau, B., Stewart, W.J.: Phase-type distributions in stochastic automata networks. Eur. J. Oper. Res. 186, 1008–1028 (2008)

    MathSciNet  MATH  Google Scholar 

  134. Scarpa, M., Bobbio, A.: Kronecker representation of stochastic Petri nets with discrete PH distributions. In: Proceedings of the IEEE International Computer Performance and Dependability Symposium, pp. 52–61. IEEE Computer Society, Budapest (1998)

    Google Scholar 

  135. Seneta E.: Non-negative Matrices: An Introduction to Theory and Applications. Allen & Unwin, London (1973)

    MATH  Google Scholar 

  136. SMART Project Home page. http://www.cs.ucr.edu/~ciardo/SMART (2004). Accessed 4 April 2012

  137. Sonneveld, P.: CGS: A fast Lanczos-type solver for nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 10, 36–52 (1989)

    MathSciNet  MATH  Google Scholar 

  138. Stewart, G.W., Stewart, W.J., McAllister, D.F.: A two-stage iteration for solving nearly completely decomposable Markov chains. In: Golub, G.H., Greenbaum, A., Luskin, M. (eds.) The IMA Volumes in Mathematics and its Applications 60: Recent Advances in Iterative Methods, pp. 201–216. Springer, Berlin Heidelberg New York (1994)

    Google Scholar 

  139. Stewart, W.J.: Introduction to the Numerical Solution of Markov Chains. Princeton University Press, Princeton, NJ (1994)

    MATH  Google Scholar 

  140. Stewart, W.J.: Probability, Markov Chains, Queues, and Simulation: The Mathematical Basis of Performance Modeling. Princeton University Press, Princeton, NJ (2009)

    MATH  Google Scholar 

  141. Stewart, W.J., Atif, K., Plateau, B.: The numerical solution of stochastic automata networks. Eur. J. Oper. Res. 86, 503–525 (1995)

    MATH  Google Scholar 

  142. StochKit. http://engineering.ucsb.edu/~cse/StochKit/ (2012). Accessed 4 Apr 2012

  143. Tewarson, R.P.: Sparse Matrices. Academic, New York (1973)

    MATH  Google Scholar 

  144. Touzene, A.: A tensor sum preconditioner for stochastic automata networks. INFORMS J. Comput. 20, 234–242 (2008)

    MathSciNet  MATH  Google Scholar 

  145. Tweedie, R.L.: Sufficient conditions for regularity, recurrence and ergodicity of Markov processes. Math. Proc. Camb. Philos. Soc. 78, 125–136 (1975)

    MathSciNet  MATH  Google Scholar 

  146. Uysal, E., Dayar, T.: Iterative methods based on splittings for stochastic automata networks. Eur. J. Oper. Res. 110, 166–186 (1998)

    MATH  Google Scholar 

  147. van der Vorst, H.A.: BI-CGSTAB: a fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13, 631–644 (1992)

    MATH  Google Scholar 

  148. Van Loan, C.F.: The ubiquitous Kronecker product. J. Comput. Appl. Math. 123, 85–100 (2000)

    MathSciNet  MATH  Google Scholar 

  149. Vèque, V., Ben–Othman, J.: MRAP: A multiservices resource allocation policy for wireless ATM network. Comput. Netw. ISDN Syst. 29, 2187–2200 (1998)

    Google Scholar 

  150. Wesseling, P.: An Introduction to Multigrid Methods. Wiley, Chichester (1992)

    MATH  Google Scholar 

  151. Wolf, V.: Modelling of biochemical reactions by stochastic automata networks. Electron. Notes Theor. Comput. Sci. 171, 197–208 (2007)

    Google Scholar 

  152. Yao, D.D., Buzacott, J.A.: The exponentialization approach to flexible manufacturing systems models with general processing times. Eur. J. Oper. Res. 24, 410–416 (1986)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Tugrul Dayar

About this chapter

Cite this chapter

Dayar, T. (2012). Iterative Methods. In: Analyzing Markov Chains using Kronecker Products. SpringerBriefs in Mathematics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4190-8_3

Download citation

Publish with us

Policies and ethics