Fundamental Concepts

Chapter

Abstract

Over the last decade, the semiconductor industry has experienced phenomenal growth, which has resulted in unprecedented research and technological developments in numerous domains of science and engineering. As per Moore’s Law, the emergence of the nanometer generation of very-large scale integrated (VLSI) systems has led to chip densities of over a million transistors per square millimeter, which can operate at extremely high frequencies. This rapid growth has culminated in significant performance gains and breakthroughs in a plethora of fields ranging from advanced computing platforms, to communication, security, healthcare, biomedical systems and ultra-low power devices such as wireless micro-sensors. However, this tremendous growth has incurred extremely high levels of power dissipation, resulting in an energy crisis in modern ICs. High power dissipation levels also leads to significant heat generation, increasing risk of transistor breakdown effects. This places a tremendous stress on corresponding cooling and packaging solutions, thereby adding to size, cost and weight of the entire system. Moreover, the energy crisis is further exacerbated by a much slower pace in battery technology development.

Keywords

Nickel Dioxide Cadmium Settling Harness 

References

  1. 1.
    Benini L, Bogliolo A, DeMicheli G (2000) A survey of design techniques for system level dynamic power management. IEEE Trans Very Large Scale (VLSI) Syst 8(3):299–316CrossRefGoogle Scholar
  2. 2.
    Sinha A, Chandrakasan A (2001) Dynamic power management in wireless sensor networks. IEEE Des Test Comput 18(2):62–74CrossRefGoogle Scholar
  3. 3.
    Chandra S, Lahiri K, Raghunathan A, Dey S (2009) Variation-tolerant dynamic power management at the system level. IEEE Trans Very Large Scale Integr (VLSI) Syst 17(9):1220–1232CrossRefGoogle Scholar
  4. 4.
    Burd TD, Pering TA, Stratakos AJ, Brodersen RW (2000) A dynamically voltage scaled microprocessor system. IEEE J Solid-State Circ 35(11):1571–1580CrossRefGoogle Scholar
  5. 5.
    Simunic T, Benini L, Acquaviva A, Glynnnad P, DeMicheli G (2001) Dynamic voltage scaling and power management for portable systems. In: Proceedings of design automation conference (DAC), pp 524–529Google Scholar
  6. 6.
    Yan L, Luo J, Jha NK (2005) Joint dynamic voltage scaling and adaptive body biasing for heterogeneous distributed real-time embedded systems. IEEE Trans Comput-Aided Des Integr Circ Syst 24(7):1030–1041CrossRefGoogle Scholar
  7. 7.
    Das S, Roberts D, Lee S, Pant S, Blaauw D, Austin T, Flautner K, Mudge T (2006) A self-tuning DVS processor using delay-error detection and correction. IEEE J Solid-State Circ 41(4):792–804CrossRefGoogle Scholar
  8. 8.
    Nowka JK, Carpenter GD, MacDonald EW, Ngo HC, Brock BC, Ishii KI, Nguyen TY, Burns JL (2002) A 32-bit power PC system-on-a-chip with support for dynamic voltage scaling and dynamic frequency scaling. IEEE J Solid-State Circ 37(11):1441–1447CrossRefGoogle Scholar
  9. 9.
    Raghunathan V, Kansal A, Hsu J, Friedman J, Srivastava M (2005) Design considerations for solar energy harvesting wireless embedded systems. In: 4th International symposium on information processing in sensor networks, pp 457–462Google Scholar
  10. 10.
    Lacerda VG, Mageste AB, Santos IJB, da Silva JHM, da Silva MCH (2009) Separation of Cd and Ni from Ni–Cd batteries by an environmentally safe methodology employing aqueous two-phase systems. J Power Sources 193(5):908–913CrossRefGoogle Scholar
  11. 11.
    Ottman GK, Hofmann HF, Bhatt AC, Lesieutre GA (2002) Adaptive piezoelectric energy harvesting circuit for wireless remote power supply. IEEE Trans Power Electron 17(5):669–676CrossRefGoogle Scholar
  12. 12.
    Ramadass YK, Chandrakasan AP (2010) An efficient piezoelectric energy harvesting interface circuit using a bias-flip rectifier and shared inductor. IEEE J Solid-State Circ 45(1):189–204CrossRefGoogle Scholar
  13. 13.
    Torres EO, Rincon-Mora GA (2009) Electrostatic energy harvesting and battery charging CMOS system prototype. IEEE Trans Circ Syst 56(9):1938–1948MathSciNetCrossRefGoogle Scholar
  14. 14.
    Torres EO, Rincon-Mora GA (2010) A 0.7 μm BiCMOS electrostatic energy harvesting system IC. IEEE J Solid-State Circ 45(2):483–496CrossRefGoogle Scholar
  15. 15.
    Beeby SP, Torah RN, Tudor MJ, Glynne-Jones P, O’Donnell T, Saha CR, Roy S (2007) A micro electromagnetic generator for vibration energy harvesting. J Micromech Microeng 17(7):1257–1265CrossRefGoogle Scholar
  16. 16.
    Saha CR, O’Donnell T, Loder H, Beeby S, Tudor J (2006) Optimization of an electromagnetic energy harvesting device. IEEE Trans Magn 42(10):3509–3511CrossRefGoogle Scholar
  17. 17.
    Lhermet H, Condemine C, Plissonnier M, Salot R, Audebert P, Rosset M (2008) Efficient power management circuit: from thermal energy harvesting to above-IC microbattery energy storage. IEEE J Solid-State Circ 43(1):246–255CrossRefGoogle Scholar
  18. 18.
    Snyder GJ (2008) Small thermoelectric generators. Electrochem Soc Interface 17(3):54–56Google Scholar
  19. 19.
    Chaimanonart N, Young DJ (2006) Remote RF powering system for wireless MEMS strain sensors. IEEE Sens J 6(2):484–489CrossRefGoogle Scholar
  20. 20.
    Duggirala R, Lai A, Polcawich RG, Dubey M (2006) CMOS compatible multiple power-output MEMS radioisotope μ-power generator. In: IEEE International Electron Devices Meeting, pp 1–4Google Scholar
  21. 21.
    Lal A, Duggirala R, Li H (2005) Pervasive power: a radioisotope-powered piezoelectric generator. IEEE Pervasive Comput 4(1):53–61CrossRefGoogle Scholar
  22. 22.
    Soeleman H, Roy K, Paul BC (2001) Robust subthreshold logic for ultra-low power operation. IEEE Trans Very Large Scale Integr (VLSI) Syst 9(1):90–99CrossRefGoogle Scholar
  23. 23.
    Calhoun BH, Wang A, Chandrakasan AP (2005) Modeling and sizing for minimum energy operation in subthreshold circuits. IEEE J Solid-State Circ 40(9):1778–1786CrossRefGoogle Scholar
  24. 24.
    Calhoun BH, Chandrakasan AP (2006) Ultra-dynamic voltage scaling (UDVS) using sub-threshold operation and local voltage dithering. IEEE J Solid-State Circ 41(1):238–245CrossRefGoogle Scholar
  25. 25.
    Kim NS, Austin T, Blaauw D, Mudge T, Flautner K, Hu JS, Irwin MJ, Kandemir M, Narayanan V (2003) Leakage current: moore’s law meets static power. IEEE Comput 36(12):68–75CrossRefGoogle Scholar
  26. 26.
    Kao JT, Miyazaki M, Chandrakasan AP (2002) A 175 mV multiply-accumulate unit using an adaptive supply voltage and body bias architecture. IEEE J Solid-State Circ 37(11):1545–1554CrossRefGoogle Scholar
  27. 27.
    Anis M, Areibi S, Elmasry M (2003) Design and optimization of multithreshold CMOS (MTCMOS) circuits. IEEE Trans Comput-Aided Des Integr Circ Syst 22(10):1324–1342CrossRefGoogle Scholar
  28. 28.
    Huynh WU, Dittmer JJ, Alivisatos AP (2002) Hybrid nanorod-polymer solar cells. Science 295(5564):2425–2427CrossRefGoogle Scholar
  29. 29.
    King RR, Law DC, Edmondson KM, Fetzer CM, Kinsey GS, Yoon H, Sherif RA, Karam NH (2007) 40 % efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells. Appl Phys Lett 90(18):183516–183516-3CrossRefGoogle Scholar
  30. 30.
    Challa VR, Prasad MG, Shi Y, Fisher FT (2008) A vibration energy harvesting device with bidirectional resonance frequency tenability. Smart Mater Struct 17(1):015035.1–015035.10CrossRefGoogle Scholar
  31. 31.
    Roundy S, Zhang Y (2005) Toward self-tuning adaptive vibration-based microgenerators. Proc SPIE 5649(2):373–384CrossRefGoogle Scholar
  32. 32.
    Leland ES, Wright PK (2006) Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload. Smart Mater Struct 15(5):1413–1420CrossRefGoogle Scholar
  33. 33.
    Weber J, Potje-Kanloth K, Haase F, Detemple P, Volklein F, Doll T (2006) Coin-size coiled-up polymer foil thermoelectric power generator for wearable electronics. Sens Actuators, A: Phys 132(1):325–330CrossRefGoogle Scholar
  34. 34.
    Takashiri M, Shirakawa T, Miyazaki K, Tsukamoto H (2007) Fabrication and characterization of bismuth-telluride-based alloy thin film thermoelectric generators by flash evaporation method. Sens Actuators, A: Phys 138(2):329–334CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Electrical EngineeringThe University of Texas at DallasRichardsonUSA

Personalised recommendations