Skip to main content

A Timid Infancy

  • Chapter
  • First Online:
Unravelling the Mystery of the Atomic Nucleus
  • 975 Accesses

Abstract

In the second of the three famous papers, which Niels Bohr wrote in 1913, and in which he described the properties of atoms in terms of quantum physics, he concluded that radioactive phenomena most likely occur in the atomic nucleus:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See p. 108.

  2. 2.

    See p. 51.

  3. 3.

    See p. 60.

  4. 4.

    See p. 72 and 74.

  5. 5.

    The name “ionium” was coined by Bertram Boltwood who identified it as the parent of radium [4]. It is a decay product of uranium 238 and was later shown to be thorium 230.

  6. 6.

    See p. 24.

  7. 7.

    See p. 35.

  8. 8.

    The term atomic weight was used at that time. Today, we prefer to use the term atomic mass. See these terms in the Glossary.

  9. 9.

    The British Association for the Advancement of Science (formerly known as the BA) was founded in 1831. It is a learned society with the object of promoting science, directing general attention to scientific matters.

  10. 10.

    In such experiments, the electric charge is always the same, namely, one unit of positive elementary charge, because one electron is torn out during the ionization of any atom.

  11. 11.

    The screen was made of willemite, a zinc silicate crystal.

  12. 12.

    The English chemist Herbert Watson had measured the density of neon [25] and this was sufficient to deduce its mass. Indeed, according the hypothesis of Avogadro, two identical volumes of any gas, under the same pressure, contain the same number of molecules. The masses of molecules are therefore in the same ratio as their densities.

  13. 13.

    The time taken by a gas to pass through a porous membrane is shorter for a light gas than for a heavy gas. The mixture of different gases will therefore be different after it passes through a porous membrane. Aston attempted to use this property to isolate the isotope 22 of neon.

  14. 14.

    Recall that, at that time, the unit of mass was 1/16 of the mass of oxygen. A mass 20 means 20/16 of the mass of oxygen.

  15. 15.

    See p. 50.

  16. 16.

    The classical radius of the electron is equal to 2. 82 ×10− 13 cm, which is comparable to the size of an atomic nucleus. But today it is no longer believed to be the size of the electron, which is considered to be a point particle.

  17. 17.

    See p. 121.

  18. 18.

    See p. 35.

  19. 19.

    See p. 19.

  20. 20.

    See p. 18.

  21. 21.

    Optics treatise on the gradation of light.

  22. 22.

    See p. 63.

  23. 23.

    See p. 6.

  24. 24.

    See p. 67.

  25. 25.

    See p. 67.

  26. 26.

    See p. 59.

  27. 27.

    See p. 214.

  28. 28.

    Radium E is the isotope 210 of bismuth,210Bi, which decays by β emission, thus becoming polonium (the isotope 210), which, in turn, decays by α emission to become stable lead (the stable isotope 206).

  29. 29.

    See p. 59.

  30. 30.

    See p. 65.

  31. 31.

    See p. 33.

  32. 32.

    For the scintillation method, see p. 70.

  33. 33.

    See p. 69.

  34. 34.

    See p. 70.

  35. 35.

    Indeed it would have eight electric charges, the seven initial ones of the nitrogen nucleus, plus the two of the incoming α-particle, minus the one of the ejected proton.

  36. 36.

    See p. 69.

  37. 37.

    See p. 35.

  38. 38.

    See p. 43.

  39. 39.

    See p. 48.

  40. 40.

    See p. 67.

  41. 41.

    See p. 68.

  42. 42.

    See p. 37.

  43. 43.

    See p. 60.

  44. 44.

    See p. 78.

  45. 45.

    See p. 78.

  46. 46.

    See p. 124.

  47. 47.

    See p. 96.

  48. 48.

    Protons have an electric charge which is only half the charge of the α-particle. They therefore ionize the gas less, thus producing a finer track in the cloud chamber. They are also less slowed down, thereby leaving a longer track.

  49. 49.

    See p. 50.

  50. 50.

    There is an approximately linear relation between the logarithm of the penetration length and that of the radioactive half-life.

  51. 51.

    See p. 147.

  52. 52.

    See p. 126.

References

  1. Bohr, N., “On the Constitution of Atoms and Molecules. Part II : Systems containing only a single nucleus”, Philosophical Magazine 26, 476–502, 1913.

    Google Scholar 

  2. La structure de la matière : rapports et discussions du Conseil de physique Solvay tenu à Bruxelles du 27 au 31 octobre 1913, Gauthier-Villars, Paris, 1921, p. 55.

    Google Scholar 

  3. Rutherford, E., “The Structure of the Atom”, Nature 92, 423, December 11, 1913.

    Google Scholar 

  4. Boltwood, B. B., “The origin of radium”, Nature 76, 544–545, September 26, and 589–589, October 10, 1907.

    Google Scholar 

  5. Merricks, L., The world made new : Frederick Soddy, science, politics, and environment, Oxford University Press, Oxford; New York, 1996.

    Google Scholar 

  6. Trenn, T. J. (editor), Radioactivity and Atomic Theory. Annual Progress Reports on Radioactivity 1904–1920 to the Chemical Society by Frederic Soddy F.R.S., Taylor & Francis, London, 1975.

    Google Scholar 

  7. Soddy, F., “Annual Report for the Chemical Society for 1910, vol. 7”, in Radioactivity and Atomic Theory, edited by Trenn, T. J., pp. 256–286.

    Google Scholar 

  8. Soddy, F., “The Chemistry of Mesothorium”, Journal of the Chemical Society. Transactions 99, 72–83, 1911.

    Google Scholar 

  9. Mendeleev, D. I., “On the Correlations between the Properties of the Elements and their Atomic Weights”, Zhurnal Russkoe Fiziko-Khimicheskoe Obshchestvo (Journal of the Russian Chemical Society) 1, 60–77, 1869. English translation in William B Jensen, ed., Mendeleev on the Periodic Table, selected writings, 1869–1905, New York, Dover, 2005.

    Google Scholar 

  10. Mendeleev, D. I., “Ueber die Beziehungen der Eigenschaften zuden Atomgewichten der Elemente”, Zeitschrift für Chemie und Pharmacie 12, 405–406, 1869.

    Google Scholar 

  11. Meyer, J. L., “Die Natur der chemischen Elemente als Function ihrer Atomgewichte”, Annalen der Chemie und Pharmacie. Supplementband 7, 354–364, 1870.

    Google Scholar 

  12. Mendeleev, D. I., “A natural system of the elements and its use in predicting the properties of undiscovered elements”, Journal of the Russian Chemical Society 3, 25–56, 1871.

    Google Scholar 

  13. Crookes, W., “Opening address to the Chemical Section of the British Association at Birmingham”, Nature 34, 423–432, September 2, 1886.

    Google Scholar 

  14. Soddy, F., “Intra-atomic Charge”, Nature 92, 399–400, December 4, 1913.

    Google Scholar 

  15. Fajans, K., “Über eine Beziehung zwischen der Art einer radioaktiven Umwandlung und dem elektrochemischen Verhalten der betreffenden Radioelemente”, Physikalische Zeitschrift 14, 131–136, February 15, 1913.

    Google Scholar 

  16. Fajans, K., “Die Stellung der Radioelemente im periodischen System”, Physikalische Zeitschrift 14, 136–142, February 15, 1913.

    Google Scholar 

  17. Fajans, K., “Position des éléments radioactifs dans le système périodique”, Le Radium 10, 57–65, 1913.

    Google Scholar 

  18. Fajans, K., “Sur une relation entre la nature d’une transformation radioactive et le rôle électrochimique de l’élément radioactif correspondant”, Le Radium 10, 57–60, 1913.

    Google Scholar 

  19. Fajans, K., “La place des éléments radioactifs dans le système périodique”, Le Radium 10, 61–65, 1913.

    Google Scholar 

  20. Fajans, K., “Remarques sur le travail ‘Position des éléments radioactifs dans le système périodique’ ”, Le Radium 10, 171–174, 1913.

    Google Scholar 

  21. Soddy, F., “The Radio-elements and the Periodic Law”, Chemical News 107, 97–99, February 28, 1913.

    Google Scholar 

  22. Thomson, J. J., “On Rays of positive Electricity”, Philosophical Magazine 13, 561–575, May 1907.

    Google Scholar 

  23. Thomson, J. J., “Rays of Positive Electricity”, Philosophical Magazine 14, 359–364, September 1907.

    Google Scholar 

  24. Thomson, J. J., “Rays of Positive Electricity”, Philosophical Magazine 20, 752–767, October 1910.

    Google Scholar 

  25. Watson, H. E., “The Densities and Molecular Weights of Neon and Helium”, Journal of the Chemical Society, Transactions 97, 810–833, 1910.

    Google Scholar 

  26. Aston, F. W., Mass Spectra and Isotopes, E. Arnold & Co, London, 1933, p. 30.

    Google Scholar 

  27. Thomson, J. J., Rays of Positive Electricity and their Application to Chemical Analyses, Longmans, Green and Co., London, 1913.

    Google Scholar 

  28. Aston, F. W., “The distribution of intensity along the positive ray parabolas of atoms and molecules of hydrogen and its possible explanation”, Proceedings of the Cambridge Philosophical Society 19, 317–323, session of May 19, 1919.

    Google Scholar 

  29. Aston, F. W. and Fowler, R. H., “Some Problems of the Mass-Spectrograph”, Philosophical Magazine 43, 514–528, March 1922.

    Google Scholar 

  30. Aston, F. W., “The Constitution of Atmospheric Neon”, Philosophical Magazine 39, 449–455, April 1920.

    Google Scholar 

  31. Aston, F. W., “The Mass-Spectra of Chemical Elements”, Philosophical Magazine 39, 611–625, May 1920.

    Google Scholar 

  32. Aston, F. W., Isotopes, Edward Arnold & Co, London, 1922.

    Google Scholar 

  33. Ibid., p. 90.

    Google Scholar 

  34. “The British association, Cardiff Meeting, September 7–14,1920”, Engineering 110, 382–383, September 17, 1920.

    Google Scholar 

  35. Jammer, M., Concepts of Mass in classical and modern physics, Harvard University Press, Cambridge, 1961, p 136.

    Google Scholar 

  36. Abraham, M., “Prinzipien der Dynamik des Elektrons”, Physikalische Zeitschrift 1, 57–63, October 10, 1902.

    Google Scholar 

  37. Aston, F. W., Isotopes, p. 101.

    Google Scholar 

  38. Einstein, A., “Zur Elektrodynamik bewegeter Körper”, Annalen der Physik, Leipzig 17, 891–921, 1905.

    Google Scholar 

  39. Einstein, A., “Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig ?”, Annalen der Physik, Leipzig 18, 639–641, 1905.

    Google Scholar 

  40. Langevin, P., “L’inertie de l’énergie et ses conséquences”, Journal de Physique (Paris) 3, 553–591, 1913.

    Google Scholar 

  41. Kaufmann, W., “Über die Konstitution des Elektrons”, Annalen der Physik, Leipzig 19, 487–553, 1906.

    Google Scholar 

  42. Dempster, A. J., “A new method of positive ray analysis”, Physical Review 11, 316–325, April 1918.

    Google Scholar 

  43. Dempster, A. J., “Positive-Ray Analysis of Lithium and Magnesium”, Physical Review 18, 415–422, December 1921.

    Google Scholar 

  44. Dempster, A. J., “Positive-Ray Analysis of Potassium, Calcium and Zinc”, Physical Review 20, 631–638, December 1922.

    Google Scholar 

  45. Costa, J.-L., “Spectres de masse de quelques éléments légers”, Annales de Physique (Paris) 4, 425–456, 1923.

    Google Scholar 

  46. Costa, J.-L., “Détermination précise de la masse du lithium 6 (méthode d’Aston)”, Comptes Rendus de l’Académie des Sciences 180, 1661–1662, session of June 2, 1925.

    Google Scholar 

  47. Aston, F. W., “A New Mass-Spectrograph and the Whole Number Rule”, Proceedings of the Royal Society, London A114, 487–514, 1927.

    Google Scholar 

  48. Aston, F. W., Mass Spectra and Isotopes, E. Arnold & Co, London, 1933.

    Google Scholar 

  49. Ibid., p. 170.

    Google Scholar 

  50. Jensen, C., Controversy and consensus : nuclear beta decay 1911-1934, Basel, Birkhäuser Verlag, 2000.

    Google Scholar 

  51. Rutherford, E., “Uranium Radiation and the Electrical Conduction Produced by It”, Philosophical Magazine 47, 109–163, January 1899.

    Google Scholar 

  52. Bouguer, P., Traité d’optique sur la gradation de la lumière, H.L. Guérin et L.F. Delatour, Paris, 1760, p 232.

    Google Scholar 

  53. Soddy, F., “Annual Report for the Chemical Society for 1908-09, vol. 6”, in Radioactivity and Atomic Theory, edited by Trenn, T. J., pp. 184–219.

    Google Scholar 

  54. Hahn, O., A scientific autobiography, Charles Scribner’s Sons, New York, 1966.

    Google Scholar 

  55. Hahn, O., My life, Macdonald, London, 1970. Translated from Mein Leben, F. Bruckmann, München, 1968.

    Google Scholar 

  56. Gerlach, W. and Hahn, D., Otto Hahn. Ein Forscherleben unserer Zeit, Wissenschaftliche Verlagsgesellschaft MbH, Stuttgart, 1984.

    Google Scholar 

  57. Hahn, O., “A new Radio-Active element, which evolves thorium emanation. Preliminary communication”, Proceedings of the Royal Society, London A76, 115–117, 1905.

    Google Scholar 

  58. Boltwood, B. B., letter to E. Rutherford, dated May 4, 1905, in Rutherford and Boltwood: letters on Radioactivity, edited by Badash, L., p. 72.

    Google Scholar 

  59. Boltwood, B. B., letter to E. Rutherford, dated September 22, 1905, Ibid., p. 81.

    Google Scholar 

  60. Rutherford, E., letter to B. Boltwood, dated October 10, 1905, Ibid., p 90.

    Google Scholar 

  61. Hahn, O., “Ein neues Zwischenprodukt in Thorium”, Physikalische Zeitschrift 8, 277–281, May 1, 1907.

    Google Scholar 

  62. Hahn, O., “Ein kurzlebigen Zwischenprodukt zwischen Mesothor und Radiothor”, Physikalische Zeitschrift 9, 246–248, April 15, 1908.

    Google Scholar 

  63. Sime, R. L., Lise Meitner, a life in Physics, University of California Press, Berkeley, 1996.

    Google Scholar 

  64. Rife, P., Lise Meitner and the Dawn of Nuclear Age, Birkhäuser, Boston, 1999.

    Google Scholar 

  65. Meitner, L., “Über die Absorption der α- und β-Strahlen”, Physikalische Zeitschrift 7, 588–590, 1906.

    Google Scholar 

  66. Meitner, L., “Looking back”, Bulletin of the Atomic Scientists 20, 2–7, November 1964.

    Google Scholar 

  67. Hahn, O. and Meitner, L., “Über die Absorption der β-Strahlen einiger Radioelemente”, Physikalische Zeitschrift 9, 321–333, May 15, 1908.

    Google Scholar 

  68. Hahn, O. and Meitner, L., “Über die β-Strahlen des Aktiniums”, Physikalische Zeitschrift 9, 697–702, October 25, 1908.

    Google Scholar 

  69. Rutherford, E. and Hahn, O., “Mass of the α Particles from Thorium”, Philosophical Magazine 12, 371–378, October 1906.

    Google Scholar 

  70. Hahn, O., A scientific autobiography, p. 55.

    Google Scholar 

  71. von Baeyer, O. and Hahn, O., “Magnetische Linienspektren von Beta-Strahlen”, Physikalische Zeitschrift 11, 488–493, June 1, 1910.

    Google Scholar 

  72. von Baeyer, O., Hahn, O. and Meitner, L., “Über die β-Strahlen des aktiven Niederschlags des Thoriums”, Physikalische Zeitschrift 12, 273–79, April 15, 1911.

    Google Scholar 

  73. Soddy, F., “Annual Report for the Chemical Society for 1908-09, vol. 6”, in Radioactivity and Atomic Theory, edited by Trenn, T. J., p. 230.

    Google Scholar 

  74. Franklin, A., “William Wilson and the Absorption of Beta Rays”, Physics in Perspective 4, 40–77, 2002.

    Google Scholar 

  75. Wilson, W., “On the Absorption of Homogeneous Beta Rays by Matter and on the Variation of the Absorption of the Rays with velocity”, Proceedings of the Royal Society, London A82, 612–628, session of January 24, 1909.

    Google Scholar 

  76. Danysz, J., “Sur les rayons beta de la famille du radium”, Comptes Rendus de l’Académie des Sciences 153, 339–341, session of July 31, 1911.

    Google Scholar 

  77. Danysz, J., “Sur les rayons β de la famille du radium”, Comptes Rendus de l’Académie des Sciences 153, 1066–1068, session of November 27, 1911.

    Google Scholar 

  78. Danysz, J., “Sur les rayons β de la famille du radium”, Le Radium 9, 1–5, 1912.

    Google Scholar 

  79. Rutherford, E., “The Origin of β and γ Rays from Radioactive Substances”, Philosophical Magazine 24, 453–462, October 1912.

    Google Scholar 

  80. Rutherford, E. and Robinson, H., “The Analysis of the β Rays from Radium B and Radium C”, Philosophical Magazine [6] 26, 717–29, October 1913.

    Google Scholar 

  81. Brown, A., The Neutron and the Bomb. A biography of Sir James Chadwick, Oxford University Press, Oxford, 1997.

    Google Scholar 

  82. Chadwick, J., letter to Rutherford, dated January 14, 1914, in Brown, A., The Neutron and the Bomb, p. 24.

    Google Scholar 

  83. Chadwick, J., “Intensitätsverteilung im magnetischen Spektrum der β-Strahlen von Radium B+C”, Verhandlungen der deutschen physikalischen Gesellschaft 16, 383–391, 1914.

    Google Scholar 

  84. Meitner, L., “Über die β-Strahl-Spektra und ihren Zusammenhang mit der γ-Strahlung”, Zeitschrift für Physik 11, 35–54, 1922.

    Google Scholar 

  85. Meitner, L., “Über eine mögliche Deutung des kontinuierlichen β-Strahlenspektrums”, Zeitschrift für Physik 19, 307–312, 1923.

    Google Scholar 

  86. Meitner, L., “Über eine notwendige Folgerung aus dem Comptoneffekt und ihre Bestätigung”, Zeitschrift für Physik 22, 334–342, 1924.

    Google Scholar 

  87. Ellis, C. D. and Wooster, W. A., “The Average Energy of Disintegration of Radium E”, Proceedings of the Royal Society, London A117, 109–123, 1927.

    Google Scholar 

  88. Sime, R. L., Lise Meitner, p. 105.

    Google Scholar 

  89. Bohr, N., Kramers, H. A. and Slater, J. C., “The quantum theory of radiation”, Philosophical Magazine 47, 785–802, May 1924.

    Google Scholar 

  90. Pais, A., Subtle is the Lord…, p 420.

    Google Scholar 

  91. Segrè, E., From X-rays to quarks, modern physicists and their discoveries, W. H. Freeman, San Francisco, 1980.

    Google Scholar 

  92. Bothe, W. and Geiger, H., “Experimentelles zur Theorie von Bohr, Kramers und Slater”, Naturwissenschaften 13, 440–441, May 15, 1925.

    Google Scholar 

  93. Bothe, W. and Geiger, H., “Über das Wesen des Comptoneffekts; ein experimenteller Beitrag zur Theorie der Strahlung”, Zeitschrift für Physik 32, 639–663, 1925.

    Google Scholar 

  94. Pauli, W., Writings on Physics and Philosophy, edited by Charles P. Enz and Karl von Meyenn, Springer Verlag, Berlin, 1994, p. 198.

    Google Scholar 

  95. Pauli, W., Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg, u.a. Wolfgang Pauli, Scientific correspondence with Bohr, Einstein, Heisenberg a.o., Springer-Verlag, New York, 1979, p. 39 footnote 2.

    Google Scholar 

  96. Ellis, C. D., “The Magnetic Spectrum of the β-Rays Excited by γ-Rays”, Proceedings of the Royal Society, London A99, 261–271, 1921.

    Google Scholar 

  97. Rutherford, E., “The constitution of matter and the evolution of the elements”, Popular Science Monthly 87, 105–142, August 10, 1915. First course of lectures on the William Ellery Hale Foundation, National Academy of Sciences, delivered at the Washington Meeting, April, 1914.

    Google Scholar 

  98. Marsden, E., “The Passage of α-particles through Hydrogen”, Philosophical Magazine 27, 824–830, May 1914.

    Google Scholar 

  99. Marsden, E. and Lantsberry, W. C., “The Passage of α particles through Hydrogen. II”, Philosophical Magazine 30, 240–243, August 1915.

    Google Scholar 

  100. da Costa Andrade, E. N., “Rutherford at Manchester, 1913-14”, in Rutherford at Manchester, edited by Birks, J. B., pp. 27–42.

    Google Scholar 

  101. Darwin, C., “Collisions of α Particles with Light Atoms”, Philosophical Magazine 27, 499–507, 1914.

    Google Scholar 

  102. Rutherford, E., “Collision of α-Particles with Light Atoms. I. Hydrogen”, Philosophical Magazine 37, 537–561, June 1919.

    Google Scholar 

  103. Rutherford, E., “Collision of α-Particles with Light Atoms. II. Velocity of the Hydrogen Ions”, Philosophical Magazine 37, 562–571, June 1919.

    Google Scholar 

  104. Rutherford, E., “Collision of α particles with light atoms. III. Nitrogen and Oxygen Atoms”, Philosophical Magazine 37, 571–580, June 1919.

    Google Scholar 

  105. Rutherford, E., “Collision of α particles with light atoms. IV. An anomalous effect in nitrogen”, Philosophical Magazine 37, 581–587, June 1919.

    Google Scholar 

  106. Rutherford, E. and Chadwick, J., “The Disintegration of Elements by α-Particles”, Nature 107, 41, March 10, 1921.

    Google Scholar 

  107. Rutherford, E. and Chadwick, J., “The Artificial Disintegration of Light Elements”, Philosophical Magazine 42, 809–825, November 1921.

    Google Scholar 

  108. Rutherford, E. and Chadwick, J., “Further Experiments on the Artificial Disintegration of Elements”, Proceedings of the Physical Society 36, 417–422, August 1924.

    Google Scholar 

  109. Brown, A., The Neutron and the Bomb, pp. 77–88.

    Google Scholar 

  110. Kirsch, G. and Pettersson, H., “Experiments on the Artificial Disintegration of Atoms”, Philosophical Magazine 47, 500–12, March 1924.

    Google Scholar 

  111. Rutherford, E. and Chadwick, J., “The Bombardment of Elements by α-Particles”, Nature 113, 457, March 29, 1924.

    Google Scholar 

  112. Brown, A., The Neutron and the Bomb, p. 84.

    Google Scholar 

  113. Chadwick, J., letter to Rutherford, dated December 12, 1927, in Brown A., The Neutron and the Bomb, p. 87.

    Google Scholar 

  114. Rutherford, E., “Disintegration of Atomic Nuclei”, Nature 115, 493–494, April 4, 1925.

    Google Scholar 

  115. Perrin, J., in Atomes et électrons, rapports et discussions du Conseil de Physique Solvay tenu à Bruxelles du 1 er au 6 avril 1921, p. 68.

    Google Scholar 

  116. Rutherford, E., “Bakerian Lecture : Nuclear Constitution of Atoms”, Proceedings of the Royal Society, London A97, 374–400, 1920.

    Google Scholar 

  117. Rutherford, E., “La Structure de l’Atome”, in Atomes et électrons, Rapports et discussions du Conseil de Physique tenu à Bruxelles du 1 er au 6 avril 1921 (Troisième Conseil Solvay), pp. 36–79, Gauthier-Villars, Paris, 1923.

    Google Scholar 

  118. Bensaude-Vincent, B., Langevin, Belin, Paris, 1987, p. 98.

    Google Scholar 

  119. Glasson, G. L., “Attempts to detect the presence of neutrons in a discharge tube”, Philosophical Magazine 42, 596–600, July 1921.

    Google Scholar 

  120. Chadwick, J., “The Charge of the Atomic Nucleus and the Law of Force”, Philosophical Magazine 40, 734–746, December 1920.

    Google Scholar 

  121. Chadwick, J. and Bieler, É. S., “The Collisions of α Particles with Hydrogen Nuclei”, Philosophical Magazine 42, 923–40, December 1921.

    Google Scholar 

  122. Charles Weiner, Sir James Chadwick, oral history, American Institute of Physics, 1969; cited by Andrew Brown, The neutron and the bomb, p. 51.

    Google Scholar 

  123. Bieler, É., “The Large-Angle Scattering of α-Particles by Light Nuclei”, Proceedings of the Royal Society, London A105, 434–450, April 1, 1924.

    Google Scholar 

  124. Geiger, H. and Rutherford, E., “Photographic Registration of α particles”, Philosophical Magazine 24, 618–623, October 1912.

    Google Scholar 

  125. Geiger, H., “Über eine einfache Methode zur Zählung von α und β-Strahlen”, Verhandlungen der deutschen physikalischen Gesellschaft 15, 534–539, session of July 27, 1913.

    Google Scholar 

  126. Geiger, H., “Demonstration einer einfachen Methode zur Zählung von α- and β-Strahlen”, Physikalische Zeitschrift 14, 1129, November 15, 1913.

    Google Scholar 

  127. Geiger, H. and Klemperer, O., “Beitrag zur Wirkungsweise des Spitzenzähler”, Zeitschrift für Physik 49, 753–760, 1928.

    Google Scholar 

  128. Geiger, H. and Müller, W., “Das Elektronenezählrohr”, Physikalische Zeitschrift 29, 839–841, November 15, 1928.

    Google Scholar 

  129. Greinacher, H., “Über die akustische Beobachtung und galvanometrische Registrierung von Elementarstrahlen und Einzelionen”, Zeitschrift für Physik 23, 361–378, 1924.

    Google Scholar 

  130. Greinacher, H., “Eine neue Methode zur Messung der Elementarstrahlen”, Zeitschrift für Physik 36, 364–373, 1926.

    Google Scholar 

  131. Greinacher, H., “Über die Registrierung von α- und H-Strahlen nach der neuen elektrischen Zählmethode”, Zeitschrift für Physik 44, 319–325, 1927.

    Google Scholar 

  132. Ortner, G. and Stetter, G., “Über den elektrischen Nachweis einselner Korpuscularstrahlen”, Zeitschrift für Physik 54, 449–476, 1929.

    Google Scholar 

  133. Ward, F. A. B. and Wynn-Williams, C. E., “The Rate of Emission of Alpha Particles from Radium”, Proceedings of the Royal Society, London A125, 713–730, 1929.

    Google Scholar 

  134. Leprince-Ringuet, L., “L’amplificateur à lampes et la détection des rayonnements corpusculaires isolés”, Annales des Postes Télégraphes et Téléphones pp. 480–492, June 1931.

    Google Scholar 

  135. Leprince-Ringuet, L., “Relation entre le parcours d’un proton rapide dans l’air et l’ionisation qu’il produit. Application à l’étude de la désintégration artificielle des éléments”, Comptes Rendus de l’Académie des Sciences 192, 1543–1545, session of June 15, 1931.

    Google Scholar 

  136. Bothe, W. and Kolhörster, W., “Das Wesen der Höhenstrahlung”, Zeitschrift für Physik 56, 751–777, 1929.

    Google Scholar 

  137. Bothe, W., “Zur Vereinfachung von Koinzidenzzählungen”, Zeitschrift für Physik 59, 1–5, 1930.

    Google Scholar 

  138. Rossi, B., “Method of Registering Multiple Simultaneous Impulses of Several Geiger’s Counters”, Nature 125, 636, April 26, 1930.

    Google Scholar 

  139. Bothe, W., “The coincidence method”, in Nobel Lectures 1942-62, Elsevier, Amsterdam, 1954.

    Google Scholar 

  140. Rutherford, E. and da Costa Andrade, E. N., “The Spectrum of the Penetrating γ Rays from Radium B and Radium C”, Philosophical Magazine 28, 263–273, August 1914.

    Google Scholar 

  141. de Broglie, M., “La spectroscopie des rayons de Röntgen”, Journal de Physique 4, 101–116, 1914.

    Google Scholar 

  142. Thibaud, J., “La spectrographie des rayons gamma. Spectres β secondaires et diffraction cristalline”, Annales de Physique (Paris) 5, 73–152, 1926.

    Google Scholar 

  143. Frilley, M., “Spectrographie par diffraction cristalline des rayons γ de la famille du radium”, Annales de Physique (Paris) 11, 483–567, 1929.

    Google Scholar 

  144. Aitken, J., “On the number of dust particles in the atmosphere”, Transactions of the Royal Society of Edinburgh 35, 1–20, session of February 6, 1888.

    Google Scholar 

  145. Wilson, C. T. R., “Condensation of Water Vapour in the Presence of Dust-free Air and other Gases”, Transactions of the Royal Society A189, 265–307, session of April 8, 1897.

    Google Scholar 

  146. Wilson, C. T. R., “On the Condensation Nuclei produced in Gases by the Action of Röntgen Rays, Ultra-violet Light and other Agents”, Proceedings of the Royal Society, London 64, 127–129, session of November 24, 1898.

    Google Scholar 

  147. Wilson, C. T. R., “On the cloud method of making visible ions and the tracks of ionizing particles, Nobel Lecture, December 12, 1927”, in Nobel Lectures, Physics 1922–1941, Elsevier, Amsterdam, 1965.

    Google Scholar 

  148. Wilson, C. T. R., “On an Expansion Apparatus for making Visible the Tracks of Ionising Particles and some results obtained by its Use”, Proceedings of the Royal Society, London A87, 277–292, september 19, 1912.

    Google Scholar 

  149. Compton, A. H. and Simon, A. W., “Measurements of β-Rays associated with scattered X-Rays”, Physical Review 25, 306–313, March 1925.

    Google Scholar 

  150. Lovell, B., P.M.S. Blackett: a biographical memoir, The Royal Society, London, 1976. Reprinted from the Biographical Memoirs of the Royal Society 21, 1-115, 1975.

    Google Scholar 

  151. Nye, M. J., Blackett: Physics, War and Politics in the Twentieth Century, Harvard University Press, Cambridge, Mass. and London, 2004.

    Google Scholar 

  152. Blackett, P. M. S., “The Ejection of Protons from Nitrogen Nuclei, Photographed by the Wilson Method”, Proceedings of the Royal Society, London 107, 349–360, 1925.

    Google Scholar 

  153. Rutherford, E., “Atomic Nuclei and their Transformations”, Proceedings of the Physical Society 39, 359–372, 1927.

    Google Scholar 

  154. Rutherford, E., “Structure of the Radioactive Atom and Origin of the α-Rays”, Philosophical Magazine 4, 580–605, September 1927.

    Google Scholar 

  155. Geiger, H. and Nuttall, J. M., “The Ranges of the α particles from Various Radioactive Substances and a Relation between Range and Period of Transformation”, Philosophical Magazine 22, 613–621, October 1911.

    Google Scholar 

  156. Ehrenfest, P. and Oppenheimer, J. R., “Note on the statistics of nuclei”, Physical Review 37, 333–338, February 1931.

    Google Scholar 

  157. Rasetti, F., “Selection Rules in the Raman Effect”, Nature 123, 757–759, May 18, 1929.

    Google Scholar 

  158. Rasetti, F., “On the Raman effect in diatomic gases. II”, Proceedings of the National Academy of Sciences (USA) 15, 515–519, June 15, 1929.

    Google Scholar 

  159. Rasetti, F., “On the Raman effect in diatomic gases”, Proceedings of the National Academy of Sciences (USA) 15, 234–237, March 15, 1929.

    Google Scholar 

  160. Heitler, W. and Herzberg, G., “Gehorchen die Stickstoffkerne der Boseschen Statistik ?”, Naturwissenschaften 17, 673–674, August 23, 1929.

    Google Scholar 

  161. Rasetti, F., “Alternating Intensities in the Spectrum of Nitrogen”, Nature 124, 792–93, November 23, 1929.

    Google Scholar 

  162. Rasetti, F., “Über die Rotations-Ramanspektren von Stickstoff und Sauerstoff”, Zeitschrift für Physik 61, 598–601, 1930.

    Google Scholar 

  163. Ornstein, L. S. and van Wijk, W. R., “Untersuchungen über das negative Stickstoffbandenspektrum”, Zeitschrift für Physik 49, 315–322, 1928.

    Google Scholar 

  164. Kronig, R., “Der Drehimpuls des Stickstoffkerns”, Naturwissenschaften 16, 335, May 11, 1928.

    Google Scholar 

  165. Dorfman, J. G., “Le moment magnétique du noyau de l’atome”, Comptes Rendus de l’Académie des Sciences 190, 924–925, session of April 14, 1930.

    Google Scholar 

  166. Ambarzumjan, V. A. and Iwanenko, D., “Les électrons observables et les rayons β”, Comptes Rendus de l’Académie des Sciences 190, 582–584, session of March 3, 1930.

    Google Scholar 

  167. Rutherford, E., Chadwick, J., Ellis, C. D., Fowler, R. H., McLennan, J. C., Lindemann, F. A. and Mott, N. F., “Discussion on the Structure of Atomic Nuclei”, Proceedings of the Royal Society of London A136, 735–762, June 1932.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fernandez, B. (2013). A Timid Infancy. In: Unravelling the Mystery of the Atomic Nucleus. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4181-6_4

Download citation

Publish with us

Policies and ethics