Deciphering Fate Decision in Normal and Cancer Stem Cells: Mathematical Models and Their Experimental Verification

Chapter
Part of the Lecture Notes on Mathematical Modelling in the Life Sciences book series (LMML)

Abstract

All tissues in the body are derived from stem cells (SCs). SCs are undifferentiated cells with two essential properties: unlimited replication capacity and the ability to differentiate into one or more specialized cell types. Embryonic SCs are pluripotent, meaning that they can give rise to nearly all cell types. Non-embryonic, adult SCs are found in various tissues and are capable of generating a limited set of tissue-specific cell types. The first discovered and most extensively studied type of adult SC is the hematopoietic SC, found in the bone marrow, which can give rise to all lineages of mature blood cells [12, 84]. Organ-specific SCs have been identified in many other tissues, including the liver, skin, brain, and mammary gland (see [19] for review).

Keywords

Migration Leukemia Assure Myeloma Vibrio 

Notes

Acknowledgments

We thank Yuri Kogan and Karin Halevi-Tobias for helpful discussions and support, Karen Marron for helpful advice and careful editing of the manuscript, and the Chai Foundation for supporting the study.

References

  1. 1.
    Adams, J.M., Strasser, A.: Is tumor growth sustained by rare cancer stem cells or dominant clones? Cancer Res. 68, 4018–4021 (2008)CrossRefGoogle Scholar
  2. 2.
    Agrawal, S., Archer, C., Schaffer, D.V.: Computational models of the Notch network elucidate mechanisms of context-dependent signaling. PLoS Comput. Biol. 5, e1000390 (2009)CrossRefGoogle Scholar
  3. 3.
    Agur, Z., Kogan, Y., Levi, L., Harrison, H., Lamb, R., Kirnasovsky, O.U., Clarke, R.B.: Disruption of a quorum sensing mechanism triggers tumorigenesis: A simple discrete model corroborated by experiments in mammary cancer stem cells. Biol Direct. 5, 20 (2010)CrossRefGoogle Scholar
  4. 4.
    Agur, Z., Daniel, Y., Ginosar, Y.: The universal properties of stem cells as pinpointed by a simple discrete model. J. Math. Biol. 44, 79–86 (2002)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Agur, Z., Kirnasovsky, O.U., Vasserman, G., Tencer-Hershkowicz, L., Kogan, Y., Harrison, H., Lamb, R., Clarke, R.B.: Dickkopf1 regulates fate decision and drives breast cancer stem cells to differentiation: An experimentally supported mathematical model. PLoS One 6, e24225 (2011)CrossRefGoogle Scholar
  6. 6.
    Al-Hajj, M., Wicha, M.S., Benito-Hernandez, A., Morrison, S.J., Clarke, M.F.: Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100, 3983–3988 (2003)CrossRefGoogle Scholar
  7. 7.
    Alon Eron, S.: Maximizing lifespan in view of constant hazards during stem cells proliferation: A mathematical model. MA Thesis, Tel-Aviv University, Tel Aviv (2006)Google Scholar
  8. 8.
    Bankhead, A., Magnuson, N.S., Heckendorn, R.B.: Cellular automaton simulation examining progenitor hierarchy structure effects on mammary ductal carcinoma in situ. J. Theor. Biol. 246, 491–498 (2007)CrossRefGoogle Scholar
  9. 9.
    Bao, S., Wu, Q., McLendon, R.E., Hao, Y., Shi, Q., Hjelmeland, A.B., Dewhirst, M.W., Bigner, D.D., Rich. J.N.: Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature, 444, 756–760 (2006)CrossRefGoogle Scholar
  10. 10.
    Bassler, B.L.: How bacteria talk to each other: Regulation of gene expression by quorum sensing. Curr Opin Microbiol 2, 582–587 (1999)CrossRefGoogle Scholar
  11. 11.
    Baum, C.M., Weissman, I.L., Tsukamoto, A.S., Buckle, A.M., Peault, B.: Isolation of a candidate human hematopoietic stem-cell population. Proc Natl Acad Sci USA 89, 2804–2808 (1992)CrossRefGoogle Scholar
  12. 12.
    Becker, A.J., McCulloch, E.A., Till, J.E.: Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 197, 452–454 (1963)CrossRefGoogle Scholar
  13. 13.
    Behrens, J., von Kries, J.P., Kuhl, M., Bruhn, L., Wedlich, D. et al.: Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 382, 638–642 (1996)CrossRefGoogle Scholar
  14. 14.
    Borovski, T., De Sousa E Melo, F., Vermeulen, L., Medema, J.P.: Cancer stem cell niche: The place to be. Cancer Res. 71, 634–639 (2011)Google Scholar
  15. 15.
    Brennan, K.R., Brown, A.M.: Wnt proteins in mammary development and cancer. J Mammary Gland Biol Neoplasia 9, 119–131 (2004)CrossRefGoogle Scholar
  16. 16.
    Chamorro, M.N., Schwartz, D.R., Vonica, A., Brivanlou, A.H., Cho, K.R. et al.: FGF-20 and DKK1 are transcriptional targets of beta-catenin and FGF-20 is implicated in cancer and development. EMBO J. 24, 73–84 (2005)CrossRefGoogle Scholar
  17. 17.
    Chen, H., Paradies, N.E., Fedor-Chaiken, M., Brackenbury, R. E-cadherin mediates adhesion and suppresses cell motility via distinct mechanisms. J. Cell. Sci. 110, 345–356 (1997)Google Scholar
  18. 18.
    Clarke, M.F., Fuller, M.: Stem cells and cancer: Two faces of eve. Cell 124, 1111–1115 (2006)CrossRefGoogle Scholar
  19. 19.
    Cogle, C.R., Guthrie, S.M., Sanders, R.C., Allen, W.L., Scott, E.W., Petersen, B.E.: An overview of stem cell research and regulatory issues. Mayo Clin. Proc. 78, 993–1003 (2003)Google Scholar
  20. 20.
    Cook, M.M., Kollar, K., Brooke, G.P., Atkinson, K.: Cellular therapy for repair of cardiac damage after acute myocardial infarction. Int J Cell Biol. 2009, 906507 (2009)Google Scholar
  21. 21.
    Creighton, C.J., Li, X., Landis, M., Dixon, J.M., Neumeister, V.M., Sjolund, A., Rimm, D.L., Wong, H., Rodriguez, A., Herschkowitz, J.I. et al.: Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc. Natl. Acad. Sci. USA 106, 13820–13825 (2009)CrossRefGoogle Scholar
  22. 22.
    Deasy, M., Jankowski, R.J., Payne, T.R., Cao, B., Goff, G.P., Greenberger, J.S., Huard, J.: Modeling stem cell population growth: Incorporating terms for proliferative heterogeneity. Stem Cells 21, 536–545 (2003)CrossRefGoogle Scholar
  23. 23.
    Dingli, D., Michor, F.: Successful therapy must eradicate cancer stem cells. Stem Cells 24, 2603–2610 (2006)CrossRefGoogle Scholar
  24. 24.
    Dingli, D., Traulsen, A., Michor, F.: (A)symmetric stem cell replication and cancer. PLoS Comput. Biol. 3, e53 (2007)Google Scholar
  25. 25.
    Dontu, G., Jackson, K.W., McNicholas, E., Kawamura, M.J., Abdallah, W.M. et al.: Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res. 6, R605–R615 (2004)CrossRefGoogle Scholar
  26. 26.
    Drasdo, D., Hoehme, S.: A single-cell based model to tumor growth in-vitro: Monolayers and spheroids. Phys. Biol. 2, 133–147 (2005)CrossRefGoogle Scholar
  27. 27.
    Dubrovska, A., Elliott, J., Salamone, R.J., Kim, S., Aimone, L.J., Walker, J.R., Watson, J., Sauveur-Michel, M., Garcia-Echeverria, C., Cho, C.Y., Reddy, V.A., Schultz, P.G.: Combination therapy targeting both tumor-initiating and differentiated cell populations in prostate carcinoma. Clin. Cancer Res. 16, 5692–5702 (2010)CrossRefGoogle Scholar
  28. 28.
    Enderling, H., Anderson, A.R., Chaplain, M.A., Beheshti, A., Hlatky, L., Hahnfeldt, P.: Paradoxical dependencies of tumor dormancy and progression on basic cell kinetics. Cancer Res. 69, 8814–8821 (2009)CrossRefGoogle Scholar
  29. 29.
    Fialkow, P.J.: Stem cell origin of human myeloid blood cell neoplasms. Verh. Dtsch. Ges. Pathol. 74, 43–47 (1990)Google Scholar
  30. 30.
    Ganguly, R., Puri, I.K., Mathematical model for the cancer stem cell hypothesis. Cell Prolif. 39, 3–14 (2006)CrossRefGoogle Scholar
  31. 31.
    Gatenby, R.A., Frieden, B.R.: Information dynamics in carcinogenesis and tumor growth. Mutat. Res. 568, 259–273 (2004)CrossRefGoogle Scholar
  32. 32.
    Gratwohl, A., Baldomero, H., Aljurf, M. et al.: Hematopoietic stem cell transplantation: A global perspective. J. Am. Med. Assoc. 303, 1617–1624 (2010)CrossRefGoogle Scholar
  33. 33.
    Gregory, C.A., Singh, H., Perry, A.S., Prockop, D.J.: The Wnt signaling inhibitor dickkopf-1 is required for reentry into the cell cycle of human adult stem cells from bone marrow. J. Biol. Chem. 278, 28067–28078 (2003)CrossRefGoogle Scholar
  34. 34.
    Harrison, D.E., Stone, M., Astle, C.M.: Effects of transplantation on the primitive immunohematopoietic stem cell. J. Exp. Med. 172, 431–437 (1990)CrossRefGoogle Scholar
  35. 35.
    Harrison, H., Farnie, G., Howell, S.J., Rock, R.E., Stylianou, S., Brennan, K.R., Bundred, N.J., Clarke, R.B.: Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor. Cancer Res. 70, 709–718 (2010)CrossRefGoogle Scholar
  36. 36.
    Hart, D., Shochat, E., Agur, Z.: The growth law of primary breast cancer as inferred from mammography screening trials data. Br J Cancer 78, 382–387 (1998)CrossRefGoogle Scholar
  37. 37.
    Hodgkinson, T., Yuan, X.F., Bayat, A.: Adult stem cells in tissue engineering. Expert Rev. Med. Dev. 6, 621–640 (2009)CrossRefGoogle Scholar
  38. 38.
    Huber, A.H., Weis, W.I.: The structure of the beta-catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by beta-catenin. Cell 105, 391–402 (2001)CrossRefGoogle Scholar
  39. 39.
    Huff, C.A., Matsui, W., Smith, B.D., Jones, R.J.: The paradox of response and survival in cancer therapeutics. Blood 107, 431–434 (2006)CrossRefGoogle Scholar
  40. 40.
    Huff, C.A., Wang, Q., Rogers, K., Jung, M., Borrello, I.M., Jones, R.J., Matsui, W.: Correlation of clonogenic cancer stem cell growth with clinical outcomes in multiple myeloma (MM) patients undergoing treatment with high dose cyclophosphamide and rituximab. Proc AACR Late Breaking Abstract, LB87 (2008)Google Scholar
  41. 41.
    Katoh, M., Katoh, M.: Notch ligand, JAG1, is evolutionarily conserved target of canonical WNT signaling pathway in progenitor cells. Int. J. Mol. Med. 17, 681–685 (2006)Google Scholar
  42. 42.
    Kelly, P.N., Dakic, A., Adams, J.M., Nutt, S.L., Strasser, A.: Tumor growth need not be driven by rare cancer stem cells. Science 317, 337 (2007)CrossRefGoogle Scholar
  43. 43.
    Kim, S.U., de Vellis, J.: Stem cell-based cell therapy in neurological diseases: A review. J. Neurosci. Res. 87, 2183–2200 (2009)CrossRefGoogle Scholar
  44. 44.
    Kirnasovsky, O.U., Kogan, Y., Agur, Z.: Analysis of a mathematical model for the molecular mechanism of mammary stem cell fate decision. Math. Model. Nat. Phenom. 3, 78–89 (2008)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Kirnasovsky, O.U., Kogan, Y., Agur, Z.: Resilience in stem cell renewal: Development of the Agur-Daniel-Ginossar model. Disc. Cont. Dyn. Systems 10, 129–148 (2008)MathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    Kofahl, B., Wolf, J.: Mathematical modelling of Wnt/beta-catenin signalling. Biochem. Soc. Trans. 38, 1281–1285 (2010)CrossRefGoogle Scholar
  47. 47.
    Kogan, Y., Halevi-Tobias, K.E., Hochman, G., Baczmanska, A.K., Leyns, L., Agur, Z.: A new validated mathematical model of the Wnt signaling pathway predicts effective combinational therapy by sFRP and Dkk. Biochem. J. 444, 115–125 (2012)CrossRefGoogle Scholar
  48. 48.
    Kogan, Y., Hochman, G., Vainstein V., Shukron O., Lankenau, A., Boysen, B., Lamb, R., Berkman, T., Clarke, R.B., Duschl, C., Agur, Z.: Evidence for power law tumor growth and implications for cancer radiotherapy. SubmittedGoogle Scholar
  49. 49.
    Kozusko, F., Bajzer, Z.: Combining Gompertzian growth and cell population dynamics. Math. Biosci. 185, 153–167 (2003)MathSciNetMATHCrossRefGoogle Scholar
  50. 50.
    LaBarge, M.A.: The difficulty of targeting cancer stem cell niches. Clin. Cancer 16, 3121–3129 (2010)CrossRefGoogle Scholar
  51. 51.
    Lander, A.D., Gokoffski, K.K., Wan, F.Y.M., Nie, Q., Calof, A.L.: Cell lineages and the logic of proliferative control. PLoS Biol. 7, e1000015 (2009)CrossRefGoogle Scholar
  52. 52.
    Lapidot, T., Sirard, C., Vormoor, J., Murdoch, B., Hoang, T., et al.: A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 17, 645–648 (1994)CrossRefGoogle Scholar
  53. 53.
    Lee, E., Salic, A., Kruger, R., Heinrich, R., Kirschner, M.W.: The roles of APC and Axin derived from experimental and theoretical analysis of the Wnt pathway. PLoS Biol. 1, e10 (2003)CrossRefGoogle Scholar
  54. 54.
    Lenz, D., Mok, K., Lilley, B., Kulkarni, R., Wingreen, N., Bassler, B.: The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell 118, 69–82 (2004)CrossRefGoogle Scholar
  55. 55.
    Li, L., Xie, T.: Stem cell niche: Structure and function. Annu. Rev. Cell Dev. Biol. 21, 605–631 (2005)MathSciNetCrossRefGoogle Scholar
  56. 56.
    Li, X., Lewis, M.T., Huang, J., Gutierrez, C., Osborne, C.K., Wu, M.F., Hilsenbeck, S.G., Pavlick, A., Zhang, X., Chamness, G.C. et al.: Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J. Natl. Cancer Inst. 100, 672–679 (2008)CrossRefGoogle Scholar
  57. 57.
    Lobo, N.A., Shimono, Y., Qian, D., Clarke, M.F.: The biology of cancer stem cells. Annu. Rev. Cell Dev. Biol. 23, 675–699 (2007)CrossRefGoogle Scholar
  58. 58.
    Loeb, L.A.: A mutator phenotype in cancer. Cancer Res. 61, 3230–3239 (2001)Google Scholar
  59. 59.
    Loeffler, M., Stein, R., Wichmann, H.E., Potten, C.S., Kaur, P., Chwalinski, S.: Intestinal cell proliferation. I. A comprehensive model of steady-state proliferation in the crypt. Cell Tissue Kinet. 19, 627–645 (1986)Google Scholar
  60. 60.
    Loeffler, M., Wichmann, H.E.: A comprehensive mathematical model of stem cell proliferation which reproduces most of the published experimental results. Cell Tissue Kinet. 13, 543–561 (1980)Google Scholar
  61. 61.
    Marciniak-Czochra, A., Stiehl, T., Ho, A., Jaeger, W., Wagner, W.: Modeling of asymmetric cell division in hematopoietic stem cells-regulation of self-renewal is essential for efficient repopulation. Stem Cells Dev. 18, 377–386 (2009)CrossRefGoogle Scholar
  62. 62.
    Matsui, W., Wang, Q., Barber, J.P., Brennan, S., Smith, B.D., Borrello, I., McNiece, I., Lin, L., Ambinder, R.F., Peacock, C. et al.: Clonogenic multiple myeloma progenitors, stem cell properties, and drug resistance. Cancer Res. 68, 190–197 (2008)CrossRefGoogle Scholar
  63. 63.
    Matsumoto, S.: Islet cell transplantation for Type 1 diabetes. J. Diabetes 2, 16–22 (2010)CrossRefGoogle Scholar
  64. 64.
    Meineke, F.A., Potten, C.S., Loeffler, M.: Cell migration and organization in the intestinal crypt using a lattice-free model. Cell Prolif., 34, 253–266 (2001)CrossRefGoogle Scholar
  65. 65.
    Metallo, C.M., Mohr, J.C., Detzel, C.J., De Pablo, J.J., Van Wie, B.J., Palecek S.P.: Engineering the stem cell microenvironment. Biotechnol. Prog. 23, 18–23 (2007)CrossRefGoogle Scholar
  66. 66.
    Michor, F., Hughes, T.P., Iwasa, Y., Branford, S., Shah, N.P. et al.: Dynamics of chronic myeloid leukaemia. Nature, 435, 1267–1270 (2005)CrossRefGoogle Scholar
  67. 67.
    Michor, F., Nowak, M.A., Frank, S.A., Iwasa, Y.: Stochastic elimination of cancer cells. Proc. Biol. Sci. 270, 2017–2024 (2003)CrossRefGoogle Scholar
  68. 68.
    Mueller, M.T., Hermann, P.C., Witthauer, J., Rubio-Viqueira, B., Leicht, S.F., Huber, S., Ellwart, J.W., Mustafa, M., Bartenstein, P., D’Haese, J.G., Schoenberg, M.H., Berger, F., Jauch, K.W., Hidalgo, M., Heeschen, C.: Combined targeted treatment to eliminate tumorigenic cancer stem cells in human pancreatic cancer. Gastroenterology 137, 1102–1113 (2009)CrossRefGoogle Scholar
  69. 69.
    O’Rourke, S.F., McAneney, H., Hillen, T.: Linear quadratic and tumour control probability modelling in external beam radiotherapy. J. Math. Biol. 58, 799–817 (2009)MathSciNetCrossRefGoogle Scholar
  70. 70.
    Peltier, J., Schaffer, D.V.: Systems biology approaches to understanding stem cell fate choice. IET Syst. Biol. 4, 1–11 (2010)CrossRefGoogle Scholar
  71. 71.
    Piotrowska, M.J., Widera, D., Kaltschmidt, B., an der Heiden, U., Kaltschmidt, C.: Mathematical model for NF-kappaB-driven proliferation of adult neural stem cells. Cell Prolif. 39, 441–455 (2006)Google Scholar
  72. 72.
    Polakis, P.: Wnt signaling and cancer. Genes Dev. 14, 1837–1851 (2000)Google Scholar
  73. 73.
    Prudhomme, W.A., Duggar, K.H., Lauffenburger, D.A.: Cell population dynamics model for deconvolution of murine embryonic stem cell self-renewal and differentiation responses to cytokines and extracellular matrix. Biotechnol. Bioeng. 88, 264–272 (2004)CrossRefGoogle Scholar
  74. 74.
    Reya, T., Clevers, H.: Wnt signalling in stem cells and cancer. Nature 434, 843–850 (2005)CrossRefGoogle Scholar
  75. 75.
    Reya, T., Morrison, S.J., Clarke, M.F., Weissman, I.L.: Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001)CrossRefGoogle Scholar
  76. 76.
    Rubinfeld, B., Albert, I., Porfiri, E., Fiol, C., Munemitsu, S. et al.: Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science 272, 1023–1026 (1996)CrossRefGoogle Scholar
  77. 77.
    Sell, S.: Cancer and stem cell signaling: A guide to preventive and therapeutic strategies for cancer. Stem Cell Rev. 3, 1–6 (2007)CrossRefGoogle Scholar
  78. 78.
    Sell, S.: Stem cell origin of cancer and differentiation therapy. Crit. Rev. Oncol. Hematol. 51, 1–28 (2004)CrossRefGoogle Scholar
  79. 79.
    Sneddon, J.B., Werb, Z.: Location, location, location: The cancer stem cell niche. Cell Stem Cell 1, 607–611 (2007)CrossRefGoogle Scholar
  80. 80.
    Stiehl, T., Marciniak-Czochra, A.: Characterization of stem cells using mathematical models of multistage cell lineages. Math. Comp. Model. 53, 1505–1517 (2011)MathSciNetMATHCrossRefGoogle Scholar
  81. 81.
    Stosich, M.S., Mao, J.J.: Adipose tissue engineering from human adult stem cells: Clinical implications in plastic and reconstructive surgery. Plast. Econstr. Surg. 119, 71–83 (2007)CrossRefGoogle Scholar
  82. 82.
    Swanson, K.R., Harpold, H.L., Peacock, D.L., Rockne, R., Pennington, C., Kilbride, L., Grant, R., Wardlaw, J.M., Alvord, E.C. Jr.: Velocity of radial expansion of contrast-enhancing gliomas and the effectiveness of radiotherapy in individual patients: A proof of principle. Clin Oncol (R Coll Radiol) 4, 301–308 (2008)Google Scholar
  83. 83.
    Takebe, N., Ivy, S.P.: Controversies in cancer stem cells: Targeting embryonic signaling pathways. Clin. Cancer Res. 16, 3106–3112 (2010)Google Scholar
  84. 84.
    Till, J.E., McCulloch, E.A.: A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat. Res. 14, 213–222 (1961)CrossRefGoogle Scholar
  85. 85.
    Tomlinson, I.P.M., Bodmer, W.F.: Failure of programmed cell death and differentiation as causes of tumors: Some simple mathematical models. Proc. Natl. Acad. Sci. USA 92, 1130–1134 (1995)CrossRefGoogle Scholar
  86. 86.
    Trounson, A., Thakar, R.G., Lomax, G., Gibbons, D.: Clinical trials for stem cell therapies. BMC Med. 9, 52 (2011)CrossRefGoogle Scholar
  87. 87.
    Tuch, B.E.: Stem cells—a clinical update. Aust. Fam. Physician. 35, 719–721 (2006)Google Scholar
  88. 88.
    Uchida, N., Sutton, R.E., Friera, A.M., He, D., Reitsma, M.J., Chang, W,C., Veres, G., Scollay, R., Weissman, I.L.: HIV, but not murine leukemia virus, vectors mediate high efficiency gene transfer into freshly isolated G0/G1 human hematopoietic stem cells. Proc. Natl. Acad. Sci. USA 95, 11939–11944 (1998)CrossRefGoogle Scholar
  89. 89.
    Underhill, G.H., Bhatia, S.N.: High-throughput analysis of signals regulating stem cell fate and function. Curr. Opin. Chem. Biol. 11, 357–366 (2007)CrossRefGoogle Scholar
  90. 90.
    Vainstein, V., Kirnasovsky, O.U., Kogan, Y., Agur, Z.: Strategies for cancer stem cell elimination: Insights from mathematical modeling. J. Theor. Biol. 298, 32–41 (2012)MathSciNetCrossRefGoogle Scholar
  91. 91.
    van Leeuwen, I.M., Mirams, G.R., Walter, A., Fletcher, A., Murray, P., Osborne, J., Varma, S., Young, S.J., Cooper, J., Doyle, B. et al.: An integrative computational model for intestinal tissue renewal. Cell Prolif. 42, 617–636 (2009)CrossRefGoogle Scholar
  92. 92.
    Wicha, M.S., Liu, S., Dontu, G.: Cancer stem cells: An old idea—a paradigm shift. Cancer Res. 66, 1883–1890 (2006)CrossRefGoogle Scholar
  93. 93.
    Wright, K.T., Masri, W.E., Osman, A., Chowdhury, J., Johnson, W.E.: Concise review: Bone marrow for the treatment of spinal cord injury: Mechanisms and clinical applications. Stem Cells 29, 169–178 (2011)CrossRefGoogle Scholar
  94. 94.
    Zardawi, S.J., O’Toole, S.A., Sutherland, R.L., Musgrove, E.A.: Dysregulation of Hedgehog, Wnt and Notch signalling pathways in breast cancer. Histol. Histopathol. 24, 385–398 (2009)Google Scholar
  95. 95.
    Zhang, X.P., Zheng, G., Zou, L., Liu, H.L., Hou, L.H., Zhou, P., Yin, D.D., Zheng, Q.J., Liang, L., Zhang, S.Z., Feng, L., Yao, L.B., Yang, A.G., Han, H., Chen, J.Y.: Notch activation promotes cell proliferation and the formation of neural stem cell-like colonies in human glioma cells. Mol. Cell. Biochem. 307, 101–108 (2008)CrossRefGoogle Scholar
  96. 96.
    Zhu, X., Zhou, X., Lewis, M.T., Xia, L., Wong, S.: Cancer stem cell, niche and EGFR decide tumor development and treatment response: A bio-computational simulation study. J. Theor. Biol. 269, 138–149 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institute for Medical BioMathematicsBene AtarothIsrael

Personalised recommendations