Skip to main content

A Mathematical Model of Gene Therapy for the Treatment of Cancer

  • Chapter
  • First Online:

Abstract

Cancer is a major cause of death worldwide, resulting from the uncontrolled growth of abnormal cells in the body. Cells are the body’s building blocks, and cancer starts from normal cells. Normal cells divide to grow in order to maintain cell population equilibrium, balancing cell death. Cancer occurs when unbounded growth of cells in the body happens fast. It can also occur when cells lose their ability to die. There are many different kinds of cancers, which can develop in almost any organ or tissue, such as lung, colon, breast, skin, bones, or nerve tissue. There are many known causes of cancers that have been documented to date including exposure to chemicals, drinking excess alcohol, excessive sunlight exposure, and genetic differences, to name a few [38]. However, the cause of many cancers still remains unknown. The most common cause of cancer-related death is lung cancer. Some cancers are more common in certain parts of the world. For example, in Japan, there are many cases of stomach cancer, but in the USA, this type of cancer is pretty rare [49]. Differences in diet may play a role. Another hypothesis is that these different populations could have different genetic backgrounds predisposing them to cancer. Some cancers also prey on individuals who are either missing or have altered genes as compared to the mainstream population. Unfortunately, treatment of cancer is still in its infancy, although there are some successes when the cancer is detected early enough. To begin to address these important issues, in this work we will focus solely on genetic issues related to cancer so that we can explore a new treatment area known as gene therapy as a viable approach to treatment of cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adam, J.A., Bellomo, N.: A Survey of Models for tumor-immune system dynamics, Birkhauser Series on Modeling and Simulation in Science, Engineering and Technology. Birkhauser, Boston (1997)

    Google Scholar 

  2. Aguda, B.D., Kim, Y., Piper-Hunter, M.G., Friedman, A., Marsh, C.: MicroRNA regulation of a cancer network: Consequences of the feedback loops involving miR-17-92, E2F and Myc. Proc. Natl. Acad. Sci. USA 105, 19678–19683 (2008)

    Article  Google Scholar 

  3. Ambrosi, D., Bellomo, N., Preziosi, L.: Modelling tumor progression, heterogeneity, and immune competition. J. Theor. Med. 4, 51–65 (2002)

    Article  MATH  Google Scholar 

  4. Andasari, V., Gerisch, A., Lolas, G., South, A.P., Chaplain, M.A.: Mathematical modeling of cancer cell invasion of tissue: Biological insight from mathematical analysis and computational simulation. J. Math. Biol. 63(1), 141–71 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arciero, J., Jackson, T., Kirschner, D.: A mathematical model of tumor- immune evasion and siRNA treatment. Discrete Continuous Dyn. Syst. Ser. B 4, 39–58 (2004)

    MathSciNet  MATH  Google Scholar 

  6. Arlotti, L., Gamba, A., Lachowicz, M.: A kinetic model of tumor/immune system cellular interactions. J. Theor. Med. 4, 39–50 (2002)

    Article  MATH  Google Scholar 

  7. Banerjee, S., Immunotherapy with Interleukin–2: A Study Based on Mathematical Modeling, Int. J. Appl. Math. Comput. Sci. 18(3), 389–398 (2008)

    Article  MATH  Google Scholar 

  8. Bellomo, N., Delitala, M.: From the mathematical kinetic, and stochastic game theory to modelling mutations, onset, progression and immune competition of cancer cells. Phys. Life Rev. 5, 183–206 (2008)

    Article  Google Scholar 

  9. Bellomo, N., Preziosi, L.: Modelling and mathematical problems related to tumor evolution and its interaction with the immune system. Math. Comput. Model. 32, 413–452 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bellomo, N., Bellouquid, A., Delitala, M.: Mathematical topics on the modelling complex multicellular systems and tumor immune cells competition. Math. Models Methods Appl. Sci. 14, 1683–1733 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bodnar, M., Forys, U.: Three types of simple DDEs describing tumor growth. J. Biol. Syst. 15, 453–471 (2007)

    Article  MATH  Google Scholar 

  12. Burden, T., Ernstberger, J., Fister, K.R.: Optimal control applied to immunotherapy. Discrete Continuous Dyn. syst. 4, 135–146 (2004)

    MathSciNet  MATH  Google Scholar 

  13. Caravagna, G., D’Onofrio, A., Milazzo, P., Barbuti, R.: Tumour suppression by immune system through stochastic oscillations. J. theor. biol. 265(3), 336–345 (2010)

    Article  Google Scholar 

  14. Chang, Z., Song, J., Gao, G., Shen, Z.: Adenovirus-mediated p53 gene therapy reverses resistance of breast cancer cells to adriamycin. Anticancer Drugs 22(6), 556–62 (2011)

    Article  Google Scholar 

  15. Chaplain, M., Matzavinos, A.: Mathematical modelling of spatio-temporal phenomena in tumour immunology. In: Friedman, A. (ed.) Tutorials in Mathematical Biosciences III: Cell Cycle, Proliferation, and Cancer. Lecture Notes in Mathematics, vol. 1872, pp. 131–183. Springer, Berlin (2006)

    Google Scholar 

  16. De Angelis, E., Delitala, M., Marasco, A., Romano, A.: Bifurcation analysis for a mean field modelling of tumor and immune system competition. Math. Comput. Model. 37, 1131–1142 (2003)

    Article  MATH  Google Scholar 

  17. Delitala, M.: Critical analysis and perspectives on kinetic (cellular) theory of immune competition. Math. Comput. Model. 35, 63–75 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. de Pillis, L., Gu, W., Radunskaya, A.: Mixed immunotherapy and chemotherapy of tumors: Modeling, applications and biological interpretations. J. Theor. Biol. 238, 841–862 (2006)

    Article  Google Scholar 

  19. D’Onofrio, A.: The role of the proliferation rate of effectors in the tumor-immune system competition. Math. Model. Meth. Appl. Sci. 16(8), 1375–1401 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. d’Onofrio, A., Gatti, F., Cerrai, P., Freschi, L.: Delay-induced oscillatory dynamics of tumour–immune system interaction. Math. Comput. Model. 51, 572–591 (2010)

    Google Scholar 

  21. Forys, U.: Marchuks model of immune system dynamics with application to tumour growth. J. Theor. Med. 4, 85–93 (2002)

    Article  MATH  Google Scholar 

  22. Friedman, A., Kim, Y.: Tumor cells proliferation and migration under the influence of their microenvironment. Math. Biosci. Eng. 8(2), 371–83 (2011)

    Article  MathSciNet  Google Scholar 

  23. Gabhann, F.M., Annex, B.H., Popel, A.S.: Gene therapy from the perspective of systems biology. Curr. Opin. Mol. Ther. 12(5), 570–577 (2010)

    Google Scholar 

  24. Gatenby, R.A., Maini, P.: Modelling a new angle on understanding cancer. Nature 420(6915), 462 (2002)

    Article  Google Scholar 

  25. Gatenby, R.A., Maini, P.K.: Mathematical oncology: Cancer summed up. Nature 421(6921), 321 (2003)

    Article  Google Scholar 

  26. Joshi, B., Wang, X., Banerjee, S., Tian, H., Matzavinos, A., Chaplain, M.A.: On immunotherapies and cancer vaccination protocols: A mathemati cal modelling approach. J. Theor. Biol. 259(4), 820–827 (2009)

    Article  Google Scholar 

  27. Kelly, C., Leek, R., Byrne, H., Cox, S., Harris, A., Lewis, C.: Modelling macrophage infiltration into avascular tumours. J. Theor. Med. 4, 21–38 (2002)

    Article  MATH  Google Scholar 

  28. Kirschner, D., Panetta, J.: Modeling immunotherapy of the tumor-immune interaction, J. Math. Biol. 37, 235–252 (1998)

    Article  MATH  Google Scholar 

  29. Kirschner, D., Tsygvintsev, A.: On the global dynamics of a model for tumor immunotherapy. J. Math. Biosci. Eng. Vol. 6(3), 573–583 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kronik, N., Kogan, Y., Vainstein, V., Agur, Z.: Improving alloreactive CTL immunotherapy for malignant gliomas using a simulation model of their interactive dynamics. Cancer Immunol. Immunother. 57, 425–439 (2008)

    Article  Google Scholar 

  31. Kuznetsov, V., Makalkyn, I., Taylor, M., Perelson, A.: Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis, Bull. Math.Biol. 56(2), 295–321 (1994)

    MATH  Google Scholar 

  32. Macklin, P., McDougall, S., Anderson, A.R., Chaplain, M.A., Cristini, V., Lowengrub, J.: Multiscale modelling and nonlinear simulation of vascular tumour growth. J. Math. Biol. 58(4–5), 765–98 (2009)

    Article  MathSciNet  Google Scholar 

  33. Marino, S., Hogue, I.B., Ray, C.J., Kirschner, D.E.: A methodology for performing global uncertainty and sensitivity analysis in systems biology. J. Theor. Biol. 254, 178–196 (2008) PMID:18572196

    Article  Google Scholar 

  34. Matzavinos, A., Chaplain, M.: Travelling-wave analysis of a model of the immune response to cancer. C.R. Biol. 327, 995–1008 (2004)

    Google Scholar 

  35. Matzavinos, A., Chaplain, M., Kuznetsov, V.: Mathematical modelling of the spatio-temporal response of cytotoxic T-lymphocytes to a solid tumour. IMA J. Math. Med. Biol. 21, 1–34 (2004)

    Article  MATH  Google Scholar 

  36. McDougall, S.R., Anderson, A.R., Chaplain, M.A.: Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: Clinical implications and therapeutic targeting strategies. J. Theor. Biol. 241(3), 564–589 (2006)

    Article  MathSciNet  Google Scholar 

  37. McKay, M.D., Beckman, R.J., Conover, W.J.: A Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2), 239–245 (1979)

    MathSciNet  MATH  Google Scholar 

  38. Moscow, J.A., Cowan, K.H.: Biology of cancer. In: Goldman, L., Ausiello, D. (eds. Cecil. Med. 23rd edn. Saunders Elsevier, Philadelphia (2007), chap 187

    Google Scholar 

  39. Nana-Sinkam, S.P., Croce, C.M.: MicroRNAs as therapeutic targets in cancer. Transl. Res. 157(4), 216–225 (2011)

    Article  Google Scholar 

  40. Owen, M., Sherratt, J.: Mathematical modelling of macrophage dynamics in tumours. Math. Model. Meth. Appl. Sci. 9, 513–539 (1999)

    Article  MATH  Google Scholar 

  41. Owen, M.R., Alarcon, T., Maini, P.K., Byrne, H.M.: Angiogenesis and vascular remodelling in normal and cancerous tissues. J. Math. Biol. 58(4–5), 689–721 (2009)

    Article  MathSciNet  Google Scholar 

  42. Rabinowich, H., Banks, M., Reichert, T.E., Logan, T.F., Kirkwood, J.M., Whiteside, T.L.: Expression and activity of signaling molecules n T lymphocytes obtained from patients with metastatic melanoma before and after interleukin 2 therapy. Clin. Canc. Res. 2, 1263–1274 (1996)

    Google Scholar 

  43. Robbins, P.F., Morgan, R.A., Feldman, S.A., Yang, J.C., Sherry, R.M., Dudley, M.E., Wunderlich, J.R., Nahvi, A.V., Helman, L.J., Mackall, C.L., Kammula, U.S., Hughes, M.S., Restifo, N.P., Raffeld, M., Lee, C.-C.R., Levy, C.L., Li, Y.F., El-Gamil, M., Schwarz, S.L., Laurencot, C., Rosenberg, S.A.: Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J. Clin. Oncol. 29, 917–924 (2011)

    Article  Google Scholar 

  44. Rosenberg, S.A., Lotze, M.T.: Cancer immunotherapy using interleukin-2 and interleukin- 2-activated lymphocytes. Ann. Rev. Immunol. 4, 681–709 (1986)

    Article  Google Scholar 

  45. Rosenberg, S.A., Yang, J.C., Topalian, S.L., Schwartzentruber, D.J., Weber, J.S., Parkinson, D.R., Seipp, C.A., Einhorn, J.H., White, D.E.: Treatment of 283 consecutive patients with metastatic melanoma or renal cell cancer using high-dose bolus interleukin 2. JAMA 271, 907–913 (1994)

    Article  Google Scholar 

  46. Rosenstein, M., Ettinghousen, S.E., Rosenberg, S.A.: Extravasion of intravascular uid mediated by the systemic administration of recombinant interleukin 2. J. Immunol. 137, 1735–1742 (1986)

    Google Scholar 

  47. Sherratt, J., Perumpanani, A., Owen, M.: Pattern formation in cancer. In: Chaplain, M., Singh, G., McLachlan, J. (eds.) On Growth and Form: Spatio- temporal Pattern Formation in Biology. Wiley, New York (1999)

    Google Scholar 

  48. Szymanska, Z. (2003). Analysis of immunotherapy models in the context of cancer dynamics. Appl. Math. Comput. Sci. 13, 407–418.

    MathSciNet  MATH  Google Scholar 

  49. Thun, M.J.: Biology of cancer. In: Goldman L, Ausiello D (eds.) Cecil. Med. 23rd edn. Saunders Elsevier, Philadelphia, Pa (2007), chap 185

    Google Scholar 

  50. Tran, K.Q., Zhou, J., Durflinger, K.H., et al.: Mini- mally cultured tumor-infiltrating lymphocytes display optimal characteristics for adoptive cell therapy. J. Immunother. 31, 742–751 (2008)

    Article  Google Scholar 

  51. Webb, S., Sherratt, J., Fish, R.: Cells behaving badly: A theoretical model for the Fas/FasL system in tumour immunology. Math. Biosci. 179, 113–129 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  52. Wu, F.T., Stefanini, M.O., Mac Gabhann, F., Kontos, C.D., Annex, B.H., Popel, A.S.: A systems biology perspective on sVEGFR1: Its biological function, pathogenic role and therapeutic use. J. Cell Mol. Med. 14(3), 528–52 (2010)

    Google Scholar 

  53. Zhao, Y., Lam, D.H., Yang, J., Lin, J., Tham, C.K., Ng, W.H., Wang, S.: Targeted suicide gene therapy for glioma using human embryonic stem cell-derived neural stem cells genetically modified by baculoviral vectors. Gene Therapy 19, 189–200 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei Tsygvintsev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tsygvintsev, A., Marino, S., Kirschner, D.E. (2013). A Mathematical Model of Gene Therapy for the Treatment of Cancer. In: Ledzewicz, U., Schättler, H., Friedman, A., Kashdan, E. (eds) Mathematical Methods and Models in Biomedicine. Lecture Notes on Mathematical Modelling in the Life Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4178-6_13

Download citation

Publish with us

Policies and ethics