Abstract
Tumors are a family of high-mortality diseases, each differing from the other, but all exhibiting a derangement of cellular proliferation and characterized by a remarkable lack of symptoms [52] and by time courses that, in a broad sense, may be classified as nonlinear. As a consequence, despite the enormous strides in prevention and, to a certain extent, cure, cancer is one of the leading causes of death worldwide, and, unfortunately, is likely to remain so for many years to come [4, 53].
Keywords
- Optimal Control Problem
- Optimal Protocol
- Optimal Synthesis
- Singular Control
- Angiogenic Inhibitor
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options



References
Agur, Z., Arakelyan, L., Daugulis, P., Ginosar, Y.: Hopf point analysis for angiogenesis models. Discrete Continuous Dyn. Syst. B 4, 29–38 (2004)
Anderson, A.R.A., Chaplain, M.A.: Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull. Math. Biol. 60, 857–899 (1998)
Bellomo, N., Maini, P.K.: Introduction to “special issue on cancer modelling’. Math. Models Meth. Appl. Sci. 15, iii (2005)
Boyle, P., d’Onofrio, A., Maisonneuve, P., Severi, G., Robertson, C., Tubiana, M., Veronesi, U.: Measuring progress against cancer in Europe: has the 15% decline targeted for 2000 come about? Ann. Oncol. 14, 1312–1325 (2003)
Brenner, D.J., Hall, E.J., Huang, Y., Sachs, R.K.: Optimizing the time course of brachytherapy and other accelerated radiotherapeutic protocols. Int. J. Radiat. Oncol. Biol. Phys. 29, 893–901 (1994)
Browder, T., Butterfield, C.E., Kraling, B.M., Shi, B., Marshall, B., O’Reilly, M.S., Folkman, J.: Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Canc. Res. 60, 1878–86 (2000)
Colleoni, M., Rocca, A., Sandri, M.T., Zorzino, L., Masci, G., Nole, F., Peruzzotti, G., Robertson, C., Orlando, L., Cinieri, S., de Braud, F., Viale, G., Goldhirsch, A.: Low-dose oral methotrexate and cyclophosphamide in metastatic breast cancer: antitumour activity and correlation with vascular endothelial growth factor levels. Ann. Oncol. 13, 73–80 (2002)
Ergun, A., Camphausen, K., Wein, L.M., Optimal scheduling of radiotherapy and angiogenic inhibitors, Bull. of Math. Biology, 65, 407–424 (2003)
Folkman, J.: Tumor angiogenesis: Therapeutic implications. New Engl. J. Med. 295, 1182–1196 (1971)
Folkman, J.: Antiangiogenesis: New concept for therapy of solid tumors. Ann. Surg. 175, 409–416 (1972)
Folkman, J.: Opinion - Angiogenesis: an organizing principle for drug discovery? Nature Rev. Drug. Disc. 6, 273–286 (2007)
Fowler, J.F.: The linear-quadratic formula and progress in fractionated radiotherapy, Br. J. Radiol. 62, 679–694 (1989)
Frame, D.: New strategies in controlling drug resistance. J. Manag. Care Pharm. 13, 13–17 (2007)
Goldie, J.H., Coldman, A.J.: A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Canc. Treat. Rep. 63, 1727–1733 (1979)
Guiot, C., Degiorgis, P.G., Delsanto, P.P., Gabriele, P., Deisboecke, T.S.: Does tumor growth follow a ’universal law’? J. Theor. Biol. 225, 147–151 (2003)
Hahnfeldt, P., Panigrahy, D., Folkman, J., Hlatky, L.: Tumor development under angiogenic signaling: A dynamical theory of tumor growth, treatment response, and postvascular dormancy. Canc. Res. 59, 4770–4775 (1999)
Hart, D., Shochat, E., Agur, Z.: The growth law of primary breast cancer as inferred from mammography screening trials data. Br. J. Canc. 78, 382–387 (1999)
Jain, R.K., Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat. Med. 7, 987–989 (2001)
Jain, R.K., Munn, L.L.: Vascular normalization as a rationale for combining chemotherapy with antiangiogenic agents. Princ. Practical Oncol. 21, 1–7 (2007)
Kerbel, R.S.: A cancer therapy resistant to resistance. Nature 390, 335–336 (1997)
Kerbel, R.S.: Tumor angiogenesis: Past, present and near future. Carcinogensis 21, 505–515 (2000)
Kerbel, R., Folkman, J.: Clinical translation of angiogenesis inhibitors. Nat. Rev. Canc. 2, 727–739 (2002)
Kimmel, M., Swierniak, A.: Control theory approach to cancer chemotherapy: benefiting from phase dependence and overcoming drug resistance. In: Tutorials in Mathematical Bioscences III: Cell Cycle, Proliferation, and Cancer, Lecture Notes in Mathematics, vol. 1872, pp. 185–221. Springer, Berlin (2006)
Ledzewicz, U., Schättler, H.: Optimal bang-bang controls for a 2-compartment model in cancer chemotherapy. J. Optim. Theor. Appl. - JOTA 114, 609–637 (2002)
Ledzewicz, U., Schättler, H.: Analysis of a cell-cycle specific model for cancer chemotherapy, J. Biol. Syst. 10, 183–206 (2002)
Ledzewicz, U., Schättler, H.: Anti-angiogenic therapy in cancer treatment as an optimal control problem, SIAM J. Contr. Optim. 46(3), 1052–1079 (2007)
Ledzewicz, U., Schättler, H.: Optimal and suboptimal protocols for a class of mathematical models of tumor anti-angiogenesis. J. Theor. Biol. 252, 295–312 (2008)
Ledzewicz, U., Schättler, H.: Singular controls and chattering arcs in optimal control problems arising in biomedicine. Contr. Cybern. 38, 1501–1523 (2009)
Ledzewicz, U., Schättler, H.: Multi-input optimal control problems for combined tumor anti-angiogenic and radiotherapy treatments. J. Optim. Theor. Appl. - JOTA 153, 195–224 (2012), doi:10.1007/s10957-011-9954-8, published online: 16 November 2011
Ledzewicz, U., Munden, J., Schättler, H.: Scheduling of anti-angiogenic inhibitors for Gompertzian and logistic tumor growth models. Discrete Continuous Dyn. Syst. Ser. B 12, 415–439 (2009)
Ledzewicz, U., Marriott, J., Maurer, H., Schättler, H.: Realizable protocols for optimal administration of drugs in mathematical models for novel cancer treatments. Math. Med. Biol. 27, 157–179 (2010), doi:10.1093/imammb/dqp012
Ledzewicz, U., Maurer, H., Schättler, H.: Minimizing tumor volume for a mathematical model of anti-angiogenesis with linear pharmacokinetics. In: Diehl, M., Glineur, F., Jarlebring, E., Michiels, W. (eds.) Recent Advances in Optimization and its Applications in Engineering, pp. 267–276. Springer, Berlin (2010)
Marusic, M., Bajzer, A., Freyer, J.P., Vuk-Povlovic, S.: Analysis of growth of multicellular tumor spheroids by mathematical models. Cell Prolif. 27, 73ff (1994)
McDougall, S.R., Anderson, A.R.A., Chaplain, M.A.: Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: Clinical implications and therapeutic targeting strategies. J. Theor. Biol. 241, 564–589 (2006)
Mombach, J.C.M., Lemke, N., Bodmann, B.E.J., Idiart, M.A.P.: A mean-field theory of cellular growth. Europhys. Lett. 59, 923–928 (2002)
Norton, L.: A Gompertzian model of human breast cancer growth. Canc. Res. 48, 7067–7071 (1988)
Norton, L., Simon, R.: Growth curve of an experimental solid tumor following radiotherapy. J. Nat. Canc. Inst. 58, 1735–1741 (1977)
Norton, L., Simon R.: The Norton-Simon hypothesis revisited. Canc. Treat. Rep. 70, 163–169 (1986)
d’Onofrio, A.: A general framework for modelling tumor-immune system competition and immunotherapy: Mathematical analysis and biomedial inferences. Physica D 208, 202–235 (2005)
d’Onofrio, A.: Rapidly acting antitumoral antiangiogenic therapies. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76, 031920 (2007)
d’Onofrio, A.: Fractal growth of tumors and other cellular populations: Linking the mechanistic to the phenomenological modeling and vice versa. Chaos, Solitons and Fractals 41, 875–880 (2009)
d’Onofrio, A., Gandolfi, A.: Tumour eradication by antiangiogenic therapy: Analysis and extensions of the model by Hahnfeldt et al. Math. Biosci. 191, 159–184 (2004)
d’Onofrio, A., Gandolfi, A.: The response to antiangiogenic anticancer drugs that inhibit endothelial cell proliferation, Appl. Math. and Comp. 181, 1155–1162 (2006)
d’Onofrio, A., Gandolfi, A.: A family of models of angiogenesis and anti-angiogenesis anti-cancer therapy. Math. Med. Biol. 26, 63–95 (2009)
d’Onofrio, A., Gandolfi, A.: Chemotherapy of vascularised tumours: role of vessel density and the effect of vascular “pruning”. J. Theor. Biol. 264, 253–265 (2010)
d’Onofrio, A., Gandolfi, A.: Resistance to anti-tumor chemotherapy due to bounded-noise transitions. Phys. Rev. E. 82, (2010) Art.n. 061901, doi:10.1103/PhysRevE.82.061901
d’Onofrio, A., Gandolfi, A., Rocca, A.: The dynamics of tumour-vasculature interaction suggests low-dose, time-dense antiangiogenic schedulings. Cell Prolif. 42, 317–329 (2009)
d’Onofrio, A., Ledzewicz, U., Maurer, H., Schättler, H.: On optimal delivery of combination therapy for tumors. Math. Biosci. 222, 13–26 (2009), doi:10.1016/j.mbs.2009.08.004
d’Onofrio, A., Fasano, A., Monechi, B.: A generalization of Gompertz law compatible with the Gyllenberg-Webb theory for tumour growth Math. Biosci. 230(1), 45–54 (2011)
O’Reilly, M.S., Boehm, T., Shing, Y., Fukai, N., Vasios, G., Lane, W.S., Flynn, E., Birkhead, J.R., Olsen, B.R., Folkman, J.: Endostatin: An endogenous inhibitor of angiogenesis and tumour growth. Cell 88, 277–285 (1997)
Panetta, J.C.: A mathematical model of breast and ovarian cancer treated with paclitaxel. Math. Biosci. 146, 89–113 (1997)
Peckham, M., Pinedo, H.M., Veronesi, U.: Oxford Textbook of Oncology. Oxford Medical Publications, New York (1995)
Quinn, M.J., d’Onofrio, A., Moeller, B., Black, R., Martinez-Garcia, C., Moeller, H., Rahu, M., Robertson, C., Schouten, L.J., La Vecchia, C., Boyle, P.: Cancer mortality trends in the EU and acceding countries up to 2001. Ann. Oncol. 14, 1148–1152 (2003)
Ribba, B., Marron, K., Agur, Z., Alarcïn, T., Maini, P.K.: A mathematical model of Doxorubicin treatment efficacy for non-Hodgkin’s lymphoma: Investigation of the current protocol through theoretical modelling results. Bull. Math. Biol. 67, 79–99 (2005)
Schättler, H., Jankovic, M.: A synthesis of time-optimal controls in the presence of saturated singular arcs. Forum Math. 5, 203–241 (1993)
Schättler, H., Ledzewicz, U., Cardwell, B.: Robustness of optimal controls for a class of mathematical models for tumor anti-angiogenesis. Math. Biosci. Eng. 8, 355–369 (2011), doi:10.3934/mbe.2011.8.355
Sole, R.V.: Phase transitions in unstable cancer cell populations. Eur. J. Phys. B 35, 117–124 (2003)
Skipper, H.E.: On mathematical modeling of critical variables in cancer treatment (goals: Better understanding of the past and better planning in the future). Bull. Math. Biol. 48, 253–278 (1986)
Swan, G.W.: Role of optimal control in cancer chemotherapy. Math. Biosci. 101, 237–284 (1990)
Swierniak, A.: Optimal treatment protocols in leukemia - modelling the proliferation cycle. In: Proceedings of 12th IMACS World Congress, vol. 4, pp. 170–172, Paris (1988)
Swierniak, A.: Cell cycle as an object of control. J. Biol. Syst. 3, 41–54 (1995)
Swierniak, A.: Direct and indirect control of cancer populations. Bull. Pol. Acad. Sci. 56, 367–378 (2008)
Swierniak, A.: Comparison of six models of antiangiogenic therapy. Appl. Math. 36, 333–348 (2009)
Swierniak, A., Kimmel, M., Smieja, J.: Mathematical modeling as a tool for planning anti-cancer therapy, Eur. J. Pharmacol. 625, 108–121 (2009)
Swierniak, A., Ledzewicz, U., Schättler, H.: Optimal control for a class of compartmental models in cancer chemotherapy. Int. J. Appl. Math. Comput. Sci. 13, 357–368 (2003)
Thames, H.D., Hendry, J.H.: Fractionation in Radiotherapy. Taylor and Francis, London (1987)
Ubezio, P., Cameron, D.: Cell killing and resistance in pre-operative breast cancer chemotherapy. BMC Canc. 8, 201ff (2008)
Wheldon, T.E.: Mathematical Models in Cancer Research. Hilger Publishing, Boston-Philadelphia (1988)
Wijeratne, N.S., Hoo, K.A.: Understanding the role of the tumour vasculature in the transport of drugs to solid cancer tumors. Cell Prolif. 40, 283–301 (2007)
Yu, J.L., Rak, J.W.: Host microenvironment in breast cancer development: Inflammatory and immune cells in tumour angiogenesis and arteriogenesis. Breast Canc. Res. 5, 83–88 (2003)
Acknowledgements
We would like to thank an anonymous referee for his careful reading of our chapter and several suggestions that we incorporated into the final version. The research of A. d’Onofrio has been done in the framework of the Integrated Project “p-medicine—from data sharing and integration via VPH models to personalized medicine,” project identifier: 270089, which is partially funded by the European Commission under the 7th framework program. The research of U. Ledzewicz and H. Schättler has been partially supported by the National Science Foundation under collaborative research grant DMS 1008209/1008221.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer Science+Business Media New York
About this chapter
Cite this chapter
Ledzewicz, U., d’Onofrio, A., Schättler, H. (2013). Tumor Development Under Combination Treatments with Anti-angiogenic Therapies. In: Ledzewicz, U., Schättler, H., Friedman, A., Kashdan, E. (eds) Mathematical Methods and Models in Biomedicine. Lecture Notes on Mathematical Modelling in the Life Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4178-6_11
Download citation
DOI: https://doi.org/10.1007/978-1-4614-4178-6_11
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4614-4177-9
Online ISBN: 978-1-4614-4178-6
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)