Skip to main content

Optimisation of Cancer Drug Treatments Using Cell Population Dynamics

  • Chapter
  • First Online:
Mathematical Methods and Models in Biomedicine

Abstract

Cancer is primarily a disease of the physiological control on cell population proliferation. Tissue proliferation relies on the cell division cycle: one cell becomes two after a sequence of molecular events that are physiologically controlled at each step of the cycle at so-called checkpoints, in particular at transitions between phases of the cycle [105]. Tissue proliferation is the main physiological process occurring in development and later in maintaining the permanence of the organism in adults, at that late stage mainly in fast renewing tissues such as bone marrow, gut and skin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agur, Z., Hassin, R., Levy, S.: Optimizing chemotherapy scheduling using local search heuristics. Oper. Res. 54, 829–846 (2006)

    MATH  Google Scholar 

  2. Alarcón, T., Byrne, H., Maini, P.: A multiple scale model for tumor growth. Multiscale Model. Simul. 3, 440–475 (2005)

    MathSciNet  MATH  Google Scholar 

  3. Altinok, A., Lévi, F., Goldbeter, A.: A cell cycle automaton model for probing circadian patterns of anticancer drug delivery. Adv. Drug Deliv. Rev. 59, 1036–1010 (2007)

    Google Scholar 

  4. Altinok, A., Lévi, F., Goldbeter, A.: Optimizing temporal patterns of anticancer drug delivery by simulations of a cell cycle automaton. In Bertau, M., Mosekilde, E., Westerhoff, H. (eds.) Biosimulation in Drug Development, pp. 275–297. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2008)

    Google Scholar 

  5. Altinok, A., Lévi, F., Goldbeter, A.: Identifying mechanisms of chronotolerance and chronoefficacy for the anticancer drugs 5-fluorouracil and oxaliplatin by computational modeling. Eur. J. Pharm. Sci. 36, 20–38 (2009)

    Google Scholar 

  6. Altinok, A., Gonze, D., Lévi, F., Goldbeter, A.: An automaton model for the cell cycle. Interface Focus 1, 36–47 (2011)

    Google Scholar 

  7. Arino, O.: A survey of structured cell population dynamics. Acta. Biotheor. 43, 3–25 (1995)

    Google Scholar 

  8. Arino, O., Kimmel, M.: Comparison of approaches to modeling of cell population dynamics. SIAM J. Appl. Math. 53, 1480–1504 (1993)

    MathSciNet  MATH  Google Scholar 

  9. Arino, O., Sanchez, E.: A survey of cell population dynamics. J. Theor. Med. 1, 35–51 (1997)

    MATH  Google Scholar 

  10. Ballesta, A., Clairambault, J., Dulong, S., Lévi, F.: Theoretical optimization of irinotecan-based anticancer strategies in case of drug-induced efflux. Appl. Math. Lett. 24, 1251–1256 (2011)

    MathSciNet  Google Scholar 

  11. Ballesta, A., Dulong, S., Abbara, C., Cohen, B., Okyar, A., Clairambault, J., Levi, F.: A combined experimental and mathematical approach for molecular-based optimization of irinotecan circadian delivery. PLoS Comp. Biol. 7, e1002143 (2011)

    MathSciNet  Google Scholar 

  12. Banks, H., Sutton, K.L., Thompson, W.C., Bocharov, G., Doumic, M., Schenkel, T., Argilaguet, J., Giest, S., Peligero, C., Meyerhans, A.: A new model for the estimation of cell proliferation dynamics using cfse data. J. Imunol. Meth. 373, 143–160 (2011)

    Google Scholar 

  13. Barbolosi, D., Iliadis, A.: Optimizing drug regimens in cancer chemotherapy: a simulation study using a pk-pd model. Comput. Biol. Med. 31, 157–172 (2001)

    Google Scholar 

  14. Barbolosi, D., Benabdallah, A., Hubert, F., Verga, F.: Mathematical and numerical analysis for a model of growing metastatic tumors. Math. Biosci. 218, 1–14 (2009)

    MathSciNet  MATH  Google Scholar 

  15. Basdevant, C., Clairambault, J., Lévi, F.: Optimisation of time-scheduled regimen for anti-cancer drug infusion. Math. Model. Numer. Anal. 39, 1069–1086 (2006)

    Google Scholar 

  16. Basse, B., Baguley, B.C., Marshall, E.S., Joseph, W.R., van Brunt, B., Wake, G., Wall, D.J.N.: A mathematical model for analysis of the cell cycle in cell lines derived from human tumors. J. Math. Biol. 47, 295–312 (2003)

    MathSciNet  MATH  Google Scholar 

  17. Basse, B., Baguley, B., Marshall, E., Wake, G., Wall, D.: Modelling the flow cytometric data obtained from unperturbed human tumour cell lines: Parameter fitting and comparison. Bull. Math. Biol. 67, 815–830 (2005)

    MathSciNet  Google Scholar 

  18. Basse, B., Baguley, B.C., Marshall, E.S., Joseph, W.R., van Brunt, B., Wake, G., Wall, D.J.N.: Modelling cell death in human tumour cell lines exposed to the anticancer drug paclitaxel. J. Math. Biol. 49, 329–357 (2004)

    MathSciNet  MATH  Google Scholar 

  19. Basse, B., Baguley, B.C., Marshall, E.S., Wake, G.C., Wall, D.J.N.: Modelling cell population growth with applications to cancer therapy in human tumour cell lines. Prog. Biophys. Mol. Biol. 85, 353–368 (2004)

    Google Scholar 

  20. Basse, B., Ubezio, P.: A generalised age- and phase-structured model of human tumour cell populations both unperturbed and exposed to a range of cancer therapies. Bull. Math. Biol. 69, 1673–1690 (2007)

    MathSciNet  MATH  Google Scholar 

  21. Bekkal Brikci, F., Clairambault, J., Perthame, B.: Analysis of a molecular structured population model with polynomial growth for the cell cycle. Math. Comput. Model. 47, 699–713 (2008)

    MathSciNet  MATH  Google Scholar 

  22. Bekkal Brikci, F., Clairambault, J., Ribba, B., Perthame, B.: An age-and-cyclin-structured cell population model for healthy and tumoral tissues. J. Math. Biol. 57, 91–110 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Bernard, S., Čajavec Bernard, B., Lévi, F., Herzel, H.: Tumor growth rate determines the timing of optimal chronomodulated treatment schedules. PLoS Comput. Biol. 6(3), e1000712 (2010)

    Google Scholar 

  24. Bertsekas, D.: Nonlinear Programming. Athena Scientific, Nashua, NH (1995)

    MATH  Google Scholar 

  25. Billy, F., Ribba, B., Saut, O., Morre-Trouilhet, H., Colin, T., Bresch, D., Boissel, J.-P., Grenier, E., Flandrois, J.-P.: A pharmacologically based multiscale mathematical model of angiogenesis and its use in investigating the efficacy of a new cancer treatment strategy. J. Theor. Biol. 260(4), 545–562 (2009)

    Google Scholar 

  26. Billy, F., Clairambault, J., Fercoq, O., Gaubert, S., Lepoutre, T., Ouillon, T.: Proliferation in cell population models with age structure. In: Proceedings of ICNAAM 2011, Kallithea Chalkidis (Greece), pp. 1212–1215. American Institute of Physics (2011)

    Google Scholar 

  27. Billy, F., Clairambault, J., Fercoq, O., Gaubert, S., Lepoutre, T., Ouillon, T., Saito, S.: Synchronisation and control of proliferation in cycling cell population models with age structure. Math. Comp. Simul. in press, (2012)

    Google Scholar 

  28. Bittanti, S., Guardabassi, G.: Optimal periodic control and periodic systems analysis - an overview. In: 25th IEEE Conference on Decision and Control, pp. 1417–1423 (1986)

    Google Scholar 

  29. Bonnans, J., Gilbert, J., Lemaréchal, C., Sagastizábal, C.: Numerical Optimization – Theoretical and Practical Aspects. Universitext. Springer, Berlin (2006)

    MATH  Google Scholar 

  30. Bresch, D., Colin, T., Grenier, E., Ribba, B., Saut, O.: A viscoelastic model for avascular tumor growth. Special issue Discrete Continuous Dyn. Syst. 101–108 (2009)

    Google Scholar 

  31. Bresch, D., Colin, T., Grenier, E., Ribba, B., Saut, O.: Computational modeling of solid tumor growth: the avascular stage. SIAM J. Sci. Comput. 32, 2321–2344 (2010)

    MathSciNet  MATH  Google Scholar 

  32. Byrne, H.M., Chaplain, M.A.: Growth of nonnecrotic tumors in the presence and absence of inhibitors. Math. Biosci. 130(2), 151–181 (1995)

    MATH  Google Scholar 

  33. Byrne, H.M., Chaplain, M.A.: Growth of necrotic tumors in the presence and absence of inhibitors. Math. Biosci. 135(15), 187–216 (1996)

    MATH  Google Scholar 

  34. Byrne, H., Alarcón, T., Owen, M., Webb, S., Maini, P.: Modelling aspects of cancer dynamics: A review. Phil. Trans. Roy. Soc. A 364, 1563–1578 (2006)

    Google Scholar 

  35. Clairambault, J.: Modelling oxaliplatin drug delivery to circadian rhythm in drug metabolism and host tolerance. Adv. Drug Deliv. Rev. 59, 1054–1068 (2007)

    Google Scholar 

  36. Clairambault, J.: A step toward optimization of cancer therapeutics. physiologically based modelling of circadian control on cell proliferation. IEEE-EMB Mag. 27, 20–24 (2008)

    Google Scholar 

  37. Clairambault, J.: Modelling physiological and pharmacological control on cell proliferation to optimise cancer treatments. Math. Model. Nat. Phenom. 4, 12–67 (2009)

    MathSciNet  MATH  Google Scholar 

  38. Clairambault, J.: Optimising cancer pharmacotherapeutics using mathematical modelling and a systems biology approach. Personalized Medicine 8, 271–286 (2011)

    Google Scholar 

  39. Clairambault, J., Laroche, B., Mischler, S., Perthame, B.: A mathematical model of the cell cycle and its control. Technical report, Number 4892, INRIA, Domaine de Voluceau, BP 105, 78153 Rocquencourt, France (2003)

    Google Scholar 

  40. Clairambault, J., Gaubert, S., Lepoutre, T.: Comparison of Perron and Floquet eigenvalues in age structured cell division models. Math. Model. Nat. Phenom. 4, 183–209 (2009)

    MathSciNet  MATH  Google Scholar 

  41. Clairambault, J., Gaubert, S., Lepoutre, T.: Circadian rhythm and cell population growth. Math. Comput. Model. 53, 1558–1567 (2011)

    MathSciNet  MATH  Google Scholar 

  42. Clairambault, J., Hochberg, M., Lorenzi, T., Lorz, A, Perthame, B.: Populational adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapies. Math. Model. Numer. Anal. accepted, 2012.

    Google Scholar 

  43. Cui, S., Friedman, A.: Analysis of a mathematical model of the effect of inhibitors on the growth of tumor. Math. Biosci. 164, 103–137 (2000)

    MathSciNet  MATH  Google Scholar 

  44. Cunningham, D., Humblet, Y., Siena, S., Khayat, D., Bleiberg, H., Santoro, A., Bets, D., Mueser, M., Harstrick, A., Verslype, C., Chau, I., Van Cutsem, E.: Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N. Engl. J. Med. 351, 337–345 (2004)

    Google Scholar 

  45. Deakin, A.S.: Model for the growth of a solid in vitro tumor. Growth 39(1), 159–165 (1975)

    MathSciNet  Google Scholar 

  46. d’Onofrio, A.: Rapidly acting antitumoral antiangiogenic therapies. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(3 Pt 1), 031920 (2007)

    Google Scholar 

  47. d’Onofrio, A., Gandolfi, A.: Tumour eradication by antiangiogenic therapy: analysis and extensions of the model by Hahnfeldt et al. (1999). Math. Biosci. 191, 159–184 (2004)

    Google Scholar 

  48. d’Onofrio, A., Gandolfi, A.: A family of models of angiogenesis and anti-angiogenesis anti-cancer therapy. Math. Med. Biol. 26(1), 63–95 (2009)

    Google Scholar 

  49. d’Onofrio, A., Ledzewicz, U., Maurer, H., Schättler, H.: On optimal delivery of combination therapy for tumors. Math. Biosci. 222, 13–26 (2009)

    Google Scholar 

  50. Doumic, M., Perthame, B., Zubelli, J.: Numerical solution of an inverse problem in size-structured population dynamics. Inverse Problems 25, 045008 (25pp) (2009)

    Google Scholar 

  51. Doumic, M., Maia, P., Zubelli, J.: On the calibration of a size-structured population model from experimental data. Acta Biotheor. 58, 405–413 (2010)

    Google Scholar 

  52. Doumic, M., Hoffmann, M., Reynaud, P., Rivoirard, V.: Nonparametric estimation of the division rate of a size-structured population. SIAM J. Num. Anal. 50(2), 925–950 (2012)

    MATH  Google Scholar 

  53. Druker, B., Talpaz, M., Resta, D., Peng, B., Buchdunger, E., Ford, J., Lydon, N., Kantarjian, H., Capdeville, R., Ohno-Jones, S., Sawyers, C.: Efficacy and safety of a specific inhibitor of the bcr-abl tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med. 344, 1031–1037 (2001)

    Google Scholar 

  54. Dua, P., Dua, V., Pistikopoulos, E.: Optimal delivery of chemotherapeutic agents in cancer. Comp. Chem. Eng. 32, 99–107 (2008)

    Google Scholar 

  55. Ergun, A., Camphausen, K., Wein, L.M.: Optimal scheduling of radiotherapy and angiogenic inhibitors. Bull. Math. Biol. 65(3), 407–424 (2003)

    Google Scholar 

  56. Fister, K.R., Panetta, J.C.: Optimal control applied to cell-cycle-specific cancer chemotherapy. SIAM J. Appl. Math. 60(3), 1059–1072 (2000)

    MathSciNet  MATH  Google Scholar 

  57. Frieboes, H.B., Edgerton, M.E., Fruehauf, J.P., F.Rose, R.A.J., Worrall, L.K., Gatenby, R.A., Ferrari, M., Cristini, V.: Prediction of drug response in breast cancer using integrative experimental/computational modeling. Canc. Res. 69, 4484–4492 (2009)

    Google Scholar 

  58. Gatenby, R.: A change of strategy in the war on cancer. Nature 459, 508–509 (2009)

    Google Scholar 

  59. Gatenby, R., Gawlinski, E.: A reaction-diffusion model of cancer invasion. Canc. Res. 56, 5745–5753 (1996)

    Google Scholar 

  60. Gatenby, R., Maini, P.K., Gawlinski, E.: Analysis of tumor as an inverse problem provides a novel theoretical framework for understanding tumor biology and therapy. Appl. Math. Lett. 15, 339–345 (2002)

    MathSciNet  MATH  Google Scholar 

  61. Gatenby, R., Silva, A., Gillies, R., Friden, B.: Adaptive therapy. Canc. Res. 69, 4894–4903 (2009)

    Google Scholar 

  62. Gompertz, B.: On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philos. Transact. Roy. Soc. Lond. 115, 513–585 (1825)

    Google Scholar 

  63. Greenspan, H.: Models for the growth of a solid tumor by diffusion. Stud. Appl. Math. 52, 317–340 (1972)

    Google Scholar 

  64. Gyllenberg, M., Osipov, A., Päivärinta, L.: The inverse problem of linear age-structured population dynamics. J. Evol. Equat. 2, 223–239 (2002)

    MATH  Google Scholar 

  65. Gyllenberg, M., Webb, G.F.: A nonlinear structured population model of tumor growth witsh quiescence. J. Math. Biol. 28, 671–694 (1990)

    MathSciNet  MATH  Google Scholar 

  66. Haferlach, T.: Molecular genetic pathways as therapeutic targets in acute myeloid leukemia. Hematology 2008, 400–411 (2008), Am. Soc. Hematol. Educ. Program.

    Google Scholar 

  67. Hahnfeldt, P., Panigrahy, D., Folkman, J., Hlatky, L.: Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy. Canc. Res. 59, 4770–4775 (1999)

    Google Scholar 

  68. Hansen, N.: The CMA evolution strategy: A comparing review. In Lozano, J., Larraaga, P., Inza, I., Bengoetxea, E. (eds.) Towards a New Evolutionary Computation. Advances in Estimation of Distribution Algorithms, pp. 75–102. Springer, Berlin (2006)

    Google Scholar 

  69. Hinow, P., Wang, S., Arteaga, C., Webb, G.: A mathematical model separates quantitatively the cytostatic and cytotoxic effects of a her2 tyrosine kinase inhibitor. Theor. Biol. Med. Model. 4, 14 (2007). doi:10.1186/1742-4682-4-14

    Google Scholar 

  70. Iliadis, A., Barbolosi, D.: Optimizing drug regimens in cancer chemotherapy by an efficacy-toxicity mathematical model. Comput. Biomed. Res. 33, 211–226 (2000)

    Google Scholar 

  71. Iwata, K., Kawasaki, K., Shigesada, N.: A dynamical model for the growth and size distribution of multiple metastatic tumors. J. Theor. Biol. 203, 177–186 (2000)

    Google Scholar 

  72. Jackson, T.: Intracellular accumulation and mechanism of action of doxorubicin in a spatio-temporal tumor model. J. Theor. Biol. 220, 201–213 (2003)

    Google Scholar 

  73. Jackson, T., Byrne, H.: A mathematical model to study the effects of drug resistance and vasculature on the response of solid tumors to chemotherapy. Math. Biosci. 164, 17–38 (2000)

    MathSciNet  MATH  Google Scholar 

  74. Kheifetz, Y., Kogan, Y., Agur, Z.: Long-range predictability in models of cell populations subjected to phase-specific drugs: growth-rate approximation using properties of positive compact operators. Math. Model. Meth. Appl. Sci. 16, 1155–1172 (2006)

    MathSciNet  MATH  Google Scholar 

  75. Kimmel, M., Świerniak, A.: Control theory approach to cancer chemotherapy: Benefiting from phase dependence and overcoming drug resistance. In: Friedman, A. (ed.) Tutorials in Mathematical Biosciences III. Lecture Notes in Mathematics, vol. 1872, pp. 185–221. Springer, Berlin (2006)

    Google Scholar 

  76. Kirsch, A.: An Introduction to the Mathematical Theory of Inverse Problems, 2nd edn. Springer, New York (2011)

    MATH  Google Scholar 

  77. Kitano, H.: Cancer as a robust system: Implications for anticancer therapy. Nat. Rev. Canc. 3, 227–235 (2004)

    Google Scholar 

  78. Kitano, H.: A robustness-based approach to systems-oriented drug design. Nat. Rev. Drug Discov. 6, 202–210 (2007)

    Google Scholar 

  79. Kohandel, M., Kardar, M., Milosevic, M., Sivaloganathan, S.: Dynamics of tumor growth and combination of anti-angiogenic and cytotoxic therapies. Phys. Med. Biol. 52, 3665–3677 (2007)

    Google Scholar 

  80. Kozusko, F., Chen, P., Grant, S.G., Day, B.W., Panetta, J.C.: A mathematical model of in vitro cancer cell growth and treatment with the antimitotic agent curacin a. Math. Biosci. 170(1), 1–16 (2001)

    MathSciNet  MATH  Google Scholar 

  81. Laird, A.: Dynamics of tumour growth. Br. J. Canc. 13, 490–502 (1964)

    Google Scholar 

  82. Lasota, A., Mackey, M.: Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics, 2nd edn. Springer, New York (1994)

    MATH  Google Scholar 

  83. Ledzewicz, U.,  Schttler, H.: Optimal controls for a model with pharmacokinetics maximizing bone marrow in cancer chemotherapy. Math. Biosci. 206, 320–342 (2007)

    MathSciNet  MATH  Google Scholar 

  84. Ledzewicz, U., Maurer, H., Schaettler, H.: Optimal and suboptimal protocols for a mathematical model for tumor anti-angiogenesis in combination with chemotherapy. Math. Biosci. Eng. 8, 307–323 (2011)

    MathSciNet  Google Scholar 

  85. Ledzewicz, U., Maurer, H., Schaettler, H.: Optimal and suboptimal protocols for a mathematical model for tumor anti-angiogenesis in combination with chemotherapy. Math. Biosci. Eng. 8(2), 307–323 (2011)

    MathSciNet  Google Scholar 

  86. Lehmann, E., Casella, G.: Theory of point estimation. Springer Texts in Statistics, 2nd edition, Springer, New York (1998)

    Google Scholar 

  87. Lévi, F.: Cancer chronotherapeutics. Special issue Chronobiol. Int. 19, 1–19 (2002)

    Google Scholar 

  88. Lévi, F.: Chronotherapeutics: the relevance of timing in cancer therapy. Canc. Causes Contr. 17, 611–621 (2006)

    Google Scholar 

  89. Lévi, F.: The circadian timing system: A coordinator of life processes. implications for the rhythmic delivery of cancer therapeutics. IEEE-EMB Magazine 27, 17–20 (2008)

    Google Scholar 

  90. Lévi, F., Altinok, A., Clairambault, J., Goldbeter, A.: Implications of circadian clocks for the rhythmic delivery of cancer therapeutics. Phil. Trans. Roy. Soc. A 366, 3575–3598 (2008)

    Google Scholar 

  91. Lévi, F., Okyar, A., Dulong, S., Innominato, P., Clairambault, J.: Circadian timing in cancer treatments. Ann. Rev. Pharmacol. Toxicol. 50, 377–421 (2010)

    Google Scholar 

  92. Lévi, F., Schibler, U.: Circadian rhythms: Mechanisms and therapeutic implications. Ann. Rev. Pharmacol. Toxicol. 47, 493–528 (2007)

    Google Scholar 

  93. Ljung, L.: System Identification - Theory for the User, 2nd edn. PTR Prentice Hall, Upper Saddle River, N.J. (1999)

    Google Scholar 

  94. Lupi, M., Matera, G., Branduardi, D., D’Incalci, M., Ubezio, P.: Cytostatic and cytotoxic effects of topotecan decoded by a novel mathematical simulation approach. Canc. Res. 64, 2825–2832 (2004)

    Google Scholar 

  95. Lupi, M., Cappella, P., Matera, G., Natoli, C., Ubezio, P.: Interpreting cell cycle effects of drugs: the case of melphalan. Canc. Chemother. Pharmacol. 57, 443–457 (2006)

    Google Scholar 

  96. Martin, R.: Optimal control drug scheduling of cancer chemotherapy. Automatica 28, 1113–1123 (1992)

    Google Scholar 

  97. Martin, R.B., Fisher, M.E., Minchin, R.F., Teo, K.L.: Low-intensity combination chemotherapy maximizes host survival time for tumors containing drug-resistant cells. Math. Biosci. 110, 221–252 (1992)

    MATH  Google Scholar 

  98. Martin, R.B., Fisher, M.E., Minchin, R.F., Teo, K.L.: Optimal control of tumor size used to maximize survival time when cells are resistant to chemotherapy. Math. Biosci. 110, 201–219 (1992)

    MATH  Google Scholar 

  99. Maurer, H., Büskens, C., Kim, J.-H.R., Kaya, C.Y.: Optimization methods for the verification of second order sufficient conditions for bang-bang controls. Optim. Contr. Appl. Meth. 26(3), 129–156 (2005)

    Google Scholar 

  100. Mauro, M.J., O’Dwyer, M., Heinrich, M.C., Druker, B.J.: STI571: A paradigm of new agents for cancer therapeutics. J. Clin. Oncol. 20, 325–334 (2002)

    Google Scholar 

  101. McElwain, D., Ponzo, P.: A model for the growth of a solid tumor with non-uniform oxygen consumption. Math. Biosci. 35, 267–279 (1977)

    MATH  Google Scholar 

  102. McKendrick, A.: Applications of mathematics to medical problems. Proc. Edinburgh Math. Soc. 54, 98–130 (1926)

    Google Scholar 

  103. Metz, J., Diekmann, O.: The dynamics of physiologically structured populations. In: Lecture Notes in Biomathematics, vol. 68. Springer, New York (1986)

    Google Scholar 

  104. Montalenti, F., Sena, G., Cappella, P., Ubezio, P.: Simulating cancer-cell kinetics after drug treatment: application to cisplatin on ovarian carcinoma. Phys. Rev. E 57, 5877–5887 (1998)

    Google Scholar 

  105. Morgan, D.: The Cell Cycle: Principles of Control. Primers in Biology series. Oxford University Press, Oxford (2006)

    Google Scholar 

  106. Murray, J.: Optimal control for a cancer chemotherapy problem with general growth and loss functions. Math. Biosci. 98, 273–287 (1990)

    MathSciNet  MATH  Google Scholar 

  107. Murray, J.: Some optimal control problems in cancer chemotherapy with a toxicity limit. Math. Biosci. 100, 49–67 (1990)

    MathSciNet  MATH  Google Scholar 

  108. Murray, J.: The optimal scheduling of two drugs with simple resistance for a problem in cancer chemotherapy. IMA J. Math. Appl. Med. Biol. 14, 283–303 (1997)

    MATH  Google Scholar 

  109. Murray, J.: Mathematical Biology. I: An Introduction, 3rd edn. Springer, New York (2002)

    Google Scholar 

  110. Murray, J.: Mathematical Biology. II: Spatial Models and Biomedical Applications, 3rd edn. Springer, New York (2003)

    Google Scholar 

  111. Nocedal, J., Wright, S.: Numerical Optimization. Springer, New York (1999)

    MATH  Google Scholar 

  112. Norris, E., King, J., Byrne, H.: Modelling the response of spatially structured tumours to chemotherapy: Drug kinetics. Math. Comput. Model. 43, 820–837 (2006)

    MathSciNet  MATH  Google Scholar 

  113. Nowsheen, S., Aziz, K., Panayiotidis, M.I., Georgakilas, A.G.: Molecular markers for cancer prognosis and treatment: have we struck gold? Canc. Lett. (2011) Published on line, November 2011, DOI:10.1016/j.canlet.2011.11.022.

    Google Scholar 

  114. Panetta, J.C.: A mathematical model of breast and ovarian cancer treated with paclitaxel. Math. Biosci. 146(2), 89–113 (1997)

    MathSciNet  MATH  Google Scholar 

  115. Panetta, J., Adam, J.: A mathematical model of cell-specific chemotherapy. Math. Comput. Model. 22, 67 (1995)

    MathSciNet  MATH  Google Scholar 

  116. Panetta, J.C., Kirstein, M.N., Gajjar, A.J., Nair, G., Fouladi, M., Stewart, C.F.: A mechanistic mathematical model of temozolomide myelosuppression in children with high-grade gliomas. Math. Biosci. 186, 29–41 (2003)

    MathSciNet  MATH  Google Scholar 

  117. Panetta, J.C., Evans, W.E., Cheok, M.H.: Mechanistic mathematical modelling of mercaptopurine effects on cell cycle of human acute lymphoblastic leukaemia cells. Br. J. Canc. 94(1), 93–100 (2006)

    Google Scholar 

  118. Pereira, F., Pedreira, C., de Sousa, J.: A new optimization based approach to experimental combination chemotherapy. Frontiers Med. Biol. Engng. 6(4), 257–268 (1995)

    Google Scholar 

  119. Perthame, B.: Transport equations in biology. Frontiers in Mathematics Series. Birkhäuser, Boston (2007)

    MATH  Google Scholar 

  120. Perthame, B., Zubelli, J.: On the inverse problem for a size-structured population model. Inverse Problems 23, 1037–1052 (2007)

    MathSciNet  MATH  Google Scholar 

  121. Pontryagin, L.S., Boltyanski, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The mathematical theory of optimal processes. Interscience Publishers, New York (1962) Translated from the Russian by K.N. Trirogoff.

    Google Scholar 

  122. Prenen, H., Tejpar, S., Cutsem, E.V.: New strategies for treatment of kras mutant metastatic colorectal cancer. Clin. Canc. Res. 16, 2921–2926 (2010)

    Google Scholar 

  123. Ribba, B., Saut, O., Colin, T., Bresch, D., Grenier, E., Boissel, J.P.: A multiscale mathematical model of avascular tumor growth to investigate the therapeutic benefit of anti-invasive agents. J. Theor. Biol. 243, 532–541 (2006)

    MathSciNet  Google Scholar 

  124. Ribba, B., Watkin, E., Tod, M., Girard, P., Grenier, E., You, B., Giraudo, E., Freyer, G.: A model of vascular tumour growth in mice combining longitudinal tumour size data with histological biomarkers. Eur. J. Canc. 47, 479–490 (2011)

    Google Scholar 

  125. Sakaue-Sawano, A., Ohtawa, K., Hama, H., Kawano, M., Ogawa, M., Miyawaki, A.: Tracing the silhouette of individual cells in S/G2/M phases with fluorescence. Chem. Biol. 15, 1243–48 (2008)

    Google Scholar 

  126. Shah, N., Tran, C., Lee, F., Chen, P., Norris, D., Sawyers, C.: Overriding imatinib resistance with a novel ABL kinase inhibitor. Science 305, 399–401 (2004)

    Google Scholar 

  127. Shymko, R.M.: Cellular and geometric control of tissue growth and mitotic instability. J. Theor. Biol. 63(2), 355–374 (1976)

    Google Scholar 

  128. Sinek, J.P., Sanga, S., Zheng, X., Frieboes, H.B., Ferrari, M., Cristini, V.: Predicting drug pharmacokinetics and effect in vascularized tumors using computer simulation. J. Math. Biol. 58, 485–510 (2009)

    MathSciNet  Google Scholar 

  129. Spall, J.C.: Introduction to stochastic search and optimization: estimation, simulation, and control. Wiley, Hoboken (2003)

    MATH  Google Scholar 

  130. Spinelli, L., Torricelli, A., Ubezio, P., Basse, B.: Modelling the balance between quiescence and cell death in normal and tumour cell populations. Math. Biosci. 202, 349–370 (2006)

    MathSciNet  MATH  Google Scholar 

  131. Swanson, K., Alvord, E., Murray, J.: A quantitative model for differential motility of gliomas in grey and white matter. Cell Prolif. 33, 317–329 (2000)

    Google Scholar 

  132. Swanson, K., Alvord, E., Murray, J.: Quantifying efficacy of chemotherapy of brain tumors with homogeneous and heterogeneous drug delivery. J. Neurosurg. 50, 223–237 (2002)

    Google Scholar 

  133. Swanson, K.R., Alvord, E.C., Murray, J.D.: Virtual brain tumours (gliomas) enhance the reality of medical imaging and highlight inadequacies of current therapy. Br. J. Canc. 86, 14–18 (2002)

    Google Scholar 

  134. Swierniak, A., Polanski, A., Kimmel, M.: Optimal control problems arising in cell-cycle-specific cancer chemotherapy. Cell Prolif. 29, 117–139 (1996)

    Google Scholar 

  135. Ubezio, P., Lupi, M., Branduardi, D., Cappella, P., Cavallini, E., Colombo, V., Matera, G., Natoli, C., Tomasoni, D., D’Incalci, M.: Quantitative assessment of the complex dynamics of G1, S, and G2-M checkpoint activities. Canc. Res. 69, 5234–5240 (2009)

    Google Scholar 

  136. Villasana, M., Ochoa, G., Aguilar, S.: Modeling and optimization of combined cytostatic and cytotoxic cancer chemotherapy. Artif. Intell. Med. 50(3), 163–173 (2010)

    Google Scholar 

  137. Walter, E., Pronzato, L.: Identification of parametric models from experimental data. In: Communications and Control Engineering Series, 2nd edn. Springer, London (1997)

    Google Scholar 

  138. Webb, G.: Resonance phenomena in cell population chemotherapy models. Rocky Mountain J. Math. 20(4), 1195–1216 (1990)

    MathSciNet  MATH  Google Scholar 

  139. Webb, G.: A cell population model of periodic chemotherapy treatment. Biomedical Modeling and Simulation, pp. 83–92. Elsevier, Netherlands (1992)

    Google Scholar 

  140. Webb, G.: A non linear cell population model of periodic chemotherapy treatment. Recent Trends Ordinary Differential Equations, Series in Applicable Analysis 1, pp. 569–583. World Scientific, Singapore (1992)

    Google Scholar 

  141. Zheng, X., Wise, S.M., Cristini, V.: Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method. Bull. Math. Biol. 67, 211–259 (2005)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

Access to data mentioned in Subsection 7.4 has been provided to us by G. van der Horst’s lab in Erasmus Medical Centre (Rotterdam, The Netherlands); it was supported by a grant from the European Research Area in Systems Biology (ERASysBio+) and FP7 to the French National Research Agency (ANR) #ANR-09-SYSB-002-004 for the research network Circadian and Cell Cycle Clock Systems in Cancer (C5Sys) coordinated by Francis Lévi (Villejuif, France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédérique Billy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Billy, F., Clairambault, J., Fercoq, O. (2013). Optimisation of Cancer Drug Treatments Using Cell Population Dynamics. In: Ledzewicz, U., Schättler, H., Friedman, A., Kashdan, E. (eds) Mathematical Methods and Models in Biomedicine. Lecture Notes on Mathematical Modelling in the Life Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4178-6_10

Download citation

Publish with us

Policies and ethics