Skip to main content

The Childhood Glaucomas

  • Chapter
  • First Online:
Clinical Glaucoma Care
  • 1780 Accesses

Abstract

The childhood glaucomas are a diverse group of ocular disorders that must be recognized early and treated to prevent secondary loss of vision. Primary congenital glaucoma is the most common type and is typically recognized by 1 year of age and responds well to surgery. Childhood glaucoma secondary to other diseases and to ocular injury must also be managed to save vision. The filtration angle pathology in affected eyes with pediatric glaucoma is varied and includes both primary congenital anomalies and abnormalities secondary to increased intraocular pressure and secondary surgery. The occurrence of glaucoma in childhood is unusual with an incidence of approximately 1:10,000. The CYPB1 gene is the most frequent identified mutated gene abnormality. The clinical signs of these glaucomas are variable dependent on the age of the patient and the severity of the intraocular pressure abnormality. In infancy corneal opacification and enlargement is typical, and later in childhood diagnosis is made by recognizing secondary loss of vision. Some children are at increased risk for glaucoma including those with a facial nevus flammeus, chronic intraocular inflammation, history of infantile cataract surgery, and a family history of early-onset familial glaucoma. Successful tonometry is an essential component of the examination of affected children for both diagnosis and follow-up assessments after surgery. Gonioscopy provides essential information for accurately classifying childhood glaucoma and for judging the severity of the causal angle anomalies. Medical therapy is often the initial glaucoma treatment, but most young glaucoma patients soon require glaucoma surgery. Goniosurgery is the most frequent procedure and is very successful for many primary congenital glaucoma patients. For patients unresponsive to goniosurgery, glaucoma tube-shunt procedures and filtration procedures may be very successful. Refractive and strabismus amblyopia can develop and must be treated to prevent related loss of vision in patients with well-controlled pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoskins DH, Shaffer RN, Hetherington J. Anatomical classification of the developmental glaucomas. Arch Ophthalmol. 1984;102:1331–6.

    Article  PubMed  Google Scholar 

  2. Anderson DR. Pathology of the glaucomas. Br J Ophthalmol. 1972;56:146–57.

    Article  PubMed  CAS  Google Scholar 

  3. Tawara A, Inomata H. Developmental immaturity of the trabecular meshwork in congenital glaucoma. Am J Ophthalmol. 1981;92:508–25.

    PubMed  CAS  Google Scholar 

  4. Barkan O. Pathogenesis of congenital glaucoma: gonioscopic and anatomic observation of the angle of the anterior chamber in the normal eye and in congenital glaucoma. Am J Ophthalmol. 1955;40:1–11.

    PubMed  CAS  Google Scholar 

  5. Worst JGF. Congenital glaucoma: remarks on the aspect of chamber angle, ontogenetic and pathogenetic background, and mode of action of goniotomy. Invest Ophthalmol. 1968;7:127–34.

    PubMed  CAS  Google Scholar 

  6. Anderson DR. The development of the trabecular meshwork and its abnormality in primary infantile glaucoma. Trans Am Ophthalmol Soc. 1981;79:458–85.

    PubMed  CAS  Google Scholar 

  7. Tawara A, Inomata H, Tsukamoto S. Ciliary body band width as an indicator of goniodysgenesis. Am J Ophthalmol. 1996;122:790–800.

    PubMed  CAS  Google Scholar 

  8. Maul E, Strozzi L, Munoz C, et al. The outflow pathway in congenital glaucoma. Am J Ophthalmol. 1980;89:667–75.

    PubMed  CAS  Google Scholar 

  9. Tawara A, Inomata H. Congenital abnormalities of the trabecular meshwork in primary glaucoma with open angle. Glaucoma. 1987;9:28–34.

    Google Scholar 

  10. Maumenee AE. The pathogenesis of congenital glaucoma: a new theory. Trans Am Ophthalmol Soc. 1958;56:507–70.

    PubMed  CAS  Google Scholar 

  11. Wright JD, Robb RM, Deuker DK, et al. Congenital glaucoma unresponsive to conventional therapy: a clinicopathological case presentation. J Pediatr Ophthalmol Strabismus. 1983;20:172–9.

    PubMed  Google Scholar 

  12. Kolker AE, Hetherington J. Congenital glaucoma. In: Becker- Shaffer’s diagnosis and therapy of the glaucomas. 5th ed. St Louis: CV Mosby; 1983. p. 317 (Chapter 18).

    Google Scholar 

  13. Sarfarazi M, Arkarsu AN, Hossain A, et al. Assignment of a locus(GLC3A) for primary congenital glaucoma(buphthalmos) to 2p21 and evidence for genetic heterogeneity. Genomics. 1995;30:171–8.

    Article  PubMed  CAS  Google Scholar 

  14. Stoilov I, Nurten A, Sarfarazi M. Identification of three different truncating mutations in cytochrome P4501B1 (CYP1B1) as the principal cause of primary congenital glaucoma in families linked to the GLC3A on chromosome 2p21. Hum Mol Genet. 1997;6:641–7.

    Article  PubMed  CAS  Google Scholar 

  15. Miller SJH. Genetic aspects of glaucoma. Trans Ophthalmol Soc UK. 1966;86:425–34.

    PubMed  CAS  Google Scholar 

  16. Taylor RH, Ainsworth JR, Evans AR, et al. The epidemiology of pediatric glaucoma: the Toronto experience. J AAPOS. 1999;3:308–15.

    Article  PubMed  CAS  Google Scholar 

  17. Sarfarazi M, Stoilov I. Molecular genetics of primary congenital glaucoma. Eye. 2000;14:422–8.

    Article  PubMed  Google Scholar 

  18. Akarsu AN, Turacli ME, Aktan SG, et al. A second locus (GLC3B) for primary glaucoma (buphthalmos) maps to the 1p36 region. Hum Mol Genet. 1996;5:1199–203.

    Article  PubMed  CAS  Google Scholar 

  19. Stoilov IR, Sarfarazzi M. The Third Genetic Locus(GLC3C) for Primary Congenital Glaucoma (PCG) maps to chromosome 14q24.3. Fort Lauderdale: Association for Research in Vision and Ophthalmology; 2002.

    Google Scholar 

  20. Panicker SG, Mandal AN, Reddy ABM, et al. Correlations of genotype with phenotype in Indian patients with primary congenital glaucoma. Invest Ophthalmol Vis Sci. 2004;45:1149–56.

    Article  PubMed  Google Scholar 

  21. Bejjani BA, Stockton DW, Lewis RA, et al. Multiple CYP1B1 mutations and incomplete penetrance in an inbred population segregating primary congenital glaucoma suggest frequent de novo events and a dominant modifier locus. Hum Mol Genet. 2000;9:367–74.

    Article  PubMed  CAS  Google Scholar 

  22. Alward WLM, Semina EV, Kalenak JW, et al. Autosomal dominant iris hypoplasia is caused by a mutation in Rieger syndrome (RIEG/PITX2) gene. Am J Ophthalmol. 1998;125:98–100.

    Article  PubMed  CAS  Google Scholar 

  23. Nishimura DY, Swiderski RE, Alward WLM, et al. The forkhead transcription factor gene FKHL7 is responsible for glaucoma phenotypes which map to 6p25. Nat Genet. 1998;19:140–7.

    Article  PubMed  CAS  Google Scholar 

  24. Alward WLM, Fingert JH, Coote MA, et al. Clinical features associated with mutations in the chromosome 1 open-angle glaucoma gene (GLC1A). N Engl J Med. 1998;338:1022–3.

    Article  PubMed  CAS  Google Scholar 

  25. Freedman SF. Primary congenital glaucoma. In: Albert DM, Jacobiec FA, editors. Principles and practice of ophthalmology. Philadelphia: WB Saunders Company; 2000.

    Google Scholar 

  26. Zimmerman TJ, Kooner KS, Morgan KS. Safety and efficacy of timolol in pediatric glaucoma. Surv Ophthalmol. 1983;28:262.

    Article  PubMed  Google Scholar 

  27. Hoskins HDJ, Hetherington JJ, Magee SD, et al. Clinical experience with timolol in childhood glaucoma. Arch Ophthalmol. 1985;103:1163.

    Article  PubMed  Google Scholar 

  28. McMahon CD, Hetherington JJ, Hoskins HDJ, et al. Timolol and pediatric glaucomas. Ophthalmology. 1981;88:249.

    Article  PubMed  CAS  Google Scholar 

  29. Williams T, Ginther WH. Hazard of ophthalmic timolol. N Engl J Med. 1982;306:1485.

    Article  PubMed  CAS  Google Scholar 

  30. Olson RJ, Bromberg BB, Zimmerman TJ. Apneic spells associated with timolol therapy in a neonate. Am J Ophthalmol. 1979;88:120–1.

    PubMed  CAS  Google Scholar 

  31. Toris CB, Gleason ML, Camras CB, et al. Effects of brimonidine on aqueous humor dynamics in human eyes. Arch Ophthalmol. 1995;113:1514–17.

    Article  PubMed  CAS  Google Scholar 

  32. Juzych M, Robin A, Novack G. Alpha-2 agonists in glaucoma therapy. In: Zimmerman T, Kooner K, Sharir M, Fechtner R, editors. Textbook of ocular pharmacology. Philadelphia: Lippincott- Raven; 1997. p. 247–54.

    Google Scholar 

  33. Carlsen JO, Zabriskie NA, Kwon YH, et al. Apparent central nervous system depression in infants after the use of topical brimonidine. Am J Ophthalmol. 1999;128:255–6.

    Article  PubMed  CAS  Google Scholar 

  34. Korsch E, Grote A, Seybold M, et al. Systemic adverse effects of topical treatment with brimonidine in an infant with secondary glaucoma. Eur J Pediatr. 1999;158:685.

    Article  PubMed  CAS  Google Scholar 

  35. Mungan NK, Wilson TW, Nischal KK, et al. Hypotension and bradycardia in infants after the use of topical brimonidine and beta-blockers. J AAPOS. 2003;7:69–70.

    Article  PubMed  Google Scholar 

  36. Berlin RJ, Lee UT, Samples JR, et al. Ophthalmic drops causing coma in an infant. J Pediatr. 2001;138:441–3.

    Article  PubMed  CAS  Google Scholar 

  37. Enyedi LB, Freedman SF. Safety and efficacy of brimonidine in children with glaucoma. J AAPOS. 2001;5:281–4.

    Article  PubMed  CAS  Google Scholar 

  38. Parrish RK, Palmberg P, Sheu WP, XLT Study Group. A comparison of latanoprost, bimatoprost, and travoprost in patients with elevated intraocular pressure: a 12-week, randomized, masked-evaluator multicenter study. Am J Ophthalmol. 2003;135:688–703.

    Article  PubMed  CAS  Google Scholar 

  39. Enyedi LB, Freedman SF. Latanoprost for the treatment of pediatric glaucoma. Surv Ophthalmol. 2002;47 Suppl 1:S129–32.

    Article  PubMed  Google Scholar 

  40. Enyedi LB, Freedman SF, Buckley EG. The effectiveness of latanoprost for the treatment of pediatric glaucoma. J AAPOS. 1999;3:33–9.

    Article  PubMed  CAS  Google Scholar 

  41. Barkan O. Technique of goniotomy. Arch Ophthalmol. 1938;19:217–23.

    Article  Google Scholar 

  42. Barkan O. Operation for congenital glaucoma. Am J Ophthalmol. 1942;25:552–68.

    Google Scholar 

  43. Ho CL, Walton DS. Goniosurgery for glaucoma secondary to chronic anterior uveitis. Prognostic factors and surgical technique. J Glaucoma. 2004;13:445–9.

    Article  PubMed  Google Scholar 

  44. Walton DS. Goniotomy. In: Thomas JV, editor. Glaucoma surgery. St Louis: Mosby-Year-Book, Inc; 1992. p. 107–21.

    Google Scholar 

  45. de Luise VP, Anderson DR. Primary infantile glaucoma (congenital glaucoma). Surv Ophthalmol. 1983;28:1–19.

    Article  Google Scholar 

  46. Wl B, Parks MM. An analysis of treatment of congenital glaucoma by goniotomy. Am J Ophthalmol. 1981;91:566–72.

    Google Scholar 

  47. Mandal AK, Gothwal VK, Bagga H, et al. Outcome of surgery on infants younger than 1 month with congenital glaucoma. Ophthalmology. 2003;110:1909–15.

    Article  PubMed  Google Scholar 

  48. Shaffer RN. Prognosis of goniotomy in primary infantile glaucoma (trabeculodysgenesis). Trans Am Oph Soc. 1982;80:321–5.

    CAS  Google Scholar 

  49. Russell-Eggitt IM, Rice NSC, Barrie J, et al. Relapse following goniotomy for congenital glaucoma due to trabecular dysgenesis. Eye. 1992;6:197–200.

    Article  PubMed  Google Scholar 

  50. McPherson Jr SD. Results of external trabeculotomy. Trans Am Ophthalmol Soc. 1973;71:163–70.

    PubMed  Google Scholar 

  51. McPherson Jr SD, MacFarland D. External trabeculotomy for developmental glaucoma. Ophthalmology. 1980;87:302–5.

    Article  PubMed  Google Scholar 

  52. McPherson Jr SD, Berry DP. Goniotomy vs external trabeculotomy for developmental glaucoma. Am J Ophthalmol. 1983;95:427–531.

    PubMed  Google Scholar 

  53. Mandal A, Naduvilath TJ, Jayagandan DO. Surgical results of combined trabeculotomy-trabeculectomy for developmental glaucoma. Ophthalmology. 1998;105:974–82.

    Article  PubMed  CAS  Google Scholar 

  54. Harms H, Dannheim R. Epicritical consideration of 300 cases of trabeculotomy ab externo. Trans Ophthalmol Soc UK. 1969;89:491–9.

    Google Scholar 

  55. Shrader CE, Cibis GW. Trabeculotomy. In: Thomas JV, editor. Glaucoma surgery. St Louis: Mosby-Year Book, Inc; 1992. p. 123–31.

    Google Scholar 

  56. Mendicino ME, Lynch MG, Drack A, et al. Long-term surgical and visual outcomes in primary congenital glaucoma: 360 degrees trabeculotomy versus goniotomy. J AAPOS. 2000;4:205–10.

    Article  PubMed  CAS  Google Scholar 

  57. Akimoto M, Tamihara H, Negi A, et al. Surgical results of trabeculotomy ab externo for developmental glaucoma. Arch Ophthalmol. 1994;112:1540–4.

    Article  PubMed  CAS  Google Scholar 

  58. Filous A, Brunova B. Results of the modified trabeculotomy in the treatment of primary congenital glaucoma. J AAPOS. 2002;6:182–6.

    Article  PubMed  Google Scholar 

  59. Beauchamp GR, Parks MM. Filtering surgery in children: barriers to success. Ophthalmology. 1979;86:170–80.

    Article  PubMed  CAS  Google Scholar 

  60. Beck AD, Wilson WR, Lynch MG, et al. Trabeculectomy with adjunctive mitomycin-C in pediatric glaucoma. Am J Ophthalmol. 1998;126:648–57.

    Article  PubMed  CAS  Google Scholar 

  61. Freedman S, McCormick K, Cox T. Mitomycin-C augmented trabeculectomy with postoperative wound modulation in pediatric glaucoma. J AAPOS. 1999;3:117–24.

    Article  PubMed  CAS  Google Scholar 

  62. Wells AP, Cordeiro MF, Bunce C, et al. Cystic bleb formation and related complications in limbus- versus fornix-based conjunctival flaps in pediatric and young adult trabeculectomy with mitomycin C. Ophthalmology. 2003;110:2192–7.

    Article  PubMed  Google Scholar 

  63. Susanna R, Oltrogge EW, Carani JE, et al. Mitomycin as adjunct chemotherapy with trabeculectomy in congenital and developmental glaucomas. J Glaucoma. 1995;4:151–88.

    PubMed  Google Scholar 

  64. Sidoti PA, Belmonte SJ, Liebmann JM, et al. Trabeculectomy with mitomycin-C in the treatment of pediatric glaucoma. Ophthalmology. 2000;107:422–9.

    Article  PubMed  CAS  Google Scholar 

  65. Agarwal HC, Sood NN, Sihota R, et al. Mitomycin-C in congenital glaucoma. Ophthalmol Surg Lasers. 1997;28:979–85.

    CAS  Google Scholar 

  66. Tannenbaum DP, Hoffman D, Greaney MJ, et al. Outcomes of bleb excision and conjunctival advancement for leaking or hypotonous eyes after glaucoma filtering surgery. Br J Ophthalmol. 2004;88:99–103.

    Article  PubMed  CAS  Google Scholar 

  67. Hill R, Heur D, Baerveldt G, et al. Molteno implantation for glaucoma in young patients. Ophthalmology. 1991;98:1042–6.

    Article  PubMed  CAS  Google Scholar 

  68. Nesher R, Sherwood M, Kass M, et al. Molteno implants in children. J Glaucoma. 1992;1:228–32.

    Article  PubMed  CAS  Google Scholar 

  69. Walton DS, Katsavounidou G. Newborn primary congenital glaucoma: 2005 update. J Pediatr Ophthalmol Strabismus. 2005;42:333–41.

    PubMed  Google Scholar 

  70. Beck AD, Freedman S, Kammer J, Jin J. Aqueous shunt devices compared with trabeculectomy with mitomycin-C for children in the first two years of life. Am J Ophthalmol. 2003;136:994–1000.

    Article  PubMed  Google Scholar 

  71. Coleman A, Smyth R, Wilson R, Tam M. Initial clinical experience with the ahmed glaucoma valve implant in pediatric patients. Arch Ophthalmol. 1997;115:186–91.

    Article  PubMed  CAS  Google Scholar 

  72. Englert J, Freedman S, Cox T. The ahmed valve in refractory pediatric glaucoma. Am J Ophthalmol. 1999;127:34–42.

    Article  PubMed  CAS  Google Scholar 

  73. Morod Y, Donaldson C, Kim Y, et al. The Ahmed drainage implant in the treatment of pediatric glaucoma. Am J Ophthalmol. 2003;135:821–9.

    Article  Google Scholar 

  74. Al-Torbaq AA, Edward DP. Delayed endophthalmitis in a child following an Ahmed glaucoma valve implant. J AAPOS. 2002;6:123–5.

    Article  PubMed  Google Scholar 

  75. Al Faran MF, Tomey KF, Mutlaq FA. Cyclocryotherapy in selected cases of congenital glaucoma. Ophthalmic Surg. 1990;21:794–8.

    PubMed  CAS  Google Scholar 

  76. Wagle NS, Freedman SF, Buckley EG, et al. Long-term outcome of cyclocryotherapy for refractory pediatric glaucoma. Ophthalmology. 1998;105:1921–6. discussion 1926–27.

    Article  PubMed  CAS  Google Scholar 

  77. Kirwan JF, Shah P, Khaw PT. Diode laser cyclophotocoagulation: role in the management of refractory pediatric glaucomas. Ophthalmology. 2002;109:316–23.

    Article  PubMed  Google Scholar 

  78. Plager DA, Neely DE. Intermediate-term results of endoscopic diode laser cyclophotocoagulation for pediatric glaucoma. J AAPOS. 1999;3:131–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Walton MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Walton, D.S. (2014). The Childhood Glaucomas. In: Samples, J., Schacknow, P. (eds) Clinical Glaucoma Care. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4172-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4172-4_22

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4171-7

  • Online ISBN: 978-1-4614-4172-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics