Skip to main content

Normal-Tension Glaucoma

  • Chapter
  • First Online:
Clinical Glaucoma Care
  • 1874 Accesses

Abstract

In this well-illustrated chapter, the historical definition and understanding of normal-tension glaucoma (NTG) and its epidemiology are reviewed. An overview of the IOP-related and optic-nerve-related risk factors for NTG is presented. Patterns of disc and visual field damage and progression seen in NTG are discussed, with many clinical examples presented. The significance of optic disc hemorrhages and peripapillary atrophy in NTG is explored. The evidence for the relationship of well-known systemic risk factors, such as migraine, and newly identified risk factors, such as obstructive sleep apnea to NTG, is presented. The appropriate diagnostic evaluation for NTG is outlined. Current guidelines and alternatives for medical, laser (argon and diode LTP and SLT), and surgical IOP-lowering therapy in NTG are discussed. Evidence for the value of non-IOP-lowering therapies, such as the use of calcium channel blockers in NTG, is summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. von Graefe A. Amaurose mit Sehnerven excavation. Arch Ophthalmol. 1857;3:484–7.

    Google Scholar 

  2. von Graefe A. Die iridectomie bei amauros mit sehnervenexcavation. Arch Ophthalmol. 1857;3:546.

    Google Scholar 

  3. Levene RZ. Low-tension glaucoma: a critical review and new material. Surv Ophthalmol. 1980;24:621–63.

    PubMed  CAS  Google Scholar 

  4. The Collaborative Normal-Tension Glaucoma Treatment Study Group. Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressure. Am J Ophthalmol. 1998;126:487–97.

    Google Scholar 

  5. The Collaborative Normal-Tension Glaucoma Treatment Study Group. The effectiveness of intraocular pressure reduction in the treatment of normal-tension glaucoma. Am J Ophthalmol. 1998;126:498–505.

    Google Scholar 

  6. The AGIS Investigator. The Advanced Glaucoma Intervention Study (AGIS) 4: comparison of treatment outcomes within race. Seven-year results. Ophthalmology. 1998;105:1146–64.

    Google Scholar 

  7. The AGIS Investigator. The Advanced Glaucoma Intervention Study (AGIS) 7: the relationship between control of intraocular pressure and visual field deterioration. Am J Ophthalmol. 2000;130:429–40.

    Google Scholar 

  8. Lichter PR, Musch DC, Gillespie BW, et al. Interim clinical outcomes in the Collaborative Initial Glaucoma Treatment Study comparing initial treatment randomized to medications or surgery. Ophthalmology. 2001;108:1943–53.

    PubMed  CAS  Google Scholar 

  9. Heijl A, Leske MC, Bengtsson B, Early Manifest Glaucoma Trial Group, et al. Reduction in intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol. 2002;120:1268–79. discussion 1371–1372.

    PubMed  Google Scholar 

  10. Kass MA, Heuer DK, Higginbotham EJ, et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medications delays or prevents the onset of primary open angle glaucoma. Arch Ophthalmol. 2002;120:701–13. discussion 829–830.

    PubMed  Google Scholar 

  11. Grodum K, Heijl A, Bengtsson B. A comparison of glaucoma patients identified through mass screening and in routine clinical practice. Acta Ophthalmol Scand. 2002;80:627–31.

    PubMed  Google Scholar 

  12. Sommer A, Tielsch JM, Katz J, et al. Relationship between intraocular pressure and primary open angle glaucoma among white and black Americans. The Baltimore eye survey. Arch Ophthalmol. 1991;109:1090–5.

    PubMed  CAS  Google Scholar 

  13. Leske MC, Wu SY, Honkanen R, et al. Nine-year incidence of open-angle glaucoma in the Barbados eye study. Ophthalmology. 2007;114:1058–64.

    PubMed  Google Scholar 

  14. Dielemans I, Vingerling JR, Wolfs RC, et al. The prevalence of primary open-angle glaucoma in a population-based study in the Netherlands. The Rotterdam study. Ophthalmology. 1994;101:1851–5.

    PubMed  CAS  Google Scholar 

  15. Bonomi L, Marchini G, Marraffa M, et al. Prevalence of glaucoma and intraocular pressure distribution in a defined population. The Egna-Neumarkt study. Ophthalmology. 1998;105:209–15.

    PubMed  CAS  Google Scholar 

  16. Mitchell P, Smith W, Attebo K, et al. Prevalence of open-angle glaucoma in Australia. Ophthalmology. 1996;103:1661–9.

    PubMed  CAS  Google Scholar 

  17. Toupozis F, Wilson MR, Harris A, et al. Prevalence of open-angle glaucoma in Greece: the Thessaloniki eye study. Am J Ophthalmol. 2007;144:511–19.

    Google Scholar 

  18. Varma R, Ying-Lai M, Francis BA, et al. Prevalence of open-angle glaucoma and ocular hypertension in Latinos: the Los Angeles Latino eye study. Ophthalmology. 2004;111:1439–48.

    PubMed  Google Scholar 

  19. Iwase A, Suzuki Y, Araie M, et al. The prevalence of primary open-angle glaucoma in Japanese. The Tajimi study. Ophthalmology. 2004;111:1641–8.

    PubMed  Google Scholar 

  20. Vijaya L, George R, Paul PG, et al. Prevalence of open-angle glaucoma in a rural south Indian population. Invest Ophthalmol Vis Sci. 2005;46:2261–4467.

    Google Scholar 

  21. Yamagami J, Araie M, Shirato S, et al. Diurnal variation of intraocular pressure in low tension glaucoma. Nippon Ganka Gakkai Zasshi. 1991;95:495–9.

    PubMed  CAS  Google Scholar 

  22. Yamagami J, Araie M, Aihara M, et al. Diurnal variation in intraocular pressure of normal-tension glaucoma eyes. Ophthalmology. 1993;100:643–50.

    PubMed  CAS  Google Scholar 

  23. Ido T, Tomita G, Kitazawa Y. Diurnal variation of intraocular pressure in normal-tension glaucoma. Influence of sleep and arousal. Ophthalmology. 1991;98:296–300.

    PubMed  CAS  Google Scholar 

  24. Collaer N, Zeyen T, Caprioli J. Sequential office pressure measurements in the management of glaucoma. J Glaucoma. 2005;14:196–200.

    PubMed  Google Scholar 

  25. Kim DM, Seo JH, Kim SH, et al. Comparison of localized retinal nerve fiber layer defects between low-teen intraocular pressure group and a high-teen intraocular pressure group in normal-tension glaucoma. J Glaucoma. 2007;16:293–6.

    PubMed  Google Scholar 

  26. Oguri A, Yamamoto T, Kitazawa Y. Spontaneous intraocular pressure reduction in normal-tension glaucoma and associated clinical factors. Jpn J Ophthalmol. 2000;44:263–7.

    PubMed  CAS  Google Scholar 

  27. Okada K, Tsumamoto Y, Yamaski M, et al. The negative correlation between age and intraocular pressures measured nytohemerally in elderly normal-tension glaucoma patients. Graefes Arch Clin Exp Ophthalmol. 2003;241:19–23.

    PubMed  Google Scholar 

  28. Cartwright MJ, Anderson DR. Correlation of asymmetric damage and asymmetric intraocular pressure in normal-tension glaucoma (low-tension glaucoma). Arch Ophthalmol. 1988;106:898–900.

    PubMed  CAS  Google Scholar 

  29. Crichton A, Drance SM, Douglas GR, et al. Unequal intraocular pressure and its relation to asymmetric visual field defects in low-tension glaucoma. Ophthalmology. 1989;96:1312–14.

    PubMed  CAS  Google Scholar 

  30. Haefliger IO, Hitchings RA. Relationship between asymmetry in visual field defects and intraocular pressure difference in an untreated normal (low) tension glaucoma population. Acta Ophthalmol (Copenh). 1990;68:564–7.

    CAS  Google Scholar 

  31. Yamagami J, Shirato S, Araie M. The influence of the intraocular pressure on the visual field of low-tension glaucoma. Acta Soc Ophthalmol Jpn. 1990;94:514–18.

    CAS  Google Scholar 

  32. Dinn RB, Zimmerman MB, Shuba LM, et al. Concordance of diurnal intraocular pressure between fellow eyes in primary open-angle glaucoma. Ophthalmology. 2007;114:915–20.

    PubMed  Google Scholar 

  33. Shuba LM, Doan AP, Maley MK, et al. Diurnal fluctuation and concordance of intraocular pressure in glaucoma suspects and normal tension glaucoma patients. J Glaucoma. 2007;16:307–12.

    PubMed  Google Scholar 

  34. Aghaian E, Choe JE, Lin S, et al. Central corneal thickness of Caucasians, Chinese, Hispanics, Filipinos, African Americans, and Japanese in a glaucoma clinic. Ophthalmology. 2004;111(12):2211–9.

    Google Scholar 

  35. Shimmyo M, Ross AJ, Moy A, et al. Intraocular pressure, Goldmann applanation tension, corneal thickness, and corneal curvature in Caucasians, Asians, Hispanics, and African Americans. Am J Ophthalmol. 2003;136:603–13.

    PubMed  Google Scholar 

  36. Hahn S, Azen S, Ying-Lai M, et al. Central corneal thickness in Latinos. Invest Ophthalmol Vis Sci. 2003;44:1508–12.

    PubMed  Google Scholar 

  37. Choi HJ, Kim DM, Hwang SS. Relationship between central corneal thickness and localized retinal nerve fiber layer defect in normal-tension glaucoma. J Glaucoma. 2006;15:120–3.

    PubMed  Google Scholar 

  38. Shah H, Kniestedt C, Bostrom A, et al. Role of central corneal thickness on baseline parameters and progression of visual fields in open angle glaucoma. Eur J Ophthalmol. 2007;17:545–9.

    PubMed  CAS  Google Scholar 

  39. Kim JW, Chen PP. Central corneal pachymetry and visual field progression in patients with open-angle glaucoma. Ophthalmology. 2004;111:2126–32.

    PubMed  Google Scholar 

  40. Brandt JD, Beiser JA, Gordon MO, et al. Central corneal thickness and measured IOP response to topical ocular hypotensive medication in the Ocular Hypertension Treatment Study. Am J Ophthalmol. 2004;138:717–22.

    PubMed  Google Scholar 

  41. Brandt JD. Central corneal thickness, tonometry, and glaucoma—a guide for the perplexed. Can J Ophthalmol. 2007;42:562–3.

    PubMed  Google Scholar 

  42. Brandt JD. Central corneal thickness—tonometry artifact, or something more? Ophthalmology. 2007;114:1963–4.

    PubMed  Google Scholar 

  43. Schulzer MD. The Normal Tension Glaucoma Study Group. Intraocular pressure reduction in normal-tension glaucoma patients. Ophthalmology. 1992;99:1468–70.

    PubMed  CAS  Google Scholar 

  44. Schulzer MD. The Normal Tension Glaucoma Study Group. Errors in the diagnosis of visual field progression in normal-tension glaucoma. Ophthalmology. 1994;101:1589–95.

    PubMed  CAS  Google Scholar 

  45. Drance S, Anderson DR, Schulzer M, et al. Risk factors for progression of visual field abnormalities in normal-tension glaucoma. Am J Ophthalmol. 2001;131:699–708.

    PubMed  CAS  Google Scholar 

  46. Anderson DR, Drance SM, Schulzer M. On behalf of the Collaborative Normal-Tension Glaucoma Study Group. Factors that predict the benefit of lowering intraocular pressure in normal tension glaucoma. Am J Ophthalmol. 2003;136:820–9.

    PubMed  Google Scholar 

  47. Chuo JY, Mikelberg FS. Calibration errors of Goldmann tonometers in a tertiary eye care centre. Can J Ophthalmol. 2007;42:712–14.

    PubMed  CAS  Google Scholar 

  48. Kumar N, Jivan S. Goldmann applanation tonometer calibration checks: current practice in the UK. Eye. 2007;21:733–4.

    PubMed  CAS  Google Scholar 

  49. Gerzozi HJ, Chung HS, Lang Y, et al. Intraocular pressure and photorefractive keratectomy: a comparison of three different tonometers. Cornea. 2001;20:33–6.

    Google Scholar 

  50. Chatterjee A, Shah S, Bessant DA, et al. Reduction in intraocular pressure after excimer laser photorefractive keratectomy. Correlation with pretreatment myopia. Ophthalmology. 1997;104:355–9.

    PubMed  CAS  Google Scholar 

  51. Mardelli PG, Piebenga LW, Whitacre MM, et al. The effect of excimer laser photorefractive keratectomy on intraocular pressure measurements using the Goldmann applanation tonometer. Ophthalmology. 1997;104:945–8; discussion, 949.

    PubMed  CAS  Google Scholar 

  52. Munger R, Hodge WG, Mintsioulis G, et al. Correction of intraocular pressure for changes in central corneal thickness following photorefractive keratectomy. Can J Ophthalmol. 1998;33:159–65.

    PubMed  CAS  Google Scholar 

  53. Levy Y, Zadok D, Glovinsky Y, et al. Tono-pen versus Goldmann tonometry after excimer laser photorefractive keratectomy. J Cataract Refract Surg. 1999;25:486–91.

    PubMed  CAS  Google Scholar 

  54. Zadok D, Tran DB, Twa M, et al. Pneumotonometry versus Goldmann applanation tonometry after laser in situ keratomileusis for myopia. J Cataract Refract Surg. 1999;25:1344–8.

    PubMed  CAS  Google Scholar 

  55. Duch S, Serra A, Castenera J, et al. Tonometry after laser in situ keratomileusis. J Glaucoma. 2001;10:261–5.

    PubMed  CAS  Google Scholar 

  56. Park HJ, Uhm KB, Hong C. Reduction in intraocular pressure after laser in situ keratomileusis. J Cataract Refract Surg. 2001;27:303–9.

    PubMed  CAS  Google Scholar 

  57. Siaganos DS, Papastergiou GI, Moedas C. Assessment of the Pascal dynamic contour tonometer in monitoring intraocular pressure in unoperated eyes and eyes after LASIK. J Cataract Refract Surg. 2004;30:746–51.

    Google Scholar 

  58. Liu L, Lei C, Li X, et al. Measurement of intraocular pressure after LASIK by dynamic contour tonometry. J Huazhong Univ Sci Technolog Med Sci. 2006;26:372–3.

    PubMed  Google Scholar 

  59. Pepose JS, Feigenbaum SK, Qazi MA, et al. Changes in corneal biomechanics and intraocular pressure following LASIK using static, dynamic and noncontact tonometry. Am J Ophthalmol. 2007;143:39–47.

    PubMed  Google Scholar 

  60. Kierstein EM, Hüsler A. Evaluation of the Orssengo-Pye IOP corrective algorithm in LASIK patients with thick corneas. Optometry. 2005;76:536–43.

    Google Scholar 

  61. Chang DH, Stulting RD. Change in intraocular pressure measurements after LASIK the effect of the refractive correction and the lamellar flap. Ophthalmology. 2005;112:1009–16.

    PubMed  Google Scholar 

  62. Kohlhaas M, Spörl E, Böhm AG, et al. Applanation tonometry in “normal” patients and patients after LASIK. Klin Monatsbl Augenheilkd. 2005;222:823–6.

    PubMed  CAS  Google Scholar 

  63. Yang CC, Wang IJ, Chang YC, et al. A predictive model for postoperative intraocular pressure among patients undergoing laser in situ keratomileusis (LASIK). Am J Ophthalmol. 2006;141:530–6.

    PubMed  Google Scholar 

  64. Kohlhaas M, Spoerl E, Boehm AG, et al. A correction formula for the real intraocular pressure after LASIK for the correction of myopic astigmatism. J Refract Surg. 2006;22:263–7.

    PubMed  Google Scholar 

  65. Jonas JB, Papastathopoulos KI. Optic disc shape in glaucoma. Graefes Arch Clin Exp Ophthalmol. 1996;234:S167–73.

    PubMed  Google Scholar 

  66. Mikelberg FS, Drance SM, Schulzer M, et al. The normal human optic nerve. Axon count and axon diameter distribution. Ophthalmology. 1989;96:1325–8.

    PubMed  CAS  Google Scholar 

  67. Mikelberg FS, Yidegiligne HM, White VA, et al. Relation between optic nerve axon number and axon diameter to scleral canal area. Ophthalmology. 1991;98:60–3.

    PubMed  CAS  Google Scholar 

  68. Tomlinson A and Leighton DA. Ocular dimensions in low tension glaucoma compared with open-angle glaucoma and the normal. Br J Ophthalmol. 1972;56(2):97–105.

    Google Scholar 

  69. Tomita G, Nyman K, Raitta C, et al. Interocular asymmetry of optic disc size and its relevance to visual field loss in normal-tension glaucoma. Graefes Arch Clin Exp Ophthalmol. 1994;232:290–6.

    PubMed  CAS  Google Scholar 

  70. Jonas JB, Stürmer J, Papastathopoulos KI, et al. Optic disc size and optic nerve damage in normal pressure glaucoma. Br J Ophthalmol. 1995;79:1102–5.

    PubMed  CAS  Google Scholar 

  71. Gramer E, Althaus G, Leydhecker W. Site and depth of glaucomatous visual field defects in relation to sized of the neuroretinal edge zone of the optic disk in glaucoma without hypertension, simple glaucoma, pigmentary glaucoma. A clinical study with the Octopus perimeter 201 and the optic nerve analyzer. Klin Monatsbl Augenheilkd. 1986;189:190–8.

    PubMed  CAS  Google Scholar 

  72. Lewis RA, Hayreh SS, Phelps CD. Optic disk and visual field correlations in primary open-angle glaucoma and low-tension glaucoma. Am J Ophthalmol. 1983;96:148–52.

    PubMed  CAS  Google Scholar 

  73. Caprioli J, Spaeth GL. Comparison of the optic nerve head in high- and low-tension glaucoma. Arch Ophthalmol. 1985;103:1145–9.

    PubMed  CAS  Google Scholar 

  74. Eid TE, Spaeth GL, Moster MR, et al. Quantitative differences between the optic nerve head and peripapillary retina in low-tension and high-tension primary open-angle glaucoma. Am J Ophthalmol. 1997;124:805–13.

    PubMed  CAS  Google Scholar 

  75. Lester M, Mikelberg FS. Optic nerve head morphologic characteristics in high-tension and normal-tension glaucoma. Arch Ophthalmol. 1999;117:1010–13.

    Google Scholar 

  76. Lester M. Comparison of optic disc parameters between normal-tension glaucoma and visual-field-matched high tension glaucoma. In: Wall M, Mills RP, editors. Perimetry update 2000/2001. The Hague: Kugler Publications; 2001. p. 323–9.

    Google Scholar 

  77. Tezel G, Kass MA, Kolker AE, et al. Comparative optic disc analysis in normal pressure glaucoma, primary open-angle glaucoma, and ocular hypertension. Ophthalmology. 1996;103:2105–13. 125.

    PubMed  CAS  Google Scholar 

  78. Wang XH, Stewart WC, Jackson GJ. Differences in optic discs in low-tension glaucoma patients with relatively low or high pressures. Acta Ophtalmol Scand. 1996;74:364–7.

    CAS  Google Scholar 

  79. Miller KM, Quigley HA. Comparison of optic disc features in low-tension and typical open-angle glaucoma. Opthalmic Surg. 1987;18:882–9.

    CAS  Google Scholar 

  80. Spaeth GL. Fluoresce in angiography: its contribution towards understanding the mechanisms of visual loss in glaucoma. Trans Am Ophthalmol Soc. 1975;89:457–65.

    Google Scholar 

  81. Geijssen HC, Greve EL. The spectrum of primary open angle glaucoma. I: Senile sclerotic glaucoma versus high tension glaucoma. Ophthalmic Surg. 1987;18:207–13.

    PubMed  CAS  Google Scholar 

  82. Geijssen HC. Studies on normal pressure glaucoma. Amsterdam: Kugler Publications; 1991. p. 1–178.

    Google Scholar 

  83. Nicolela MT, Drance SM. Various glaucomatous optic nerve appearances. Ophthalmology. 1996;103:640–9.

    PubMed  CAS  Google Scholar 

  84. Geijssen HC, Greve GL. Focal ischaemic normal pressure glaucoma versus high pressure glaucoma. Doc Ophthalmol. 1990;75:291–301.

    PubMed  CAS  Google Scholar 

  85. Javitt JC, Spaeth GL, Katz LJ, et al. Acquired pits of the optic nerve. Increased prevalence in patients with low-tension glaucoma. Ophthalmology. 1990;97:1038–43. discussion 1043–44.

    PubMed  CAS  Google Scholar 

  86. Spaeth GL. A new classification of glaucoma including focal glaucoma. Surv Ophthalmol. 1994;38:S9–17.

    PubMed  Google Scholar 

  87. Yamazaki Y, Hayamizu F, Miyamoto S, et al. Optic disc findings in normal tension glaucoma. Jpn J Ophthalmol. 1997;41:260–7.

    PubMed  CAS  Google Scholar 

  88. Ugurlu S, Weitzmann M, Nduaguba C, et al. Acquired pit of the optic nerve: a risk factor for progression of glaucoma. Am J Ophthalmol. 1998;125:457–64.

    PubMed  CAS  Google Scholar 

  89. Nduaguba C, Ugurlu S, Caprioli J. Acquired pits of the optic nerve in glaucoma: prevalence and associated visual field loss. Acta Ophthalmol Scand. 1998;76:273–7.

    PubMed  CAS  Google Scholar 

  90. Jonas JB, Budde WM. Optic cup deepening correlated with optic nerve damage in focal normal-pressure glaucoma. J Glaucoma. 1999;8:227–31.

    PubMed  CAS  Google Scholar 

  91. Quigley HA, Addicks EM. Regional differences in the structure of the lamina cribrosa and their relation to glaucomatous optic nerve damage. Arch Ophthalmol. 1981;99:137–43.

    PubMed  CAS  Google Scholar 

  92. Quigley HA, Green WR. The histology of human glaucoma cupping and optic nerve damage: clinicopathologic correlation in 21 eyes. Ophthalmology. 1979;86:1803–130.

    PubMed  CAS  Google Scholar 

  93. Jonas JB, Gründler A. Optic disc morphology in “age-related atrophic glaucoma. Graefes Arch Clin Exp Ophthalmol. 1996;234:744–9.

    PubMed  CAS  Google Scholar 

  94. Nicolela MT, McCormick TA, Drance SM, et al. Visual field and optic disc progression in patients with different types of optic disc damage: a longitudinal prospective study. Ophthalmology. 2003;110:2178–84.

    PubMed  Google Scholar 

  95. Broadway DC, Nicolela MT, Drance SM. Optic disk appearances in primary open angle glaucoma. Surv Ophthalmol. 1999;43:S223–43.

    PubMed  Google Scholar 

  96. Pederson JE, Anderson DR. The mode of progressive disc cupping in ocular hypertension and glaucoma. Arch Ophthalmol. 1980;98:490–5.

    PubMed  CAS  Google Scholar 

  97. Jonas JB, Gründler AE, Gonzales-Cortés J. Pressure-dependent neuroretinal rim loss in normal-pressure glaucoma. Am J Ophthalmol. 1998;125:137–44.

    PubMed  CAS  Google Scholar 

  98. Nicolela MT, Walman BE, Buckley AR, et al. Various glaucomatous optic nerve appearances: a color Doppler imaging study of retrobulbar circulation. Ophthalmology. 1996;103:1670–9.

    PubMed  CAS  Google Scholar 

  99. Drance SM, Begg IS. Sector hemorrhage—a probable acute ischemic disc change in chronic simple glaucoma. Can J Ophthalmol. 1970;5:137–41.

    PubMed  CAS  Google Scholar 

  100. Begg IS, Drance SM, Sweeney VP. Ischaemic optic neuropathy in chronic simple glaucoma. Br J Ophthalmol. 1971;55:73–90.

    PubMed  CAS  Google Scholar 

  101. Drance SM. Some factors in the production of low tension glaucoma. Br J Ophthalmol. 1972;56:229–42.

    PubMed  CAS  Google Scholar 

  102. Drance SM. Disc hemorrhage in the glaucomas. Surv Ophthalmol. 1989;33:331–7.

    PubMed  CAS  Google Scholar 

  103. Kim SJ, Park KH. Four cases of normal-tension glaucoma with disk hemorrhage combined with branch vein occlusion in the contralateral eye. Am J Ophthalmol. 2004;137:357–9.

    PubMed  Google Scholar 

  104. Yoo YC, Park KH. Disc hemorrhage in patients with both normal-tension glaucoma and branch vein occlusion in different eyes. Korean J Ophthalmol. 2007;21:222–7.

    PubMed  Google Scholar 

  105. Jonas JB, Budde WM. Optic nerve head appearance in juvenile-onset chronic high-pressure glaucoma and normal-pressure glaucoma. Ophthalmology. 2000;107:704–11.

    PubMed  CAS  Google Scholar 

  106. Anderson DR. Correlation of peripapillary anatomy with the disc damage and field abnormalities in glaucoma. In: Greve EL, Heijl A, editors. Fifth international visual field symposium; 1982. The Hague: Dr. W. Junk; 1983. p. 1–10 (Doc Ophthalmol Proc Ser; 35).

    Google Scholar 

  107. Kawano J, Tomidokoro A, Mayama C, et al. Correlation between hemifield visual field damage and corresponding parapapillary atrophy in normal-tension glaucoma. Am J Ophthalmol. 2006;142:40–5.

    PubMed  Google Scholar 

  108. Buus DR, Anderson DR. Peripapillary crescents and halos in normal-tension glaucoma and ocular hypertension. Ophthalmology. 1989;96:16–9.

    PubMed  CAS  Google Scholar 

  109. Araie M, Sekine M, Suzuki Y, et al. Factors contributing to the progression of visual field damage in eyes with normal-tension glaucoma. Ophthalmology. 1994;101:1440–4.

    PubMed  CAS  Google Scholar 

  110. Jonas JB, Xu L. Parapapillary chorioretinal atrophy in normal-pressure glaucoma. Am J Ophthalmol. 1993;115:501–5.

    PubMed  CAS  Google Scholar 

  111. Chumbley LC, Brubaker RF. Low-tension glaucoma. Am J Ophthalmol. 1976;81:761–7.

    PubMed  CAS  Google Scholar 

  112. Motolko M, Drance SM, Douglas GR. Visual field defects in low-tension glaucoma. Comparison of defects in low-tension glaucoma and chronic open angle glaucoma. Arch Ophthalmol. 1982;100:1074–7.

    PubMed  CAS  Google Scholar 

  113. Hitchings RA, Anderton SA. A comparative study of visual field defects seen in patients with low-tension glaucoma and chronic simple glaucoma. Br J Ophthalmol. 1983;67:818–21.

    PubMed  CAS  Google Scholar 

  114. Caprioli J, Spaeth GL. Comparison of visual field defects in the low-tension glaucomas with those in the high-tension glaucomas. Am J Ophthalmol. 1984;97:730–7.

    PubMed  CAS  Google Scholar 

  115. King D, Drance SM, Douglas G, et al. Comparison of visual field defects in normal-tension glaucoma and high-tension glaucoma. Am J Ophthalmol. 1986;101:204–7.

    PubMed  CAS  Google Scholar 

  116. Drance SM, Douglas GR, Airaksinen JP, et al. Diffuse visual field loss in chronic open-angle and low-tension glaucoma. Am J Ophthalmol. 1987;104:577–80.

    PubMed  CAS  Google Scholar 

  117. Chauhan BC, Drance SM, Douglas GR, et al. Visual field damage in normal-tension glaucoma and high-tension glaucoma. Am J Ophthalmol. 1989;108:636–42.

    PubMed  CAS  Google Scholar 

  118. Araie M, Kitazawa M, Koseki N. Intraocular pressure and central visual field of normal tension glaucoma. Br J Ophthalmol. 1997;81:852–6.

    PubMed  CAS  Google Scholar 

  119. Chauhan BC, Drance SM. The influence of intraocular pressure on visual field damage in patients with normal-tension and high-tension glaucoma. Invest Ophthalmol Vis Sci. 1990;31:2367–72.

    PubMed  CAS  Google Scholar 

  120. Zeiter JH, Shin DH, Juzych MS, et al. Visual field defects in patients with normal-tension glaucoma and patients with high-tension glaucoma. Am J Ophthalmol. 1992;114:758–63.

    PubMed  CAS  Google Scholar 

  121. Araie M, Yamagami J, Suziki Y. Visual field defects in normal-tension and high-tension glaucoma. Ophthalmology. 1993;100:1808–14.

    PubMed  CAS  Google Scholar 

  122. Koseki N, Araie M, Suzuki Y, et al. Visual field damage proximal to fixation in normal- and high-tension glaucoma eyes. Jpn J Ophthalmol. 1995;39:274–83.

    PubMed  CAS  Google Scholar 

  123. Poinoosawmy D, Fontana L, Wu JX, et al. Frequency of asymmetric visual field defects in normal-tension glaucoma and high-tension glaucoma. Ophthalmology. 1998;105:988–91.

    PubMed  CAS  Google Scholar 

  124. Reyes TD, Tomita G, Kitazawa Y. Retinal nerve fiber layer thickness within the area of apparently normal visual field in normal-tension glaucoma with hemifield defect. J Glaucoma. 1987;7(5):329–35.

    Google Scholar 

  125. Choi J, Cho HS, Lee CH, et al. Scanning laser polarimetry with variable corneal compensation in the area of apparently normal hemifield in eyes with normal-tension glaucoma. Ophthalmology. 2006;113:1954–60.

    PubMed  Google Scholar 

  126. Suzuki J, Tomidokoro A, Araie M, et al. Visual field damage in normal-tension glaucoma patients with or without ischemic changes in cerebral magnetic resonance imaging. Jpn J Ophthalmol. 2004;48:340–4.

    PubMed  Google Scholar 

  127. Viswanathan AC, Hitchings RA, Fitzke FW. How often do patients need visual field tests? Graefes Arch Clin Exp Ophthalmol. 1997;235:563–8.

    PubMed  CAS  Google Scholar 

  128. Zalta AH. Use of the central 10° field and size V stimulus to evaluate and monitor small central islands of vision in end stage glaucoma. Br J Ophthalmol. 1991;75:151–4.

    PubMed  CAS  Google Scholar 

  129. Anderton SA, Coakes RC, Poisoowanamy S, et al. The nature of visual loss in low tension glaucoma. In: Heijl A, Greve EL, editors. Proceedings of the 6th international visual field symposium; 1985. Dordrecht: Dr W Junk Publishers. p. 393–386.

    Google Scholar 

  130. Gliklich RE, Steinemann WC, Spaeth GL. Visual field change in low-tension glaucoma over a five-year follow-up. Ophthalmology. 1989;96:316–20.

    PubMed  CAS  Google Scholar 

  131. Collaborative Normal-Tension Glaucoma Study Group. Natural history of normal-tension glaucoma. Ophthalmology. 2001;108:247–53.

    Google Scholar 

  132. Daugeliene L, Yamamoto T, Kitazawa Y. Risk factors for visual field damage progression in normal-tension glaucoma. Graefes Arch Clin Exp Ophthalmol. 1999;237:105–8.

    PubMed  CAS  Google Scholar 

  133. Yamazaki Y, Drance S. The relationship between progression of visual field defects and retrobulbar circulation in patients with glaucoma. Am J Ophthalmol. 1997;124:287–95.

    PubMed  CAS  Google Scholar 

  134. Tanaka C, Yamazaki Y, Yokoyama H. Study on the progression of visual field defect and clinical factors in normal-tension glaucoma. Nippon Ganka Gakkai Zasshi. 2000;104:590–5.

    PubMed  CAS  Google Scholar 

  135. Perkins ES, Phelps CD. Open angle glaucoma, ocular hypertension, low-tension glaucoma and refraction. Arch Ophthalmol. 1982;100:1464–7.

    PubMed  CAS  Google Scholar 

  136. Araie M, Arai M, Koseki N, et al. Influence of myopic refraction on visual field defects in normal tension and primary open angle glaucoma. Jpn J Ophthalmol. 1995;39:60–4.

    PubMed  CAS  Google Scholar 

  137. Mayama C, Suzuki Y, Araie M, et al. Myopia and advanced-stage open-angle glaucoma. Ophthalmology. 2002;109:2072–7.

    PubMed  Google Scholar 

  138. Corbett JJ, Phelps CD, Eslinger P, et al. The neurologic evaluation of patients with low-tension glaucoma. Invest Ophthalmol Vis Sci. 1985;26:11011104.

    Google Scholar 

  139. Phelps CD, Corbett JJ. Migraine and low-tension glaucoma. A case-control study. Invest Ophthalmol Vis Sci. 1985;26:1105–8.

    PubMed  CAS  Google Scholar 

  140. Usui T, Iwata K, Motohiro S, et al. Prevalence of migraine in low-tension glaucoma and primary open-angle glaucoma. Br J Ophthalmol. 1991;75:224–6.

    PubMed  CAS  Google Scholar 

  141. Lewis RA, Vijayan N, Watson CW, et al. Visual field loss in migraine. Ophthalmology. 1989;96:321–6.

    PubMed  CAS  Google Scholar 

  142. Comoğlu S, Yarangümeli A, Köz OG, et al. Glaucomatous visual field defects in patients with migraine. J Neurol. 2003;250:201–6.

    PubMed  Google Scholar 

  143. Walsh JT, Montplaisir J. Familial glaucoma with sleep apnoea: a new syndrome? Thorax. 1982;37:845–9.

    PubMed  CAS  Google Scholar 

  144. Mojon DS, Mathis J, Zulauf M, et al. Optic neuropathy associated with sleep apnea syndrome. Ophthalmology. 1998;105:874–7.

    PubMed  CAS  Google Scholar 

  145. Mojon DS, Hess CW, Goldblum D, et al. High prevalence of glaucoma in patients with sleep apnea syndrome. Ophthalmology. 1999;106:1009–12.

    PubMed  CAS  Google Scholar 

  146. Goldblum D, Mathis J, Böhnke M, et al. Nocturnal measurements of intraocular pressure in patients with normal-tension glaucoma and sleep apnea syndrome. Klin Monatsbl Augenheilkd. 2000;216:246–9.

    PubMed  CAS  Google Scholar 

  147. Marcus DM, Costarides AP, Gokhale P, et al. Sleep disorders: a risk factor for normal-tension glaucoma? J Glaucoma. 2001;10:177–83.

    PubMed  CAS  Google Scholar 

  148. Kremmer S, Selbach JM, Ayertey HD, et al. Normal tension glaucoma, sleep apnea syndrome and nasal continuous positive airway pressure therapy—case report with a review of the literature. Klin Monatsbl Augenheilkd. 2001;218:263–8.

    PubMed  CAS  Google Scholar 

  149. Mojon DS, Hess CW, Goldblum D, et al. Normal-tension glaucoma is associated with sleep apnea syndrome. Ophthalmologica. 2002;216:180–4.

    PubMed  Google Scholar 

  150. Kargi SH, Altin R, Koksai M, et al. Retinal nerve fibre layer measurements are reduced in patients with obstructive sleep apnoea syndrome. Eye. 2005;19:575–9.

    PubMed  CAS  Google Scholar 

  151. Tsang CS, Chong SL, Ho DK, et al. Moderate to severe obstructive sleep apnoea patients is associated with a higher incidence of visual field defect. Eye. 2006;20:38–42.

    PubMed  CAS  Google Scholar 

  152. Geyer O, Cohen N, Segev E, et al. The prevalence of glaucoma in patients with sleep apnea syndrome: same as in the general population. Am J Ophthalmol. 2003;136:1093–6.

    PubMed  Google Scholar 

  153. Girkin CA, McGwin Jr G, McNeal SF, et al. Is there an association between pre-existing sleep apnoea and the development of glaucoma? Br J Ophthalmol. 2006;90:679–81.

    PubMed  CAS  Google Scholar 

  154. Sergi M, Salerno DE, Rizzi M, et al. Prevalence of normal tension glaucoma in obstructive sleep apnea syndrome patients. J Glaucoma. 2007;16:42–6.

    PubMed  Google Scholar 

  155. Karakucuk S, Goktas S, Aksu M, et al. Ocular blood flow in patients with obstructive sleep apnea syndrome (OSAS). Graefes Arch Clin Exp Ophthalmol. 2008;246:129–34.

    PubMed  Google Scholar 

  156. Kitazawa Y, Yamamoto T. Contemporary treatment of normal-tension glaucoma. Ophthalmol Clin N Am. 1991;4:889–95.

    Google Scholar 

  157. Kass M. The treatment of normal-tension glaucoma. In: Leader BJ, Calkwood JC, editors. Peril to the nerve—glaucoma and clinical neuro-ophthalmology. Proceedings of the 45th annual symposium of the New Orleans Academy of Ophthalmology; 1998. The Hague: Kugler Publications. p. 61–72.

    Google Scholar 

  158. Hoyng PFJ, Kitazawa Y. Medical treatment of normal-tension glaucoma. Surv Ophthalmol. 2002;47 suppl 1:S116–24.

    PubMed  Google Scholar 

  159. Cantor L. Achieving low target pressures with today’s glaucoma medications. Surv Ophthalmol. 2003;48 suppl 1:S8–16.

    PubMed  Google Scholar 

  160. Krupin T, Liebmann JM, Greenfield DS, Ritch R, Gardiner S, Low-Pressure Glaucoma Study Group. A randomized trial of Brimonidine Versus Timolol in preserving visual function: results from the Low-pressure Glaucoma Treatment Study. Am J Ophthalmol. 2011;151:671–81.

    PubMed  CAS  Google Scholar 

  161. Ngan R, Lam DL, Mudumbai RC, et al. Risk factors for noncompliance with follow-up among normal-tension glaucoma suspects. Am J Ophthalmol. 2007;144:310–11.

    PubMed  Google Scholar 

  162. Demailly P, Lehrer M, Kretz G. Argon laser trabeculoretraction in chronic open-angle glaucoma with normal pressure. A prospective study on the tonometric and perimetric effect. J Fr Ophthalmol. 1989;12:183–9.

    CAS  Google Scholar 

  163. Nakayama T. An analysis of progressive LTG at our clinic. Folia Ophthalmol Jpn. 1987;38:1895–901.

    Google Scholar 

  164. de Jong N, Greve EL, Hoyng PFJ, et al. Results of a filtering procedure in low tension glaucoma. Int Ophthalmol. 1989;13:131–8.

    PubMed  Google Scholar 

  165. Ticho U, Nesher R. Laser trabeculoplasty in glaucoma. Ten-year evaluation. Arch Ophthalmol. 1989;107:844–6.

    PubMed  CAS  Google Scholar 

  166. Schwartz AL, Perman KI, Whitten M. Argon laser trabeculoplasty in progressive low-tension glaucoma. Ann Ophthalmol. 1984;16:560–2.

    PubMed  CAS  Google Scholar 

  167. Lee AC, Mosaed S, Weinreb RN, et al. Effect of laser trabeculoplasty on nocturnal intraocular pressure in medically treated glaucoma patients. Ophthalmology. 2007;114:666–70.

    PubMed  Google Scholar 

  168. Johnson PB, Katz LJ, Rhee DJ. Selective laser trabeculoplasty: predictive value of early intraocular pressure measurements for success at 3 months. Br J Ophthalmol. 2006;90:741–3.

    PubMed  CAS  Google Scholar 

  169. El Mallah MK, Walsh MM, Stinnett SS, Asrani SG. Selective laser trabeculoplasty reduces mean IOP and IOP variation in normal-tension glaucoma patients. Clin Ophthalmol. 2010; 889–93.

    Google Scholar 

  170. Ehrnrooth P, Lehto I, Puska P, et al. Phacoemulsification in trabeculectomized eyes. Acta Ophthalmol Scand. 2005;83:561–6.

    PubMed  Google Scholar 

  171. Inal A, Bayraktar S, Inal B, et al. Intraocular pressure control after clear corneal phacoemulsification in eyes with previous trabeculectomy: a controlled study. Acta Ophthalmol Scand. 2005;83:554–60.

    PubMed  Google Scholar 

  172. Rebolleda G, Muñoz-Negrete FJ. Phacoemulsification in eyes with functioning filtering blebs: a prospective study. Ophthalmology. 2002;109:2248–55.

    PubMed  Google Scholar 

  173. Abedin S, Simmons RJ, Grant WM. Progressive low-tension glaucoma: treatment to stop glaucomatous cupping and field loss when these progress despite normal intraocular pressure. Ophthalmology. 1982;89:1–6.

    PubMed  CAS  Google Scholar 

  174. Hitchings RA, Wu J, Poinoosawmy D, et al. Surgery for normal tension glaucoma. Br J Ophthalmol. 1995;79:402–6.

    PubMed  CAS  Google Scholar 

  175. Yamamoto T, Ichien M, Suemori-Matushita H, et al. Trabeculectomy for normal-tension glaucoma. Nippon Ganka Gakkai Zasshi. 1994;98:579–83.

    PubMed  CAS  Google Scholar 

  176. Koseki N, Araie M, Shirato S, et al. Effect of trabeculectomy on visual field performance in central 30 degrees field in progressive normal-tension glaucoma. Ophthalmology. 1997;104:197–201.

    PubMed  CAS  Google Scholar 

  177. Bhandari A, Crabb DP, Poinoosawmy D, et al. Effect of surgery on visual field progression in normal-tension glaucoma. Ophthalmology. 1997;104:1131–7.

    PubMed  CAS  Google Scholar 

  178. Hagiwara Y, Yamamoto T, Kitazawa Y. The effect of mitomycin C trabeculectomy on the progression of visual field defect in normal-tension glaucoma. Graefes Arch Clin Exp Ophthalmol. 2000;238:232–6.

    PubMed  CAS  Google Scholar 

  179. Membrey WL, Bunce C, Poinoosawmy DP, et al. Glaucoma surgery with or without adjunctive antiproliferatives in normal tension glaucoma: 2 Visual field progression. Br J Ophthalmol. 2001;85:696–701.

    PubMed  CAS  Google Scholar 

  180. Shigeeda T, Tomidokoro A, Araie M, et al. Long-term follow-up of visual field progression after trabeculectomy in progressive normal-tension glaucoma. Ophthalmology. 2002;109:766–70.

    PubMed  Google Scholar 

  181. Jongsareejit B, Tomidokoro A, Mimura T, et al. Efficacy and complications after trabeculectomy with mitomycin C in normal-tension glaucoma. Jpn J Ophthalmol. 2005;49:223–7.

    PubMed  CAS  Google Scholar 

  182. Miyake T, Sawada A, Yamamoto T, et al. Incidence of disc hemorrhages in open-angle glaucoma before and after trabeculectomy. J Glaucoma. 2006;15:164–71.

    PubMed  Google Scholar 

  183. Aoyama A, Ishida K, Sawada A, Yamamoto T. Target intraocular pressure for stability of visual field loss progression in normal-tension glaucoma. Jpn J Ophthalmol. 2010;54(2):117–23.

    PubMed  Google Scholar 

  184. Law SK, Nguyen AM, Coleman AL, et al. Severe loss of central vision in patients with advanced glaucoma undergoing trabeculectomy. Arch Ophthalmol. 2007;125:1044–50.

    PubMed  Google Scholar 

  185. Kitazawa Y, Shirai H, Go FJ. The effect of Ca2(+)-antagonist on visual field in low-tension glaucoma. Graefes Arch Clin Exp Ophthalmol. 1989;227:408–12.

    PubMed  CAS  Google Scholar 

  186. Lumme P, Tuulonen A. Neuroretinal rim area in low tension glaucoma: effect of nifedipine and acetazolamide compared to no treatment. Acta Ophthalmol. 1991;69:293–8.

    CAS  Google Scholar 

  187. Netland PA, Chaturvedi N, Dreyer EB. Calcium channel blockers in the management of low-tension and open-angle glaucoma. Am J Ophthalmol. 1993;115:608–13.

    PubMed  CAS  Google Scholar 

  188. Liu S, Araujo SV, Spaeth GL, et al. Lack of effect of calcium channel blockers on open-angle glaucoma. J Glaucoma. 1996;5:187–90.

    PubMed  CAS  Google Scholar 

  189. Gaspar AZ, Flammer J, Hendrickson P. Influence of nifedipine on the visual fields of patients with optic-nerve-head disease. Eur J Ophthalmol. 1994;4:24–8.

    PubMed  CAS  Google Scholar 

  190. Harris A, Evans DW, Cantor LB, et al. Hemodynamic and visual function effects of oral nifedipine in patients with normal-tension glaucoma. Am J Ophthalmol. 1997;124:296–302.

    PubMed  CAS  Google Scholar 

  191. Sawada A, Kitazawa Y, Yamamoto T, et al. Prevention of visual field defect progression with brovincamine in eyes normal-tension. Ophthalmology. 1996;103:283–8.

    PubMed  CAS  Google Scholar 

  192. Koseki N, Araie M, Yamagami J, et al. Effects of brovincamine on visual field damage in patients with normal-tension glaucoma with low-normal intraocular pressure. J Glaucoma. 1999;8:117–23.

    PubMed  CAS  Google Scholar 

  193. Yamamoto T, Niwa Y, Kawakami H, et al. The effect of nilvadipine, a calcium-channel blocker, on the hemodynamics of retrobulbar vessels in normal-tension glaucoma. J Glaucoma. 1998;7:301–5.

    PubMed  CAS  Google Scholar 

  194. Tomita G, Niwa Y, Shinohara H, et al. Changes in optic nerve head blood flow and retrobulbar hemodynamics following calcium-channel blocker treatment normal-tension glaucoma. Int Ophthalmol. 1999;23:3–10.

    PubMed  CAS  Google Scholar 

  195. Tomita K, Araie M, Tamaki Y, et al. Effects of nilvadipine, a calcium antagonist, on rabbit ocular circulation and optic nerve head circulation in NTG subjects. Invest Ophthalmol Vis Sci. 1999;40:1144–51.

    PubMed  CAS  Google Scholar 

  196. Niwa Y, Yamamoto T, Harris A, et al. Relationship between the effect of carbon dioxide inhalation or nilvadipine on orbital blood flow in normal-tension glaucoma. J Glaucoma. 2000;9:262–7.

    PubMed  CAS  Google Scholar 

  197. Bose S, Piltz J, Breton ME. Nimodipine, a centrally active calcium channel antagonist, exerts a beneficial effect on contrast sensitivity in patients with normal-tension glaucoma and in control subjects. Ophthalmology. 1995;102:1236–41.

    PubMed  CAS  Google Scholar 

  198. Piltz J, Bose S, Lanchoney D. The effect of nimodipine, a centrally active calcium channel antagonist, on visual function and macular blood flow in patients with normal-tension glaucoma and control subjects. J Glaucoma. 1998;7:336–40.

    PubMed  CAS  Google Scholar 

  199. Boehm AG, Breidenbach KA, Pillunat LE, et al. Visual function and perfusion of the optic nerve head after application of centrally acting calcium-channel blockers. Graefes Arch Clin Exp Ophthalmol. 2003;241:34–8.

    PubMed  CAS  Google Scholar 

  200. Michalk F, Michelson G, Harazny J, et al. Single-dose nimodipine normalizes impaired retinal circulation in normal tension glaucoma. J Glaucoma. 2004;13:158–62.

    PubMed  Google Scholar 

  201. Luksch A, Rainer G, Koyuncu D, et al. Effect of nimodipine on ocular blood flow and colour contrast sensitivity in patients with normal tension glaucoma. Br J Ophthalmol. 2005;89:21–5.

    PubMed  CAS  Google Scholar 

  202. Müskens RPHM, de Voogd S, Wolfs RCW, et al. Systemic antihypertensive medication and incident open-angle glaucoma. Ophthalmology. 2007;114:2221–6.

    PubMed  Google Scholar 

  203. Lipton SA. Pathologically-activated therapeutics for neuroprotection: mechanism of NMDA receptor block by memantine and S-nitrosylation. Curr Drug Targets. 2007;8:621–32.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce E. Prum Jr. MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Prum, B.E. (2014). Normal-Tension Glaucoma. In: Samples, J., Schacknow, P. (eds) Clinical Glaucoma Care. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4172-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4172-4_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4171-7

  • Online ISBN: 978-1-4614-4172-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics