Advertisement

On the Application of the SDLE to the Analysis of Complex Time Series

  • Jianbo GaoEmail author
  • Jing Hu
  • Wen-wen Tung
Chapter
  • 1.3k Downloads

Abstract

Complex systems often generate highly nonstationary and multiscale signals because of nonlinear and stochastic interactions among their component systems and hierarchical regulations imposed by the operating environments. Rapid accumulation of such complex data in life sciences, systems biology, nano-sciences, information systems, and physical sciences has made it increasingly important to develop complexity measures that incorporate the concept of scale explicitly, so that different behaviors of signals on varying scales can be simultaneously characterized by the same scale-dependent measure. The scale-dependent Lyapunov exponent (SDLE) discussed here is such a measure and can be used as the basis for a unified theory of multiscale analysis of complex data. The SDLE can readily characterize deterministic low-dimensional chaos, noisy chaos, random 1 ∕ f α processes, random Levy processes, stochastic oscillations, and processes with multiple scaling behavior. It can also readily deal with many types of nonstationarity, detect intermittent chaos, and accurately detect epileptic seizures from EEG data and distinguish healthy subjects from patients with congestive heart failure from heart rate variability (HRV) data. More importantly, analyses of EEG and HRV data illustrate that commonly used complexity measures from information theory, chaos theory, and random fractal theory can be related to the values of the SDLE at specific scales, and useful information on the structured components of the data is also embodied by the SDLE.

Keywords

Heart Rate Variability Lyapunov Exponent Detrended Fluctuation Analysis Chaos Theory Hurst Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work is supported in part by NSF grants CMMI-1031958 and 0826119.

References

  1. 1.
    Fairley P (2004) The unruly power grid. IEEE Spectrum 41:22–27Google Scholar
  2. 2.
    Bassingthwaighte JB, Liebovitch LS, West BJ (1994) Fractal physiology. Oxford University Press, New YorkGoogle Scholar
  3. 3.
    Leland WE, Taqqu MS, Willinger W, Wilson DV (1994) On the self-similar nature of ethernet traffic (extended version). IEEE/ACM Trans Networking 2:1–15CrossRefGoogle Scholar
  4. 4.
    Gao JB, Rubin I (2001) Multiplicative multifractal modeling of long-range-dependent network traffic. Int J Commun Syst 14:783–801zbMATHCrossRefGoogle Scholar
  5. 5.
    Gao JB, Rubin I (2001) Multifractal modeling of counting processes of long-range-dependent network traffic. Comput Commun 24:1400–1410CrossRefGoogle Scholar
  6. 6.
    Mandelbrot BB (1997) Fractals and scaling in finance. Springer, New YorkzbMATHCrossRefGoogle Scholar
  7. 7.
    Gao JB, Hu J, Tung WW, Zheng Y (2011) Multiscale analysis of economic time series by scale-dependent Lyapunov exponent. Quantitative Finance DOI:10.1080/14697688.2011.580774Google Scholar
  8. 8.
    Mit-bih normal sinus rhythm database & bidmc congestive heart failure database available at http://www.physionet.org/physiobank/database/#ecg.
  9. 9.
    Akselrod S, Gordon D, Ubel FA, Shannon DC, Barger MA, Cohen RJ (1981) Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science 213:220–222CrossRefGoogle Scholar
  10. 10.
    Kobayashi M, Musha T (1982) 1/f fluctuation of heart beat period. IEEE Trans Biomed Eng 29:456–457CrossRefGoogle Scholar
  11. 11.
    Peng CK, Mietus J, Hausdorff JM, Havlin S, Stanley HE, Goldberger AL (1993) Long-range anticorrelations and non-gaussian behavior of the heartbeat. Phys Rev Lett 70:1343–1346CrossRefGoogle Scholar
  12. 12.
    Ashkenazy Y, Ivanov PC, Havlin S, Peng CK, Goldberger AL, Stanley HE (2001) Magnitude and sign correlations in heartbeat fluctuations. Phys Rev Lett 86:1900–1903CrossRefGoogle Scholar
  13. 13.
    Ivanov PC, Amaral L, Goldberger AL, Havlin S, Rosenblum MG, Struzik ZR, Stanley HE (1999) Multifractality in human heartbeat dynamics. Nature 399:461–465CrossRefGoogle Scholar
  14. 14.
    Kaplan DT, Goldberger AL (1991) Chaos in cardiology. J Cardiovasc Electrophysiol 2: 342–354CrossRefGoogle Scholar
  15. 15.
    Goldberger AL, West BJ (1987) Applications of nonlinear dynamics to clinical cardiology. Ann New York Acad Sci 504:155–212CrossRefGoogle Scholar
  16. 16.
    Garfinkel A, Spano ML, Ditto WL, Weiss JN (1992) Controlling cardiac chaos. Science 257:1230–1235CrossRefGoogle Scholar
  17. 17.
    Fortrat JO, Yamamoto Y, Hughson RL (1997) Respiratory influences on non-linear dynamics of heart rate variability in humans. Biol Cybernet 77:1–10zbMATHCrossRefGoogle Scholar
  18. 18.
    Kaneko K, Tsuda I (2000) Complex systems: chaos and beyond. Springer, BerlinGoogle Scholar
  19. 19.
    Grassberger P, Procaccia I (1983) Characterization of strange attractors. Phys Rev Lett 50: 346–349MathSciNetCrossRefGoogle Scholar
  20. 20.
    Grassberger P, Procaccia I (1983) Estimation of the kolmogorov entropy from a chaotic signal. Phys Rev A 28:2591–2593CrossRefGoogle Scholar
  21. 21.
    Wolf A, Swift JB, Swinney HL, Vastano JA (1985) Determining lyapunov exponents from a time series. Physica D 16:285–317MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Sugihara G, May RM (1990) Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature 344:734–741CrossRefGoogle Scholar
  23. 23.
    Kaplan DT, Glass L (1992) Direct test for determinism in a time-series. Phys Rev Lett 68: 427–430CrossRefGoogle Scholar
  24. 24.
    Gao JB, Zheng ZM (1994) Direct dynamical test for deterministic chaos and optimal embedding of a chaotic time series. Phys Rev E 49:3807–3814CrossRefGoogle Scholar
  25. 25.
    Gao JB, Zheng ZM (1994) Direct dynamical test for deterministic chaos. Europhys Lett 25:485–490CrossRefGoogle Scholar
  26. 26.
    Pei X, Moss F (1996) Characterization of low-dimensional dynamics in the crayfish caudal photoreceptor. Nature 379:618–621CrossRefGoogle Scholar
  27. 27.
    Poon CS, Barahona M (2001) Titration of chaos with added noise. Proc Natl Acad Sci USA 98:7107–7112zbMATHCrossRefGoogle Scholar
  28. 28.
    Gaspard P, Briggs ME, Francis MK, Sengers JV, Gammons RW, Dorfman JR, Calabrese RV (1998) Experimental evidence for microscopic chaos. Nature 394:865–868CrossRefGoogle Scholar
  29. 29.
    Dettmann CP, Cohen EGD (2000) Microscopic chaos and diffusion. J Stat Phys 101:775–817MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Hu J, Tung WW, Gao JB, Cao YH (2005) Reliability of the 0-1 test for chaos. Phys Rev E 72:056207CrossRefGoogle Scholar
  31. 31.
    Osborne AR, Provenzale A (1989) Finite correlation dimension for stochastic-systems with power-law spectra. Physica D 35:357–381MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Provenzale A, Osborne AR (1991) Convergence of the k2 entropy for random noises with power law spectra. Physica D 47:361–372MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Aurell E, Boffetta G, Crisanti A, Paladin G, Vulpiani A (1997) Predictability in the large: an extension of the concept of lyapunov exponent. Physica A 30:1–26MathSciNetzbMATHGoogle Scholar
  34. 34.
    Gao JB, Hu J, Tung WW, Cao YH (2006) Distinguishing chaos from noise by scale-dependent lyapunov exponent. Phys Rev E 74:066204MathSciNetCrossRefGoogle Scholar
  35. 35.
    Gao JB, Cao YH, Tung WW, Hu J (2007) Multiscale analysis of complex time series—integration of chaos and random fractal theory, and beyond. Wiley, New YorkzbMATHCrossRefGoogle Scholar
  36. 36.
    Gao JB, Hu J, Mao X, Tung WW (2012) Detecting low-dimensional chaos by the “noise titration” technique: possible problems and remedies. Chaos, Solitons, and Fractals 45:213–223CrossRefGoogle Scholar
  37. 37.
    Gao JB, Tung WW, Hu J (2009) Quantifying dynamical predictability: the pseudo-ensemble approach (in honor of professor andrew majda’s 60th birthday). Chinese Annal Math Ser B 30:569–588MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Gao JB, Hu J, Tung WW (2011) Complexity measures of brain wave dynamics. Cogn Neurodyn 5:171–182CrossRefGoogle Scholar
  39. 39.
    Hu J, Gao JB, Tung WW, Cao YH (2010) Multiscale analysis of heart rate variability: a comparison of different complexity measures. Annal Biomed Eng 38:854–864CrossRefGoogle Scholar
  40. 40.
    Hu J, Gao JB, Tung WW (2009) Characterizing heart rate variability by scale-dependent lyapunov exponent. Chaos (special issue on Controversial Topics in Nonlinear Science: Is the Normal Heart Rate Chaotic? it is one of the most downloaded papers in that issue) 19:028506Google Scholar
  41. 41.
    Ryan DA, Sarson GR (2008) The geodynamo as a low-dimensional deterministic system at the edge of chaos. Europhys Lett 83:49001MathSciNetCrossRefGoogle Scholar
  42. 42.
    Packard NH, Crutchfield JP, Farmer JD, Shaw RS (1980) Gemomtry from time-series. Phys Rev Lett 45:712–716CrossRefGoogle Scholar
  43. 43.
    Takens F (1981) Detecting strange attractors in turbulence. In: Rand DA, Young LS (eds.) Dynamical systems and turbulence, lecture notes in mathematics, vol 898. Springer, Berlin, p 366Google Scholar
  44. 44.
    Sauer T, Yorke JA, Casdagli M (1991) Embedology. J Stat Phys 65:579–616MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Gao JB, Zheng ZM (1993) Local exponential divergence plot and optimal embedding of a chaotic time series. Phys Lett A 181:153–158CrossRefGoogle Scholar
  46. 46.
    Mackey MC, Glass L (1977) Oscillation and chaos in physiological control-systems. Science 197:287–288CrossRefGoogle Scholar
  47. 47.
    Gao JB, Hu J, Tung WW, Cao YH, Sarshar N, Roychowdhury VP (2006) Assessment of long range correlation in time series: How to avoid pitfalls. Phys Rev E 73:016117CrossRefGoogle Scholar
  48. 48.
    Mandelbrot BB (1982) The fractal geometry of nature. Freeman, San FranciscozbMATHGoogle Scholar
  49. 49.
    Frisch U (1995) Turbulence—the legacy of A.N. Kolmogorov. Cambridge University PressGoogle Scholar
  50. 50.
    Lempel A, Ziv J (1976) On the complexity of finite sequences. IEEE Trans Inform Theor 22:75–81MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Cao YH, Tung WW, Gao JB, Protopopescu VA, Hively LM (2004) Detecting dynamical changes in time series using the permutation entropy. Phys Rev E 70:046217MathSciNetCrossRefGoogle Scholar
  52. 52.
    Martinerie J, Adam C, Quyen MLV, Baulac M, Clemenceau S, Renault B, Varela FJ (1998) Epileptic seizures can be anticipated by non-linear analysis. Nat Med 4:1173–1176CrossRefGoogle Scholar
  53. 53.
    Peng CK, Buldyrev SV, Havlin S, Simons M, Stanley HE, Goldberger AL (1994) On the mosaic organization of dna sequences. Phys Rev E 49:1685–1689CrossRefGoogle Scholar
  54. 54.
    Hwa RC, Ferree TC (2002) Scaling properties of fluctuations in the human electroencephalogram. Phys Rev E 66:021901CrossRefGoogle Scholar
  55. 55.
    Robinson PA (2003) Interpretation of scaling properties of electroencephalographic fluctuations via spectral analysis and underlying physiology. Phys Rev E 67:032902CrossRefGoogle Scholar
  56. 56.
    Hon EH, Lee ST (1965) Electronic evaluations of the fetal heart rate patterns preceding fetal death: further observations. Am J Obstet Gynecol 87:814–826Google Scholar
  57. 57.
    Task Force of the European Society of Cardiology & the North American Society of Pacing & Electrophysiology (1996) Heart rate variability: Standards of measurement, physiological interpretation,and clinical use. Circulation 93:1043–1065Google Scholar
  58. 58.
    Babyloyantz A, Destexhe A (1988) Is the normal heart a periodic oscillator? Biol Cybern 58:203–211CrossRefGoogle Scholar
  59. 59.
    Bigger JT, Steinman RC, Rolnitzky LM, Fleiss JL, Albrecht P, Cohen RJ (1996) Power law behavior of rr-interval variability in healthy middle-aged persons, patients with recent acute myocardial infarction, and patients with heart transplants. Circulation 93:2142–2151CrossRefGoogle Scholar
  60. 60.
    Ho KKL, Moody GB, Peng CK, Mietus JE, Larson MG, Levy D, Goldberger AL (1997) Predicting survival in heart failure cases and controls using fully automated methods for deriving nonlinear and conventional indices of heart rate dynamics. Circulation 96:842–848CrossRefGoogle Scholar
  61. 61.
    Pincus SM, Viscarello RR (1992) Approximate entropy: a regularity statistic for fetal heart rate analysis. Obst Gynecol 79:249–255Google Scholar
  62. 62.
    Hu J, Gao JB, Wang XS (2009) Multifractal analysis of sunspot time series: the effects of the 11-year cycle and fourier truncation. J Stat Mech. DOI: 10.1088/1742-5468/2009/02/P02066Google Scholar
  63. 63.
    Gao JB, Sultan H, Hu J, Tung WW (2010) Denoising nonlinear time series by adaptive filtering and wavelet shrinkage: a comparison. IEEE Signal Process Lett 17:237–240CrossRefGoogle Scholar
  64. 64.
    Tung WW, Gao JB, Hu J, Yang L (2011) Recovering chaotic signals in heavy noise environments. Phys Rev E 83:046210CrossRefGoogle Scholar

Copyright information

© Springer New York 2013

Authors and Affiliations

  1. 1.PMB Intelligence LLCWest LafayetteUSA
  2. 2.Mechanical and Materials EngineeringWright State UniversityDaytonUSA
  3. 3.Affymetrix, Inc.Santa ClaraUSA
  4. 4.Department of Earth & Atmospheric SciencesPurdue UniversityWest LafayetteUSA

Personalised recommendations