Constructions and a Generalization of Perfect Autocorrelation Sequences on

  • John J. BenedettoEmail author
  • Somantika Datta


Low autocorrelation signals have fundamental applications in radar and communications. We construct constant amplitude zero autocorrelation (CAZAC) sequences x on the integers by means of Hadamard matrices. We then generalize this approach to construct unimodular sequences x on whose autocorrelations A x are building blocks for all functions on . As such, algebraic relations between A x and A y become relevant. We provide conditions for the validity of the formulas A x+y =A x +A y .


Discrete Fourier Transform Code Division Multiple Access Inverse Fourier Transform Wavelet Packet Tight Frame 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The first named author gratefully acknowledges the support of ONR Grant N00014-09-1-0144 and MURI-ARO Grant W911NF-09-1-0383. The second named author gratefully acknowledges the support of AFOSR Grant FA9550-10-1-0441.


  1. 1.
    Auslander L, Barbano PE (1998) Communication codes and Bernoulli transformations. Appl Comput Harmon Anal 5(2):109–128MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bell DA (1966) Walsh functions and Hadamard matrices. Electron Lett 2:340–341CrossRefGoogle Scholar
  3. 3.
    Benedetto JJ (1991) A multidimensional Wiener–Wintner theorem and spectrum estimation. Trans Am Math Soc 327(2):833–852MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Benedetto JJ (1997) Harmonic analysis and applications. CRC Press, Boca Raton, FLGoogle Scholar
  5. 5.
    Benedetto JJ, Benedetto RL, Woodworth JT (2011) Björk CAZACs: theory, geometry, implementation, and waveform ambiguity behavior. Preprint, to be submittedGoogle Scholar
  6. 6.
    Benedetto JJ, Benedetto RL, Woodworth JT (2012) Optimal ambiguity functions and Weil’s exponential sum bounds. J. Fourier Analysis and Applications 18:471–487MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Benedetto JJ, Czaja W (2009) Integration and modern analysis. Birkhäuser Boston Inc., Boston, MAzbMATHCrossRefGoogle Scholar
  8. 8.
    Benedetto JJ, Datta S (2010) Construction of infinite unimodular sequences with zero autocorrelation. Adv Comput Math 32(2):191–207MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Benedetto JJ, Donatelli JJ (2007) Ambiguity function and frame theoretic properties of periodic zero autocorrelation waveforms. IEEE J Special Topics Signal Process 1:6–20CrossRefGoogle Scholar
  10. 10.
    Björck J, Saffari B (1995) New classes of finite unimodular sequences with unimodular Fourier transforms. Circulant Hadamard matrices with complex entries. C R Acad Sci 320:319–324zbMATHGoogle Scholar
  11. 11.
    Christensen O (2003) An introduction to frames and riesz bases. Birkhäuser, BaselzbMATHGoogle Scholar
  12. 12.
    Datta S (2007) Wiener’s generalized harmonic analysis and waveform design. Ph.D. thesis. University of Maryland, College Park, MarylandGoogle Scholar
  13. 13.
    Daubechies I (1992) Ten lectures on wavelets. Society for Industrial and Applied Mathematics, Philadelphia, PAzbMATHCrossRefGoogle Scholar
  14. 14.
    Hadamard J (1893) Résolution d’une question relative aux déterminants. Bulletin des Sciences Mathématiques 17:240–246Google Scholar
  15. 15.
    Helleseth T, Kumar PV (1998) Sequences with low correlation. In: Handbook of coding theory, Vol. I, II. North-Holland, Amsterdam, pp 1765–1853Google Scholar
  16. 16.
    Horadam KJ (2007) Hadamard matrices and their applications. Princeton University Press, Princeton, NJzbMATHGoogle Scholar
  17. 17.
    Horn RA, Johnson CR (1990) Matrix analysis. Cambridge University Press, Cambridge (Corrected reprint of the 1985 original)Google Scholar
  18. 18.
    Kerby R (1990) The correlation function and the Wiener–Wintner theorem in higher dimension. Ph.D. thesis. University of Maryland, College ParkGoogle Scholar
  19. 19.
    Kerby R (2008) Personal communicationGoogle Scholar
  20. 20.
    Levanon N, Mozeson E (2004) Radar signals. Wiley Interscience, IEEE PressCrossRefGoogle Scholar
  21. 21.
    Long ML (2001) Radar reflectivity of land and sea. Artech House, BostonGoogle Scholar
  22. 22.
    Mow WH (1996) A new unified construction of perfect root-of-unity sequences. In: Proceedings of IEEE 4th International Symposium on Spread Spectrum Techniques and Applications (Germany), pp 955–959Google Scholar
  23. 23.
    Nathanson FE (1999) Radar design principles—signal processing and the environment. SciTech Publishing Inc., Mendham, NJGoogle Scholar
  24. 24.
    Paley REAC (1933) On orthogonal matrices. J Math Phys 12:311–320Google Scholar
  25. 25.
    Richards MA, Scheer JA, Holm WA (eds.) (2010) Principles of modern radar: basic principles. SciTech Publishing Inc., Raleigh, NCGoogle Scholar
  26. 26.
    Schipp F, Wade WR, Simon P (1990) Walsh series, an introduction to dyadic harmonic analysis. Taylor & FrancisGoogle Scholar
  27. 27.
    Stein EM, Weiss G (1971) Introduction to fourier analysis on euclidean spaces. Princeton University Press, Princeton, NJzbMATHGoogle Scholar
  28. 28.
    Stimson GW (1998) Introduction to airborne radar. SciTech Publishing Inc., Mendham, NJGoogle Scholar
  29. 29.
    Sylvester JJ (1867) Thoughts on inverse orthogonal matrices, simultaneous sign successions, and tessellated pavements in two or more colours, with applications to newton’s rule, ornamental tile-work, and the theory of numbers. Phil Mag 34:461–475Google Scholar
  30. 30.
    Ulukus S, Yates RD (2001) Iterative construction of optimum signature sequence sets in synchronous CDMA systems. IEEE Trans Inform Theor 47(5):1989–1998MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Verdú S (1998) Multiuser detection. Cambridge University Press, Cambridge, UKzbMATHGoogle Scholar
  32. 32.
    Viterbi AJ (1995) CDMA: principles of spread spectrum communication. Addison-Wesley, Pearson, BostonzbMATHGoogle Scholar
  33. 33.
    Walsh JL (1923) A closed set of normal orthogonal functions. Am J Math 45:5–24zbMATHCrossRefGoogle Scholar
  34. 34.
    Wiener N (1930) Generalized harmonic analysis. Acta Math (55):117–258MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Wiener N (1988) The Fourier integral and certain of its applications. Cambridge Mathematical Library (Reprint of the 1933 edition. With a foreword by Jean-Pierre Kahane). Cambridge University Press, CambridgeGoogle Scholar
  36. 36.
    Wiener N, Wintner A (1939) On singular distributions. J Math Phys 17:233–246Google Scholar

Copyright information

© Springer New York 2013

Authors and Affiliations

  1. 1.Department of Mathematics, Norbert Wiener CenterUniversity of MarylandCollege ParkUSA
  2. 2.Department of MathematicsUniversity of IdahoMoscowUSA

Personalised recommendations