Skip to main content

Convergence of Classical Cardinal Series

  • Chapter
  • First Online:
Multiscale Signal Analysis and Modeling

Abstract

We consider symmetric partial sums of the classical cardinal series and record necessary and sufficient conditions for convergence. Included are growth conditions on the coefficients that imply analogous asymptotic behavior of the function represented by the series. Several relatively immediate corollaries are also recorded, including sampling-type theorems.

Mathematics subject classification (2000): 40A30; 94A20

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahlfors LV (1966) Complex analysis: an introduction of the theory of analytic functions of one complex variable, 2nd ed. McGraw-Hill Book Co, New York, Toronto, London

    Google Scholar 

  2. Boas RP Jr (1972) Summation formulas and band-limited signals. Tôhoku Math J 24(2):121–125

    Article  MathSciNet  MATH  Google Scholar 

  3. Boche H, Mónich UJ (2009) Behavior of Shannon’s sampling series for Hardy spaces. J Fourier Anal Appl 15(3):404–412

    Article  MathSciNet  MATH  Google Scholar 

  4. Brown JL Jr (1968) On the error in reconstructing a non-bandlimited function by means of the bandpass sampling theorem. J Math Anal Appl 18(1967):75–84. (Erratum, ibid, 21, 699)

    Google Scholar 

  5. Butzer PL, Higgins JR, Stens RL (2000) Sampling theory of signal analysis. Development of mathematics 1950–2000, pp 193–234. Birkhuser, Basel

    Google Scholar 

  6. Butzer PL, Higgins JR, Stens RL (2005) Classical and approximate sampling theorems: studies in the L P() and the uniform norm, J Approx Theor 137(2):250–263

    Article  MathSciNet  MATH  Google Scholar 

  7. Higgins JR (1985) Five short stories about the cardinal series. Bull Am Math Soc (NS) 12(1):45–89

    Article  MathSciNet  MATH  Google Scholar 

  8. Higgins, JR (1996) Sampling theory in Fourier and signal analysis: foundations. Oxford Science Publications, Clarendon Press, Oxford

    MATH  Google Scholar 

  9. Hörmander L (1969) Linear partial differential operators, 3rd revised printing. Springer, New York

    Google Scholar 

  10. Jerri AJ (1977) The Shannon sampling theorem-its various extensions and applications: a tutorial review. Proc IEEE 65(11):1565–1596

    Article  MATH  Google Scholar 

  11. Levin BYa (1996) Lectures on entire functions. In: Lyubarskii Yu, Sodin M, Tkachenko V (eds) Collaboration with and with a preface. Translated from the Russian manuscript by Tkachenko. Translations of mathematical monographs, vol 150. American Mathematical Society, Providence, RI

    Google Scholar 

  12. Madych WR (2001) Summability of Lagrange type interpolation series. J Anal Math 84:207–229

    Article  MathSciNet  MATH  Google Scholar 

  13. Pollard H, Shisha O (1972) Variations on the binomial series. Am Math Mon 79:495–499

    Article  MathSciNet  MATH  Google Scholar 

  14. Schoenberg IJ (1974) Cardinal interpolation and spline functions. VII. The behavior of cardinal spline interpolants as their degree tends to infinity. J Anal Math 27:205–229

    MathSciNet  MATH  Google Scholar 

  15. Walter GG (1988) Sampling bandlimited functions of polynomial growth. SIAM J Math Anal 19(5):11981203

    Article  Google Scholar 

  16. Walter GG, Shen X (2001) Wavelets and other orthogonal systems, 2nd edn. Studies in advanced mathematics. Chapman and Hall/CRC, Boca Raton, FL

    MATH  Google Scholar 

  17. Whittaker ET (1915) On the functions which are represented by the expansions of the interpolation theory. Proc Roy Soc Edinb 35:181–194

    Google Scholar 

  18. Whittaker JM (1929) On the cardinal function of interpolation theory. Proc Edinb Math Soc 1:41–46

    Article  Google Scholar 

  19. Whittaker JM (1935) Interpolatory function theory. Cambridge tracts in mathematics and mathematical physics, vol 33. Cambridge University Press, Cambridge

    Google Scholar 

  20. Zayed AI (1993) Advances in Shannon’s sampling theory. CRC Press, Boca Raton, FL

    MATH  Google Scholar 

  21. Zygmund A (1968) Trigonometric series, reprint of 2nd edn., Vol. I and II. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. R. Madych .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer New York

About this chapter

Cite this chapter

Madych, W.R. (2013). Convergence of Classical Cardinal Series. In: Shen, X., Zayed, A. (eds) Multiscale Signal Analysis and Modeling. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4145-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4145-8_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4144-1

  • Online ISBN: 978-1-4614-4145-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics