Skip to main content

Sensory Neuroprostheses: From Signal Processing and Coding to Neural Plasticity in the Central Nervous System

  • Chapter
  • First Online:
  • 1143 Accesses

Part of the book series: Fields Institute Communications ((FIC,volume 63))

Abstract

To develop neuroprostheses that will provide the nervous system with artificial sensory input through the sensory nerves to which they will be connected, on one hand we have to determine how external stimuli are represented, coded and transmitted by the Nervous System, how neurons and neuronal ensembles process, encode and transmit perceptual information. On the other we need to know how the central nervous system reacts to the implanted neuroprostheses and quantify its anatomic and functional alterations due to the artificial input it receives from our devices. Here we present mathematical and electrophysiological methods for signal acquisition, analysis, and information coding in the tactile sensory system that include a wavelet and principal component analysis-based method for neural signal analysis and different types of frequency-based signal processing and coding performed simultaneously by the sensory neurons. Finally we present a quantitative morphological study of the effects of the neuroprosthetic stimulation using a stereological approach.

Mathematics Subject Classification (2010): Primary 92; Secondary 92C20

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. E. Ahissar, R. Sosnik, S. Haidarliu, Transformation from temporal to rate coding in a somatosensory thalamocortical pathway. Nature 406(6793), 302–306 (2000)

    Article  Google Scholar 

  2. S.L.G. Andino, C. Herrera-Rincon, F. Panetsos, R.G. De Peralta, Frontiers: Combining bmi stimulation and mathematical modeling for acute stroke recovery and neural repair. Front. Neuroprosthetics 5

    Google Scholar 

  3. B. Cavalieri, Geometria indivisibilibus continuorum. Bononi: Typis Clemetis Feronij (1635)

    Google Scholar 

  4. W.G. Cohran, Sampling Techniques (Wiley, NY, 1977)

    Google Scholar 

  5. L.M. Cruz-Orive, Precision of cavalieri sections and slices with local errors. J. Microsc. 193(3), 182–198 (1999)

    Article  Google Scholar 

  6. A.E.O.J. Delesse, Procédé mécanique pour déterminer la composition des roches. F. Savy (1866)

    Google Scholar 

  7. M.E. Diamond, M. Von Heimendahl, E. Arabzadeh, Whisker-mediated texture discrimination. PLoS Biol. 6(8), e220 (2008)

    Google Scholar 

  8. M.S. Fee, P.P. Mitra, D. Kleinfeld, Automatic sorting of multiple unit neuronal signals in the presence of anisotropic and non-gaussian variability. J. Neurosci. Meth. 69(2), 175–188 (1996)

    Article  Google Scholar 

  9. M.S. Fee, P.P. Mitra, D. Kleinfeld, Variability of extracellular spike waveforms of cortical neurons. J. Neurophysiol. 76(6), 3823 (1996)

    Google Scholar 

  10. G.L. Gerstein, M.J. Bloom, I.E. Espinosa, S. Evanczuk, M.R. Turner, Design of a laboratory for multineuron studies. IEEE Trans. Syst. Man Cybern. 13(5), 668–676 (1983)

    Google Scholar 

  11. E.M. Glaser, Separation of neuronal activity by waveform analysis. Adv. Biomed. Eng. 1, 77–136 (1971)

    Google Scholar 

  12. J.M. Goldberg, P.B. Brown, Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: Some physiological mechanisms of sound localization. J. Neurophysiol. 32(4), 613 (1969)

    MathSciNet  Google Scholar 

  13. H.J. Gundersen, E.B. Jensen, The efficiency of systematic sampling in stereology and its prediction. J. Microsc. 147(Pt 3), 229 (1987)

    Google Scholar 

  14. K.D. Harris, D.A. Henze, J. Csicsvari, H. Hirase, G. Buzsáki, Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. J. Neurophysiol. 84(1), 401 (2000)

    Google Scholar 

  15. C. Herrera-Rincon, C. Torets, A. Sanchez-Jimenez, C. Avendaño, P. Guillen, F. Panetsos, in Structural Preservation of Deafferented Cortex Induced by Electrical Stimulation of a Sensory Peripheral Nerve. Engineering in Medicine and Biology Society (EMBC), 2010. Annual International Conference of the IEEE (IEEE, NY, 2010), pp. 5066–5069

    Google Scholar 

  16. E. Hulata, R. Segev, E. Ben-Jacob, A method for spike sorting and detection based on wavelet packets and shannon’s mutual information. J. Neurosci. Meth. 117(1), 1–12 (2002)

    Article  Google Scholar 

  17. Y. Karklin, M.S. Lewicki, A hierarchical bayesian model for learning nonlinear statistical regularities in nonstationary natural signals. Neural Comput. 17(2), 397–423 (2005)

    Article  MATH  Google Scholar 

  18. A. Lak, E. Arabzadeh, M.E. Diamond, Enhanced response of neurons in rat somatosensory cortex to stimuli containing temporal noise. Cerebr. Cortex 18(5), 1085 (2008)

    Google Scholar 

  19. J.C. Letelier, P.P. Weber, Spike sorting based on discrete wavelet transform coefficients. J. Neurosci. Meth. 101(2), 93–106 (2000)

    Article  Google Scholar 

  20. M.S. Lewicki, A review of methods for spike sorting: the detection and classification of neural action potentials. Netw. Comput. Neural Syst. 9(4), 53–78 (1998)

    Article  MathSciNet  Google Scholar 

  21. B.L. McNaughton, J. O’Keefe, C.A. Barnes, The stereotrode: A new technique for simultaneous isolation of several single units in the central nervous system from multiple unit records. J. Neurosci. Meth. 8(4), 391–397 (1983)

    Article  Google Scholar 

  22. P.R. Mouton, Principles and Practices of Unbiased Stereology: An Introduction for Bioscientists (Johns Hopkins University Press, MD, 2002)

    Google Scholar 

  23. F. Panetsos, A. Sanchez-Jimenez, Single unit oscillations in rat trigeminal nuclei and their control by the sensorimotor cortex. Neuroscience 169(2), 893 – 905 (2010)

    Article  Google Scholar 

  24. A. Pavlov, V.A. Makarov, I. Makarova, F. Panetsos, Sorting of neural spikes: When wavelet based methods outperform principal component analysis. Nat. Comput. 6(3), 269–281 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. G. Paxinos, C. Watson, The Rat Brain in Stereotaxic Coordinates (Academic, NY, 2007)

    Google Scholar 

  26. M.C. Quirk, M.A. Wilson, Interaction between spike waveform classification and temporal sequence detection. J. Neurosci. Meth. 94(1), 41–52 (1999)

    Article  Google Scholar 

  27. Q. Quiroga, Z. Nadasdy, Y. Ben-Shaul, Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Comput. 16, 1661–1687 (2004)

    Article  MATH  Google Scholar 

  28. R. Romo, A. Hernández, A. Zainos, C. Brody, E. Salinas, Exploring the cortical evidence of a sensory–discrimination process. Phil. Trans. Roy. Soc. Lond. B Biol. Sci. 357(1424), 1039 (2002)

    Google Scholar 

  29. E. Salinas, A. Hernández, A. Zainos, R. Romo, Periodicity and firing rate as candidate neural codes for the frequency of vibrotactile stimuli. J. Neurosci. 20(14), 5503 (2000)

    Google Scholar 

  30. A. Sanchez-Jimenez, F. Panetsos, A. Murciano, Early frequency-dependent information processing and cortical control in the whisker pathway of the rat: Electrophysiological study of brainstem nuclei principalis and interpolaris. Neuroscience 160(1), 212–226 (2009)

    Article  Google Scholar 

  31. E.M. Schmidt, Computer separation of multi-unit neuroelectric data: A review. J. Neurosci. Meth. 12(2), 95–111 (1984)

    Article  Google Scholar 

  32. R.K. Snider, A.B. Bonds, Classification of non-stationary neural signals. J. Neurosci. Meth. 84(1–2), 155–166 (1998)

    Article  Google Scholar 

  33. P.M.E. Waite, D.J. Tracey, Trigeminal sensory system. Rat Nervous Syst. 705–724 (1995)

    Google Scholar 

  34. M. Wong-Riley, Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Res. 171(1), 11–28 (1979)

    Article  Google Scholar 

  35. M.T.T. Wong-Riley, Cytochrome oxidase: An endogenous metabolic marker for neuronal activity. Trends Neurosci. 12(3), 94–101 (1989)

    Article  Google Scholar 

  36. T.A. Woolsey, The structural organization of layer iv in the somatosensory region (si) of the mouse cerebral cortex: The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res. 17, 205–242 (1970)

    Article  Google Scholar 

  37. T.A. Woolsey, C. Welker, R.H. Schwartz, Comparative anatomical studies of the sml face cortex with special reference to the occurrence of “barrels” in layer iv. J. Comp. Neurol. 164(1), 79–94 (1975)

    Article  Google Scholar 

  38. T.A. Woolsey, M.L. Dierker, D.F. Wann, Mouse smi cortex: Qualitative and quantitative classification of golgi-impregnated barrel neurons. Proc. Natl. Acad. Sci. U.S.A. 72(6), 2165 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celia Herrera-Rincon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Panetsos, F., Sanchez-Jimenez, A., Herrera-Rincon, C. (2013). Sensory Neuroprostheses: From Signal Processing and Coding to Neural Plasticity in the Central Nervous System. In: Pardalos, P., Coleman, T., Xanthopoulos, P. (eds) Optimization and Data Analysis in Biomedical Informatics. Fields Institute Communications, vol 63. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4133-5_8

Download citation

Publish with us

Policies and ethics