An Introduction to the Analysis of Functional Magnetic Resonance Imaging Data

  • Gianluca Gazzola
  • Chun-An Chou
  • Myong K. Jeong
  • W. Art Chaovalitwongse
Chapter
Part of the Fields Institute Communications book series (FIC, volume 63)

Abstract

Functional magnetic resonance imaging (fMRI) is a brain imaging technology primarily used to investigate how cognitive processes affect neural activity. Due to its non-invasiveness and high spatial resolution, this technology has quickly become one of the most important research tools in cognitive neuroscience and has played a growing role in a number of clinical applications. The interpretation of the results of an fMRI experiment involves the analysis of massive amounts of noisy, complex, multivariate data, resolved both spatially and temporally. The extraction of information from this data is a difficult and articulated task, which relies on methodologies lying at the intersection between image processing, statistics, and machine learning. We here introduce the reader to the rich and diverse literature in the fascinating field of fMRI data analysis, providing an overview of its main challenges and of the most common approaches to overcome them.

Keywords

Fatigue Covariance Respiration Autocorrelation Convolution 

References

  1. 1.
    K.K. Kwong, J.W. Belliveau, D.A. Chesler, I.E. Goldberg, R.M. Weissko, B.P. Poncelet, D.N. Kennedy, B.E. Hoppel, M.S. Cohen, R. Turner, H.M. Cheng, T.J. Brady, B.R. Rosen, Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc. Natl. Acad. Sci. (USA) 89, 5675–5679 (1992)CrossRefGoogle Scholar
  2. 2.
    N. Logothetis, A. Wandell, Interpreting the bold signal. Ann. Rev. Physiol. 66, 735–769 (2004)CrossRefGoogle Scholar
  3. 3.
    P. Belin, R. Zatorre, R. Hoge, A. Evans, B. Pike, Event-related fmri of the auditory cortex. NeuroImage 10, 417–429 (1999)CrossRefGoogle Scholar
  4. 4.
    R. Buckner, J. Goodman, M. Burock, M. Rotte, W. Koutstaal, D. Schacter, B. Rosen, A. Dale, Functional-anatomic correlates of object priming in humans revealed by rapid presentation event-related fmri. Neuron 20, 285–296 (1998)CrossRefGoogle Scholar
  5. 5.
    K. Ochsner, A. Bunge, J. Gross, J. Gabrieli, Rethinking feelings: An fmri study of the cognitive regulation of emotion. J. Neurosci. 14, 1215–1229 (2002)Google Scholar
  6. 6.
    E. Falk, E. Berkman, T. Mann, B. Harrison, M. Lieberman, Predicting persuasion-induced behavior change from the brain. J. Neurosci. 30, 8421–8424 (2010)CrossRefGoogle Scholar
  7. 7.
    A. Sanfey, J. Rilling, J. Aronson, L. Nystrom, J. Cohen, The neural basis of economic decision-making in the ultimatum game. Science 300, 1755–1758 (2003)CrossRefGoogle Scholar
  8. 8.
    J. Sepulcre, H. Liu, T. Talukdar, I. Martincorena, T. Yeo, R. Buckner, The organization of local and distant functional connectivity in the human brain. PLoS Comput. Biol. 6, e1000808 (2010)MathSciNetCrossRefGoogle Scholar
  9. 9.
    H. Whalley, E. Simonotto, S. Flett, I. Marshall, K. Ebmeier, D. Owens, N. Goddard, E. Johnstone, S. Lawrie, fmri correlates of state and trait effects in subjects at genetically enhanced risk of schizophrenia. Brain 127, 478–490 (2004)CrossRefGoogle Scholar
  10. 10.
    G. Honey, E. Pomarol-Clotet, P. Corlett, R. Honey, P. McKenna, E. Bullmore, P. Fletcher, Functional dysconnectivity in schizophrenia associated with attentional modulation of motor function. Brain 128, 2597–2611 (2005)CrossRefGoogle Scholar
  11. 11.
    M. Wengenroth, M. Blatow, J. Guenther, M. Akbar, V. Tronnier, C. Stippich, Diagnostic benefits of presurgical fmri in patients with brain tumours in the primary sensorimotor cortex. Eur. Radiol. 21, 1517–1525 (2011)CrossRefGoogle Scholar
  12. 12.
    R. Marshall, E. Zarahn, L. Alon, B. Minzer, R. Lazar, J. Krakauer, Early imaging correlates of subsequent motor recovery after stroke. Ann. Neurol. 65, 596–602 (2009)CrossRefGoogle Scholar
  13. 13.
    R. Wise, I. Tracey, The role of fmri in drug discovery. J. Magn. Reson. Imag. 23, 862–876 (2006)CrossRefGoogle Scholar
  14. 14.
    D. Borsook, L. Becerra, R. Hargreaves, A role for fmri in optimizing cns drug development. Nat. Rev. Drug Discov. 5, 411–424 (2006)CrossRefGoogle Scholar
  15. 15.
    M. Lindquist, The statistical analysis of fmri data. Stat. Sci. 23, 439–464 (2008)MathSciNetCrossRefGoogle Scholar
  16. 16.
    E. Amaro Jr., G. Barker, Study design in fmri: Basic principles. Brain Cognit. 60, 220–232 (2006)CrossRefGoogle Scholar
  17. 17.
    W. Machielsen, S. Rombouts, F. Barkhof, P. Scheltens, M. Witter, fmri of visual encoding: Reproducibility of activation. Hum. Brain Mapp. 9, 156–164 (2000)CrossRefGoogle Scholar
  18. 18.
    K. Friston, E. Zarahn, O. Josephs, R. Henson, A. Dale, Stochastic designs in event-related fmri. NeuroImage 10, 607–619 (1999)Google Scholar
  19. 19.
    O. Josephs, R. Turner, K. Friston, Event-related fmri. human brain mapping. Hum. Brain Mapp. 9, 243–257 (1997)Google Scholar
  20. 20.
    R. Buxton, K. Uludag, D. Dubowitz, T. Liu, Modeling the hemodynamic response to brain activation. NeuroImage 23, S220–S233 (2004)CrossRefGoogle Scholar
  21. 21.
    D. Donaldson, S. Petersen, J. Ollinger, R. Buckner, Dissociating state and item components of recognition memory using fmri. NeuroImage 13, 129–142 (2001)CrossRefGoogle Scholar
  22. 22.
    M. Greicius, K. Supekar, V. Menon, R. Dougherty, Resting-state functional connectivity reflects structural connectivity in the default mode network. Cerebr. Cortex 19, 72–78 (2009)CrossRefGoogle Scholar
  23. 23.
    J.V. Hajnal, R. Myers, A. Oatridge, J.E. Schwieso, I.R. Young, G.M. Bydder, Artifacts due to stimulus correlated motion in functional imaging of the brain. Magn. Reson. Med. 31, 283–291 (1994)CrossRefGoogle Scholar
  24. 24.
    S. Hamdy, D. Mikulis, A. Crawley, S. Xue, H. Lau, S. Henry, N. Diamant, Identifying global anatomical differences: Deformation-based morphometry. Am. J. Phisiol. 277, G219–G225 (1999)Google Scholar
  25. 25.
    T. Stephan, E. Marx, H. Bruckmann, T. Brandt, M. Dieterich, Lid closure mimics head movement in fmri. Neuroimage 16, 1156–1158 (2002)CrossRefGoogle Scholar
  26. 26.
    D. Abbott, H. Opdam, R. Briellman, G. Jackson, Brief breath holding may confound functional magnetic resonance imaging studies. Hum. Brain Mapp. 24, 284–290 (2005)CrossRefGoogle Scholar
  27. 27.
    X. Hu, T.H. Le, T. Parrish, P. Erhard, Retrospective estimation and correction of physiological fluctuation in functional mri. Magn. Reson. Med. 34, 201–212 (1995)CrossRefGoogle Scholar
  28. 28.
    A. Moelker, P.M.T. Pattynama, Acoustic noise concerns in functional magnetic resonance imaging. Hum. Brain Mapp. 20, 123–141 (2003)CrossRefGoogle Scholar
  29. 29.
    A. Gordon, R. Smith, K. Keramatian, B. Luus, A. Weinberg, J. Smallwood, J. Schooler, K. Christoff, Mind-wandering, awareness, and task performance: An fmri study. Can. J. Exp. Psychol. 61, 210–216 (2007)Google Scholar
  30. 30.
    J. Ashburner, C. Hutton, R. Frackowiak, I. Johnsrude, C. Price, K. Friston, Identifying global anatomical differences: Deformation-based morphometry. Hum. Brain Mapp. 6, 348–357 (1998)CrossRefGoogle Scholar
  31. 31.
    S.M. Smith, in Preparing fmri Data for Statistical Analysis, ed. by P. Jezzard, P.M. Matthews, S.M. Smith. Functional MRI: An Introduction to Methods (Oxford University Press, Oxford, 2001)Google Scholar
  32. 32.
    J. Tanabe, D. Miller, J. Tregellas, R. Freedman, F.G. Meyer, Comparison of detrending methods for optimal fmri preprocessing. NeuroImage 15, 902–907 (2002)CrossRefGoogle Scholar
  33. 33.
    M.J. Brammer, in Head Motion and Its Correction, ed. by P. Jezzard, P.M. Matthews, S.M. Smith. Functional MRI: An Introduction to Methods (Oxford University Press, Oxford, 2001)Google Scholar
  34. 34.
    L. Freire, J.F. Mangin, Motion correction algorithms may create spurious brain activations in the absence of subject motion. NeuroImage 14, 709–722 (2001)CrossRefGoogle Scholar
  35. 35.
    G. Glover, T.-Q. Li, D. Ress, Image-based method for retrospective correction of physiological motion effects in fmri: Retroicor. Magn. Reson. Med. 44, 162–167 (2000)CrossRefGoogle Scholar
  36. 36.
    K.-H. Chuang, J.-H. Chen, Impact: Image-based physiological artifacts estimation and correction technique for functional mri. Magn. Reson. Med. 46, 344–353 (2000)CrossRefGoogle Scholar
  37. 37.
    F. Crivello, T. Schormann, N. Tzourio-Mazoyer, P. Roland, K. Zilles, B. Mazoyer, Comparison of spatial normalization procedures and their impact on functional maps. Hum. Brain Mapp. 16, 228–250 (2002)CrossRefGoogle Scholar
  38. 38.
    J. Talairach, P. Tournoux, Co-Planar Stereotaxic Atlas of the Human Brain (Thieme, New York, 1988)Google Scholar
  39. 39.
    A. Evans, D. Collins, S. Mills, E. Brown, L. Kelly, T. Peters, in 3d Statistical Neuroanatomical Models from 305 mri Volumes. Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference, vol. 3, pp. 1813–1817 (1993)Google Scholar
  40. 40.
    P. Fransson, K.-D. an Merboldt, K.M. Petersson, M. Ingvar, J. Frahm, On the effects of spatial filtering: A comparative fmri study of episodic memory encoding at high and low resolution. NeuroImage 16, 977–984 (2002)Google Scholar
  41. 41.
    G. Aguirre, E. Zarahn, M. D’Esposito, The variability of human, bold hemodynamic responses. NeuroImage 8, 360–369 (1998)CrossRefGoogle Scholar
  42. 42.
    R. Menon, S. Ogawa, J. Strupp, P. Andersen, K. Ugurbil, Bold based functional mri at 4 tesla includes a capillary bed contribution: Echo-planar imaging mirrors previous optical imaging using intrinsic signals. Magn. Reson. Med. 33, 453–459 (1995)CrossRefGoogle Scholar
  43. 43.
    G. Glover, Deconvolution of impulse response in event-related bold fmri. NeuroImage 9, 416–129 (1999)CrossRefGoogle Scholar
  44. 44.
    J. Rajapske, F. Kruggel, J. Maisog, D. Von Cramon, Modeling hemodynamic response for analysis of functional mri time-series. Hum. Brain Mapp. 6, 283–300 (1998)CrossRefGoogle Scholar
  45. 45.
    N. Lazar, The Statistical Analysis of Functional MRI Data (Springer, New York, 2008)MATHGoogle Scholar
  46. 46.
    T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data Mining, Inference and Prediction (Springer, New York, 2009)MATHGoogle Scholar
  47. 47.
    T. Mitchell, R. Hutchinson, R.S. Niculescu, F. Pereira, X. Wang, M. Just, S. Newman, Learning to decode cognitive states from brain images. Mach. Learn. 57, 145–175 (2004)MATHCrossRefGoogle Scholar
  48. 48.
    F. Pereira, T. Mitchell, M. Botvinick, Machine learning classifiers and fmri: A tutorial overview. NeuroImage 45, S199–S209 (2009)CrossRefGoogle Scholar
  49. 49.
    F. Pereira, G. Gordon, in The Support Vector Decomposition Machine. Proceedings of the International Conference on Machine Learning (ICML) (2006)Google Scholar
  50. 50.
    V. Calhoun, T. Adali, G. Pearlson, J. Pekar, Spatial and temporal independent component analysis of functional mri data containing a pair of task-related waveforms. Hum. Brain Mapp. 13, 43–53 (2001)CrossRefGoogle Scholar
  51. 51.
    Y. Shimizu, M. Barth, C. Windischberger, E. Moser, S. Thurner, Wavelet-based multifractal analysis of fmri time series. Neuroimage 22, 1195–1202 (2004)CrossRefGoogle Scholar
  52. 52.
    C. Neil, H. Trevor, J. Iain, Statistical models for image sequences. Technical report, Stanford University (1998)Google Scholar
  53. 53.
    N. Lange, S. Zeger, Non-linear fourier time series analysis for human brain mapping by functional magnetic resonance imaging. J. Roy. Stat. Soc. C (Appl. Stat.) 46, 1–29 (1997)Google Scholar
  54. 54.
    M. Misaki, Y. Kim, P. Bandettini, N. Kriegeskorte, Comparison of multivariate classifiers and response normalizations for pattern-information fmri. Neuroimage 53, 103–118 (2010)CrossRefGoogle Scholar
  55. 55.
    J. Haxby, I. Gobbini, M. Furey, A. Ishai, J. Schouten, P. Pietrini, Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293, 2425–2430 (2001)CrossRefGoogle Scholar
  56. 56.
    N. Kriegeskorte, R. Goebel, P. Bandettini, Information-based functional brain mapping. Proc. Natl. Acad. Sci. U.S.A. 103, 3863–3868 (2006)CrossRefGoogle Scholar
  57. 57.
    L.K. Hansen, J. Larsen, F.A. Nielsen, S.C. Strother, E. Rostrup, R. Savoy, N. Lange, J. Sidtis, C. Svarer, O.B. Paulson, Generalizable patterns in neuroimaging: How many principal components? NeuroImage 9, 534–544 (1999)CrossRefGoogle Scholar
  58. 58.
    F. De Martino, F. Gentile, F. Esposito, M. Balsi, F. Di Salle, R. Goebel, E. Formisano, Classification of fmri independent components using ic-fingerprints and support vector machine classifiers. NeuroImage 34, 177–194 (2007)CrossRefGoogle Scholar
  59. 59.
    K. Norman, S. Polyn, G. Detre, J. Haxby, Beyond mind-reading: multi-voxel pattern analysis of fmri data. Trends Cognit. Sci. 10, 424–430 (2006)CrossRefGoogle Scholar
  60. 60.
    S. LaConte, S. Peltier, X. Hu, Real-time fmri using brain-state classification. Hum. Brain Mapp. 28, 1033–1044 (2007)CrossRefGoogle Scholar
  61. 61.
    D. Cox, L. Savoy, Functional magnetic resonance imaging (fmri) ’brain reading’: detecting and classifying distributed patterns of fmri activity in human visual cortex. Neuroimage 19, 261–270 (2003)CrossRefGoogle Scholar
  62. 62.
    X. Wang, R. Hutchinson, T. Mitchell, in Training fmri Classifiers to Detect Cognitive States Across Multiple Human Subjects. NIPS03 (2003)Google Scholar
  63. 63.
    S. LaConte, S. Strother, V. Cherkassky, J. Anderson, X. Hu, Support vector machines for temporal classification of block design fmri data. NeuroImage 26, 317–329 (2005)CrossRefGoogle Scholar
  64. 64.
    T. Mitchell, R. Hutchinson, M. Just, R. Niculescu, F. Pereira, X. Wang, in Classifying Instantaneous Cognitive States from fmri Data. AMIA Annual Symposium Proceedings, pp. 465–469 (2003)Google Scholar
  65. 65.
    C. Cortes, V. Vapnik, Support vector networks. Mach. Learn. 20, 273–297 (1995)MATHGoogle Scholar
  66. 66.
    S. Ryali, K. Supekar, D.A. Abrams, V. Menon, Sparse logistic regression for whole-brain classification of fmri data. Neuroimage 51, 752–764 (2010)CrossRefGoogle Scholar
  67. 67.
    C. Baudelet, B. Gallez, Cluster analysis of bold fmri time series in tumors to study the heterogeneity of hemodynamic response to treatment. Magn. Reson. Med. 49, 135–145 (2003)CrossRefGoogle Scholar
  68. 68.
    J. Lancaster, M. Woldorff, L. Parsons, M. Liotti, C. Freitas, L. Rainey, P. Kochunov, D. Nickerson, S. Mikiten, P. Fox, Automated talairach atlas labels for functional brain mapping. Hum. Brain Mapp. 10, 120–131 (2000)CrossRefGoogle Scholar
  69. 69.
    R. Heller, D. Stanley, D. Yekutieli, N. Rubin, Y. Benjaminia, Cluster-based analysis of fmri data. Neuroimage 33, 599–608 (2006)Google Scholar
  70. 70.
    C. Goutte, P. Toft, E. Rostrup, F.A. Nielsen, K.L. Hansen, On clustering fmri time series. Neuroimage 9, 298–310 (1999)Google Scholar
  71. 71.
    J. Ye, N. Lazar, Y. Li, Geostatistical analysis in clustering fmri time series. Stat. Med. 28, 2490–2508 (2009)MathSciNetCrossRefGoogle Scholar
  72. 72.
    D. Balslev, F.A. Nielsen, S.A. Frutiger, J.J. Sidtis, T.B. Christiansen, C. Svarer, S.C. Strother, D.A. Rottenberg, L.K. Hansen, O.B. Paulson, I. Law, Cluster analysis of activity-time series in motor learning. Hum. Brain Mapp. 15, 135–145 (2002)CrossRefGoogle Scholar
  73. 73.
    M.J. Fadili, S. Ruan, D. Bloyet, B. Mazoyer, A multistep unsupervised fuzzy clustering analysis of fmri time series. Hum. Brain Mapp. 10, 160–178 (2000)CrossRefGoogle Scholar
  74. 74.
    L. Stanberry, R. Nandy, D. Cordes, Cluster analysis of fmri data using dendrogram sharpening. Hum. Brain Mapp. 20, 201–219 (2003)CrossRefGoogle Scholar
  75. 75.
    J. MacQueen, in Some Methods for Classification and Analysis of Multivariate Observations. Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability (University of California Press, CA, 1967), pp. 281–297Google Scholar
  76. 76.
    J. Bezdek, R. Ehrlich, W. Full, Fcm: The fuzzy c-means clustering algorithm. Comp. Geosci. 10, 191–203 (1984)CrossRefGoogle Scholar
  77. 77.
    B. Yeo, W. Ou, Clustering fmri time series. http://people.csail.mit.edu/ythomas/unpublished/6867fMRI.pdf. 2004
  78. 78.
    P. Filzmoser, R. Baumgartner, E. Moser, A hierarchical clustering method for analyzing functional mr images. Magn. Reson. Imag. 17, 817–826 (1999)CrossRefGoogle Scholar
  79. 79.
    R. Baumgartner, C. Windischberger, E. Moser, Quantification in functional magnetic resonance imaging: Fuzzy clustering vs. correlation analysis. Magn. Reson. Imag. 16, 115–125 (1998)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Gianluca Gazzola
    • 1
  • Chun-An Chou
    • 2
  • Myong K. Jeong
    • 3
  • W. Art Chaovalitwongse
    • 4
  1. 1.Rutgers Center for Operations ResearchRutgers UniversityPiscatawayUSA
  2. 2.Department of Industrial and Systems EngineeringUniversity of WashingtonSeattleUSA
  3. 3.Rutgers Center for Operations Research and Department of Industrial and Systems EngineeringRutgers UniversityPiscatawayUSA
  4. 4.Departments of Industrial and Systems Engineering and RadiologyUniversity of WashingtonSeattleUSA

Personalised recommendations