Skip to main content

Perspectives in Brain Imaging and Computer-Assisted Technologies for the Treatment of Hallucinations

  • Chapter
  • First Online:
The Neuroscience of Hallucinations

Abstract

Brain-imaging-guided therapy has gained increased interest in recent years. Of note, recent progress in capture-symptom procedures makes possible the identification of the neural correlates of subjective experiences, such as hallucinations. This research is now facilitating a paradigm shift from the fundamental exploration of the underlying neural processes of hallucinatory experiences to the development of innovative therapeutic strategies. The main concept behind these approaches is to modulate the aberrant neural activity levels measured during hallucinations. One method involves training the patient to self-regulate specific brain area functions through fMRI neurofeedback. A second approach uses brain stimulation devices, such as repetitive Transcranial Magnetic Stimulation, to normalize brain patterns linked to psychotic symptoms. Two major advances allow investigators to plan complex and individualized stimulation procedures using neuronavigation tools and robotic assistance. These different solutions will be explored and critically discussed in the context of hallucination research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AVH:

Auditory verbal hallucinations

BCI:

Brain–computer interface

BOLD:

Blood oxygen level dependent signal

DC:

Direct current

EEG:

Electroencephalography (-ic)

fMRI:

Functional magnetic resonance imaging

GLM:

General linear model

ICA:

Independent component analysis

MEG:

Magnetoencephalography

MVPA:

Multivoxel pattern analysis

NIRS:

Near infra-red spectroscopy

ROI:

Region-of-interest

rt-fMRI:

Real-time fMRI

rTMS:

Repetitive TMS

SAM:

Spontaneous activity map

STS:

Superior temporal sulcus

TABS-fMRI:

Temporally adaptive brain state fMRI

TMS:

Transcranial magnetic stimulation

TPJ:

Temporoparietal junction

References

  • Aleman, A., Sommer, I. E., & Kahn, R. S. (2007). Efficacy of slow repetitive transcranial magnetic stimulation in the treatment of resistant auditory hallucinations in schizophrenia: A meta-analysis. The Journal of Clinical Psychiatry, 68(3), 416–421.

    Article  PubMed  Google Scholar 

  • Andoh, J., Artiges, E., Pallier, C., Riviere, D., Mangin, J. F., Cachia, A., et al. (2006). Modulation of language areas with functional MR image-guided magnetic stimulation. NeuroImage, 29(2), 619–627.

    Article  PubMed  CAS  Google Scholar 

  • Birbaumer, N., Elbert, T., Canavan, A. G., & Rockstroh, B. (1990). Slow potentials of the cerebral cortex and behavior. Physiological Reviews, 70(1), 1–41.

    PubMed  CAS  Google Scholar 

  • Birbaumer, N., Ramos Murguialday, A., Weber, C., & Montoya, P. (2009). Neurofeedback and brain-computer interface clinical applications. International Review of Neurobiology, 86, 107–117.

    Article  PubMed  Google Scholar 

  • Caria, A., Sitaram, R., & Birbaumer, N. (2012). Real-time fMRI: A tool for local brain regulation. Neuroscientist, in press. doi: 10.1177/1073858411407205.

    Google Scholar 

  • Caria, A., Sitaram, R., Veit, R., Begliomini, C., & Birbaumer, N. (2010). Volitional control of anterior insula activity modulates the response to aversive stimuli. A real-time functional magnetic resonance imaging study. Biological Psychiatry, 68(5), 425–432.

    Article  PubMed  Google Scholar 

  • Caria, A., Veit, R., Sitaram, R., Lotze, M., Weiskopf, N., Grodd, W., et al. (2007). Regulation of anterior insular cortex activity using real-time fMRI. NeuroImage, 35(3), 1238–1246.

    Article  PubMed  Google Scholar 

  • Copolov, D. L., Seal, M. L., Maruff, P., Ulusoy, R., Wong, M. T., Tochon-Danguy, H. J., et al. (2003). Cortical activation associated with the experience of auditory hallucinations and perception of human speech in schizophrenia: A PET correlation study. Psychiatry Research, 122(3), 139–152.

    Article  PubMed  Google Scholar 

  • Cox, D. D., & Savoy, R. L. (2003). Functional magnetic resonance imaging (fMRI) “brain reading”: Detecting and classifying distributed patterns of fMRI activity in human visual cortex. NeuroImage, 19(2 Pt 1), 261–270.

    Article  PubMed  Google Scholar 

  • De Martino, F., Valente, G., Staeren, N., Ashburner, J., Goebel, R., & Formisano, E. (2008). Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns. NeuroImage, 43(1), 44–58.

    Article  PubMed  Google Scholar 

  • deCharms, R. C., Maeda, F., Glover, G. H., Ludlow, D., Pauly, J. M., Soneji, D., et al. (2005). Control over brain activation and pain learned by using real-time functional MRI. Proceedings of the National Academy of Sciences of the United States of America, 102(51), 18626–18631.

    Article  PubMed  CAS  Google Scholar 

  • Demeulemeester, M., Amad, A., Bubrovszky, M., Pins, D., Thomas, P., & Jardri, R. (2012). What is the real effect of rTMS on hallucinations? Controlling for publication-bias in neuromodulation trials. Biological Psychiatry, 71(6), e15–e16.

    Article  PubMed  Google Scholar 

  • Dierks, T., Linden, D. E., Jandl, M., Formisano, E., Goebel, R., Lanfermann, H., et al. (1999). Activation of Heschl’s gyrus during auditory hallucinations. Neuron, 22(3), 615–621.

    Article  PubMed  CAS  Google Scholar 

  • Dollfus, S., Larmurier-Montagne, A., Razafimandimby, A., Allio, G., Membrey, J. M., Delcroix, N., et al. (2008). Treatment of auditory hallucinations by combining high-frequency repetitive transcranial magnetic stimulation and functional magnetic resonance imaging. Schizophrenia Research, 102(1–3), 348–351.

    Article  PubMed  CAS  Google Scholar 

  • Esposito, F., Seifritz, E., Formisano, E., Morrone, R., Scarabino, T., Tedeschi, G., et al. (2003). Real-time independent component analysis of fMRI time-series. NeuroImage, 20(4), 2209–2224.

    Article  PubMed  Google Scholar 

  • Foucher, J. R. (2009). Imagerie et neuronavigation. In J. Brunelin, A. Galinowski, D. Januel, & E. Poulet (Eds.), Stimulation magnétique transcrânienne: Principes et applications en psychiatrie. Solal: Marseille.

    Google Scholar 

  • Foucher, J. R., Roquet, D., Bennouna-Greene, M., & Jardri, R. (submitted). Tailoring rTMS treatment for hallucinations using fMRI: Comparative reliability of SPM and ICA.

    Google Scholar 

  • Freitas, C., Fregni, F., & Pascual-Leone, A. (2009). Meta-analysis of the effects of repetitive transcranial magnetic stimulation (rTMS) on negative and positive symptoms in schizophrenia. Schizophrenia Research, 108(1–3), 11–24.

    Article  PubMed  Google Scholar 

  • Haller, S., Birbaumer, N., & Veit, R. (2010). Real-time fMRI feedback training may improve chronic tinnitus. European Radiology, 20(3), 696–703.

    Article  PubMed  Google Scholar 

  • Hamilton, J. P., Glover, G. H., Hsu, J. J., Johnson, R. F., & Gotlib, I. H. (2011). Modulation of subgenual anterior cingulate cortex activity with real-time neurofeedback. Human Brain Mapping, 32(1), 22–31.

    Article  PubMed  Google Scholar 

  • Hoffman, R. E., Hawkins, K. A., Gueorguieva, R., Boutros, N. N., Rachid, F., Carroll, K., et al. (2003). Transcranial magnetic stimulation of left temporoparietal cortex and medication-resistant auditory hallucinations. Archives of General Psychiatry, 60(1), 49–56.

    Article  PubMed  Google Scholar 

  • Jardri, R., Delevoye-Turrell, Y., Lucas, B., Pins, D., Bulot, V., Delmaire, C., et al. (2009). Clinical practice of rTMS reveals a functional dissociation between agency and hallucinations in schizophrenia. Neuropsychologia, 47(1), 132–138.

    Article  PubMed  Google Scholar 

  • Jardri, R., Lucas, B., Delevoye-Turrell, Y., Delmaire, C., Delion, P., Thomas, P., et al. (2007). An 11-year-old boy with drug-resistant schizophrenia treated with temporo-parietal rTMS. Molecular Psychiatry, 12(4), 320.

    Article  PubMed  CAS  Google Scholar 

  • Jardri, R., Pins, D., Bubrovszky, M., Lucas, B., Lethuc, V., Delmaire, C., et al. (2009). Neural functional organization of hallucinations in schizophrenia: Multisensory dissolution of pathological emergence in consciousness. Consciousness and Cognition, 18(2), 449–457.

    Article  PubMed  Google Scholar 

  • Jardri, R., Pins, D., & Thomas, P. (2008). A case of fMRI-guided rTMS treatment of coenesthetic hallucinations. The American Journal of Psychiatry, 165(11), 1490–1491.

    Article  PubMed  Google Scholar 

  • Jardri, R., Pins, D., & Thomas, P. (2011a). Predictive functional brain imaging of hallucinations. Biological Psychiatry, 69, 217–s.

    Google Scholar 

  • Jardri, R., Pouchet, A., Pins, D., & Thomas, P. (2011b). Cortical activations during auditory-verbal hallucinations in schizophrenia: A coordinate-based meta-analysis. The American Journal of Psychiatry, 168(1), 73–81.

    Article  PubMed  Google Scholar 

  • Jardri, R., Thomas, P., Delmaire, C., Delion, P., & Pins, D. (2012). The Neurodynamic Organization of Modality-Dependent Hallucinations. Cerebral Cortex, in press. doi: 10.1093/cercor/bhs082.

    Article  PubMed  CAS  Google Scholar 

  • Johnston, S. J., Boehm, S. G., Healy, D., Goebel, R., & Linden, D. E. (2010). Neurofeedback: A promising tool for the self-regulation of emotion networks. NeuroImage, 49(1), 1066–1072.

    Article  PubMed  CAS  Google Scholar 

  • LaConte, S. M. (2011). Decoding fMRI brain states in real-time. NeuroImage, 56(2), 440–454.

    Article  PubMed  Google Scholar 

  • LaConte, S. M., Peltier, S. J., & Hu, X. P. (2007). Real-time fMRI using brain-state classification. Human Brain Mapping, 28(10), 1033–1044.

    Article  PubMed  Google Scholar 

  • Lancaster, J. L., Narayana, S., Wenzel, D., Luckemeyer, J., Roby, J., & Fox, P. (2004). Evaluation of an image-guided, robotically positioned transcranial magnetic stimulation system. Human Brain Mapping, 22(4), 329–340.

    Article  PubMed  Google Scholar 

  • Langguth, B., Eichhammer, P., Zowe, M., Marienhagen, J., Spiessl, H., & Hajak, G. (2006). Neuronavigated transcranial magnetic stimulation and auditory hallucinations in a schizophrenic patient: Monitoring of neurobiological effects. Schizophrenia Research, 84, 185–186.

    Article  PubMed  Google Scholar 

  • Lee, S., Ruiz, S., Caria, A., Veit, R., Birbaumer, N., & Sitaram, R. (2011). Detection of cerebral reorganization induced by real-time fMRI feedback training of insula activation: A multivariate investigation. Neurorehabilitation and Neural Repair, 25(3), 259–267.

    Article  PubMed  Google Scholar 

  • Lennox, B. R., Park, S. B., Medley, I., Morris, P. G., & Jones, P. B. (2000). The functional anatomy of auditory hallucinations in schizophrenia. Psychiatry Research, 100(1), 13–20.

    Article  PubMed  CAS  Google Scholar 

  • Matthäus, L., Giese, A., Wertheimer, D., & Schweikard, A. (2005). Planning and analyzing robotized TMS using virtual reality. Medicine Meets Virtual Reality 14 proceedings, 119, 373–378.

    Google Scholar 

  • McCaig, R. G., Dixon, M., Keramatian, K., Liu, I., & Christoff, K. (2011). Improved modulation of rostrolateral prefrontal cortex using real-time fMRI training and meta-cognitive awareness. NeuroImage, 55(3), 1298–1305.

    Article  PubMed  Google Scholar 

  • McGonigle, D. J., Howseman, A. M., Athwal, B. S., Friston, K. J., Frackowiak, R. S., & Holmes, A. P. (2000). Variability in fMRI: An examination of intersession differences. NeuroImage, 11(6 Pt 1), 708–734.

    Article  PubMed  CAS  Google Scholar 

  • McKeown, M. J., Hansen, L. K., & Sejnowski, T. J. (2003). Independent component analysis of functional MRI: What is signal and what is noise? Current Opinion in Neurobiology, 13(5), 620–629.

    Article  PubMed  CAS  Google Scholar 

  • Mur, M., Bandettini, P. A., & Kriegeskorte, N. (2009). Revealing representational content with pattern-information fMRI—an introductory guide. Social Cognitive and Affective Neuroscience, 4(1), 101–109.

    Article  PubMed  Google Scholar 

  • Neggers, S. F., et al. (2004). A stereotactic method for image-guided transcranial magnetic stimulation validated using fMRI and motor evoked potentials. NeuroImage, 21, 1805–1817.

    Article  PubMed  CAS  Google Scholar 

  • Posse, S., Fitzgerald, D., Gao, K., Habel, U., Rosenberg, D., Moore, G. J., et al. (2003). Real-time fMRI of temporolimbic regions detects amygdala activation during single-trial self-induced sadness. NeuroImage, 18(3), 760–768.

    Article  PubMed  Google Scholar 

  • Richter, L., Bruder, R., Schlaefer, A., & Schweikard, A. (2010). Towards direct head navigation for robot-guided transcranial magnetic stimulation using 3D laserscans: Idea, setup and feasibility. Conference Proceedings—IEEE Engineering in Medicine and Biology Society, 2010, 2283–2286.

    Google Scholar 

  • Richter, L., Ernst, F., Schlaefer, A., & Schweikard, A. (2011). Robust real-time robot-world calibration for robotized transcranial magnetic stimulation. The International Journal of Medical Robotics, 7(4), 414–422.

    Article  Google Scholar 

  • Rota, G., Handjaras, G., Sitaram, R., Birbaumer, N., & Dogil, G. (2011). Reorganization of functional and effective connectivity during real-time fMRI-BCI modulation of prosody processing. Brain and Language, 117(3), 123–132.

    Article  PubMed  Google Scholar 

  • Rota, G., Sitaram, R., Veit, R., Erb, M., Weiskopf, N., Dogil, G., et al. (2009). Self-regulation of regional cortical activity using real-time fMRI: The right inferior frontal gyrus and linguistic processing. Human Brain Mapping, 30(5), 1605–1614.

    Article  PubMed  Google Scholar 

  • Ruohonen, J. (1998). Transcranial magnetic stimulation : Modelling and new techniques. PhD Thesis, Helsinki University of Technology, Helsinki.

    Google Scholar 

  • Schonfeldt-Lecuona, C., Gron, G., Walter, H., Buchler, N., Wunderlich, A., Spitzer, M., et al. (2004). Stereotaxic rTMS for the treatment of auditory hallucinations in schizophrenia. NeuroReport, 15, 1669–1673.

    Article  PubMed  Google Scholar 

  • Siebner, H. R., Filipovic, S. R., Rowe, J. B., Cordivari, C., Gerschlager, W., Rothwell, J. C., et al. (2003). Patients with focal arm dystonia have increased sensitivity to slow-frequency repetitive TMS of the dorsal premotor cortex. Brain, 126(Pt 12), 2710–2725.

    Article  PubMed  Google Scholar 

  • Silbersweig, D. A., Stern, E., Frith, C., Cahill, C., Holmes, A., Grootoonk, S., et al. (1995). A functional neuroanatomy of hallucinations in schizophrenia. Nature, 378(6553), 176–179.

    Article  PubMed  CAS  Google Scholar 

  • Sitaram, R., Lee, S., Ruiz, S., Rana, M., Veit, R., & Birbaumer, N. (2011). Real-time support vector classification and feedback of multiple emotional brain states. NeuroImage, 56(2), 753–765.

    Article  PubMed  Google Scholar 

  • Slotema, C. W., Blom, J. D., de Weijer, A. D., Diederen, K. M., Goekoop, R., Looijestijn, J., et al. (2011). Can low-frequency repetitive transcranial magnetic stimulation really relieve medication-resistant auditory verbal hallucinations? Negative results from a large randomized controlled trial. Biological Psychiatry, 69(5), 450–456.

    Article  PubMed  Google Scholar 

  • Slotema, C. W., Blom, J. D., Hoek, H. W., & Sommer, I. E. (2010). Should we expand the toolbox of psychiatric treatment methods to include repetitive transcranial magnetic stimulation (rTMS)? A meta-analysis of the efficacy of rTMS in psychiatric disorders. The Journal of Clinical Psychiatry, 71(7), 873–884.

    Article  PubMed  Google Scholar 

  • Smith, S. M., Beckmann, C. F., Ramnani, N., Woolrich, M. W., Bannister, P. R., Jenkinson, M., et al. (2005). Variability in fMRI: A re-examination of inter-session differences. Human Brain Mapping, 24(3), 248–257.

    Article  PubMed  Google Scholar 

  • Sommer, I. E., de Weijer, A. D., Daalman, K., Neggers, S. F., Somers, M., Kahn, R. S., et al. (2007). Can fMRI-guidance improve the efficacy of rTMS treatment for auditory verbal hallucinations? Schizophrenia Research, 93(1–3), 406–408.

    Article  PubMed  CAS  Google Scholar 

  • Sommer, I. E., Diederen, K. M., Blom, J. D., Willems, A., Kushan, L., Slotema, K., et al. (2008). Auditory verbal hallucinations predominantly activate the right inferior frontal area. Brain, 131(Pt 12), 3169–3177.

    Article  PubMed  Google Scholar 

  • Sparing, R., Buelte, D., Meister, I. G., Paus, T., & Fink, G. R. (2008). Transcranial magnetic stimulation and the challenge of coil placement: A comparison of conventional and stereotaxic neuronavigational strategies. Human Brain Mapping, 29(1), 82–96.

    Article  PubMed  Google Scholar 

  • Tranulis, C., Sepehry, A. A., Galinowski, A., & Stip, E. (2008). Should we treat auditory hallucinations with repetitive transcranial magnetic stimulation? A metaanalysis. Canadian Journal of Psychiatry, 53(9), 577–586.

    Google Scholar 

  • van de Ven, V. G., Formisano, E., Roder, C. H., Prvulovic, D., Bittner, R. A., Dietz, M. G., et al. (2005). The spatiotemporal pattern of auditory cortical responses during verbal hallucinations. NeuroImage, 27(3), 644–655.

    Article  PubMed  Google Scholar 

  • Vercammen, A., Knegtering, H., Bruggeman, R., Westenbroek, H. M., Jenner, J. A., Slooff, C. J., et al. (2009). Effects of bilateral repetitive transcranial magnetic stimulation on treatment resistant auditory-verbal hallucinations in schizophrenia: A randomized controlled trial. Schizophrenia Research, 114(1–3), 172–179.

    Article  PubMed  Google Scholar 

  • Weiskopf, N., Scharnowski, F., Veit, R., Goebel, R., Birbaumer, N., & Mathiak, K. (2004). Self-regulation of local brain activity using real-time functional magnetic resonance imaging (fMRI). Journal of Physiology Paris, 98(4–6), 357–373.

    Article  Google Scholar 

  • Yoo, S. S., O’Leary, H. M., Fairneny, T., Chen, N. K., Panych, L. P., Park, H., et al. (2006). Increasing cortical activity in auditory areas through neurofeedback functional magnetic resonance imaging. NeuroReport, 17(12), 1273–1278.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

I deeply thank Dr. Renaud Jardri for his help in writing this chapter. The author was implicated in the development of the Axilum Robotics™ device in terms of writing its specifications and utilization procedures and testing it. The author performed this development as academic work and did not receive any financial compensation from Axilum Robotics™. The author is not part of Axilum Robotics™ at any level.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack R. Foucher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Foucher, J.R. (2013). Perspectives in Brain Imaging and Computer-Assisted Technologies for the Treatment of Hallucinations. In: Jardri, R., Cachia, A., Thomas, P., Pins, D. (eds) The Neuroscience of Hallucinations. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4121-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4121-2_27

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4120-5

  • Online ISBN: 978-1-4614-4121-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics