Computational Models of Hallucinations

  • Renaud Jardri
  • Sophie Denève


Recent advances in theoretical neuroscience have provided new insights into information processing within large brain-like networks operating in an uncertain world. The computational framework can overcome some of the complexity within the object of study by predicting how basic changes in neural architecture may lead to systems-level changes that translate into changes in behavior. Computational models offer ways to unify basic neurochemical findings with data from more macroscopic levels and to start to apply these findings to cognitive sciences and psychiatry. Some of these approaches have been used to investigate the underlying mechanisms of subjective experiences, such as hallucinations, which can spontaneously emerge into consciousness in the absence of any corresponding external stimuli. This chapter describes some recent theoretical studies on four categories of positive symptoms of schizophrenia: neurodynamics, noise, disconnectivity, and Bayesian models of hallucinations. Results from simulations of these neural networks as well as the potential alterations leading to aberrant experiences are presented and discussed.


Positive Symptom Energy Landscape Stochastic Noise Attractor Network Perceptual Illusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





Gamma amino-butyric acid


67 kDa Isoform of the glutamic acid decarboxylase


Integrate-and-fire neuron




Loopy belief propagation


Methionine at position 158


N-Methyl-d-aspartic acid


Conditional probability of the event x given the occurrence of the event y


D2 Dopamine receptor


Weighting factor


Precision of the prior. This hyperparameter encodes uncertainty and noise in the Expectation-Maximization algorithm


  1. Abbott, L. F. (1999). Lapicque’s introduction of the integrate-and-fire model neuron (1907). Brain Research Bulletin, 50(5/6), 303–304.PubMedCrossRefGoogle Scholar
  2. Aleksander, I., & Morton, H. (2008). Computational studies of consciousness. Progress in Brain Research, 168, 77–93.PubMedCrossRefGoogle Scholar
  3. Aleman, A., Bocker, K. B., Hijman, R., de Haan, E. H., & Kahn, R. S. (2003). Cognitive basis of hallucinations in schizophrenia: Role of top-down information processing. Schizophrenia Research, 64(2–3), 175–185.PubMedCrossRefGoogle Scholar
  4. Allen, P., Modinos, G., Hubl, D., Shields, G., Cachia, A., Jardri, R., et al. (2012). Neuroimaging Auditory Hallucinations in Schizophrenia: From Neuroanatomy to Neurochemistry and Beyond. Schizophrenia Bulletin, 38, 695–703.PubMedCrossRefGoogle Scholar
  5. Amari, S. (1975). Homogeneous nets of neuron-like elements. Biological Cybernetics, 17(4), 211–220.PubMedCrossRefGoogle Scholar
  6. Andreasen, N. C., & Flaum, M. (1991). Schizophrenia: The characteristic symptoms. Schizophrenia Bulletin, 17(1), 27–49.PubMedCrossRefGoogle Scholar
  7. Averbeck, B. B., Evans, S., Chouhan, V., Bristow, E., & Shergill, S. S. (2011). Probabilistic learning and inference in schizophrenia. Schizophrenia Research, 127(1–3), 115–122.PubMedCrossRefGoogle Scholar
  8. Bassett, D. S., Bullmore, E., Verchinski, B. A., Mattay, V. S., Weinberger, D. R., & Meyer-Lindenberg, A. (2008). Hierarchical organization of human cortical networks in health and schizophrenia. The Journal of Neuroscience, 28(37), 9239–9248.PubMedCrossRefGoogle Scholar
  9. Bayes, T. (1763). An essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society of London, 53(1), 370–418.CrossRefGoogle Scholar
  10. Beck, J. M., Ma, W. J., Kiani, R., Hanks, T., Churchland, A. K., Roitman, J., et al. (2008). Probabilistic population codes for Bayesian decision making. Neuron, 60(6), 1142–1152.PubMedCrossRefGoogle Scholar
  11. Benes, F. M. (2010). Amygdalocortical circuitry in schizophrenia: From circuits to molecules. Neuropsychopharmacology, 35(1), 239–257.PubMedCrossRefGoogle Scholar
  12. Ben-Yishai, R., Bar-Or, R. L., & Sompolinsky, H. (1995). Theory of orientation tuning in visual cortex. Proceedings of National Academy of Sciences of the United States of America, 92, 3844–3848.CrossRefGoogle Scholar
  13. Berkes, P., Orban, G., Lengyel, M., & Fiser, J. (2011). Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment. Science, 331(6013), 83–87.PubMedCrossRefGoogle Scholar
  14. Bishop, F. R. (2006). Graphical models. In F. R. Bishop (Ed.), Pattern recognition and machine learning (pp. 359–418). Cambridge: Springer.Google Scholar
  15. Blom, J. D. (2010). A dictionary of hallucinations. New York: Springer.CrossRefGoogle Scholar
  16. Braver, T. S., Barch, D. M., & Cohen, J. D. (1999). Cognition and control in schizophrenia: A computational model of dopamine and prefrontal function. Biological Psychiatry, 46(3), 312–328.PubMedCrossRefGoogle Scholar
  17. Bressloff, P. C., Cowan, J. D., Golubitsky, M., Thomas, P. J., & Wiener, M. C. (2001). Geometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortex. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 356(1407), 299–330.PubMedCrossRefGoogle Scholar
  18. Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews. Neuroscience, 10(3), 186–198.PubMedCrossRefGoogle Scholar
  19. Copolov, D. L., Seal, M. L., Maruff, P., Ulusoy, R., Wong, M. T., Tochon-Danguy, H. J., et al. (2003). Cortical activation associated with the experience of auditory hallucinations and perception of human speech in schizophrenia: A PET correlation study. Psychiatry Research, 122(3), 139–152.PubMedCrossRefGoogle Scholar
  20. Corlett, P. R., Krystal, J. H., Taylor, J. R., & Fletcher, P. C. (2009). Why do delusions persist? Frontiers in Human Neuroscience, 3, 12.PubMedCrossRefGoogle Scholar
  21. Crawford, T. J., Hamm, J. P., Kean, M., Schmechtig, A., Kumari, V., Anilkumar, A. P., et al. (2010). The perception of real and illusory motion in schizophrenia. Neuropsychologia, 48(10), 3121–3127.PubMedCrossRefGoogle Scholar
  22. Creese, I., Burt, D. R., & Snyder, S. H. (1976). Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science, 192(4238), 481–483.PubMedCrossRefGoogle Scholar
  23. Crow, T. J. (1981). Positive and negative schizophrenia symptoms and the role of dopamine. The British Journal of Psychiatry, 139, 251–254.PubMedCrossRefGoogle Scholar
  24. Dakin, S., Carlin, P., & Hemsley, D. (2005). Weak suppression of visual context in chronic schizophrenia. Current Biology, 15(20), R822–R824.PubMedCrossRefGoogle Scholar
  25. Daw, N. D., Niv, Y., & Dayan, P. (2005). Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nature Neuroscience, 8(12), 1704–1711.PubMedCrossRefGoogle Scholar
  26. Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience. Cambridge: MIT Press.Google Scholar
  27. Dayan, P., & Daw, N. D. (2008). Decision theory, reinforcement learning, and the brain. Cognitive, Affective, & Behavioral Neuroscience, 8(4), 429–453.CrossRefGoogle Scholar
  28. Deco, G., & Rolls, E. T. (2006). Decision-making and Weber’s law: A neurophysiological model. The European Journal of Neuroscience, 24(3), 901–916.PubMedCrossRefGoogle Scholar
  29. Deneve, S. (2005). Bayesian inference in spiking neurons. Advances in Neural Information Processing Systems 17 (pp. 353–360). MIT Press, Cambridge, MA. Google Scholar
  30. Diederen, K. M., Neggers, S. F., Daalman, K., Blom, J. D., Goekoop, R., Kahn, R. S., et al. (2010). Deactivation of the parahippocampal gyrus preceding auditory hallucinations in schizophrenia. The American Journal of Psychiatry, 167, 427–435.PubMedCrossRefGoogle Scholar
  31. Doya, K., Ishii, S., Pouget, A., & Rao, R. P. N. (2007). Bayesian brain. Probabilistic approaches to neural coding. Cambridge: MIT Press.Google Scholar
  32. Elman, J. L. (2005). Connectionist models of cognitive development: Where next? Trends in Cognitive Sciences, 9(3), 111–117.PubMedCrossRefGoogle Scholar
  33. Ermentrout, G. B., & Cowan, J. D. (1979). A mathematical theory of visual hallucination patterns. Biological Cybernetics, 34(3), 137–150.PubMedCrossRefGoogle Scholar
  34. Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415(6870), 429–433.PubMedCrossRefGoogle Scholar
  35. Ey, H. (1973). Traité des hallucinations. Paris: Masson.Google Scholar
  36. Fear, C. F., & Healy, D. (1997). Probabilistic reasoning in obsessive-compulsive and delusional disorders. Psychological Medicine, 27(1), 199–208.PubMedCrossRefGoogle Scholar
  37. Fletcher, P. C., & Frith, C. D. (2009). Perceiving is believing: A Bayesian approach to explaining the positive symptoms of schizophrenia. Nature Reviews. Neuroscience, 10(1), 48–58.PubMedCrossRefGoogle Scholar
  38. Ford, J. M., Mathalon, D. H., Whitfield, S., Faustman, W. O., & Roth, W. T. (2002). Reduced communication between frontal and temporal lobes during talking in schizophrenia. Biological Psychiatry, 51(6), 485–492.PubMedCrossRefGoogle Scholar
  39. Friston, K. J. (2005). Hallucinations and perceptual inference. The Behavioral and Brain Sciences, 28(6), 764–766.CrossRefGoogle Scholar
  40. Friston, K. J. (2010). The free-energy principle: A unified brain theory? Nature Reviews. Neuroscience, 11(2), 127–138.PubMedCrossRefGoogle Scholar
  41. Friston, K. J., & Kiebel, S. (2009). Predictive coding under the free-energy principle. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364(1521), 1211–1221.PubMedCrossRefGoogle Scholar
  42. Garety, P. A., Hemsley, D. R., & Wessely, S. (1991). Reasoning in deluded schizophrenic and paranoid patients. Biases in performance on a probabilistic inference task. The Journal of Nervous and Mental Disease, 179(4), 194–201.PubMedCrossRefGoogle Scholar
  43. Geisler, W. S., & Kersten, D. (2002). Illusions, perception and Bayes. Nature Neuroscience, 5(6), 508–510.PubMedCrossRefGoogle Scholar
  44. George, D., & Hawkins, J. (2009). Towards a mathematical theory of cortical micro-circuits. PLoS Computational Biology, 5(10), e1000532.PubMedCrossRefGoogle Scholar
  45. Gerstner, W., & Kistler, W. M. (2002). Spiking neuron models: Single neurons, populations, plasticity. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  46. Grossberg, S. (2000). How hallucinations may arise from brain mechanisms of learning, attention, and volition. Journal of the International Neuropsychological Society, 6(5), 583–592.PubMedCrossRefGoogle Scholar
  47. Hoffman, R. E. (1987). Computer simulations of neural information processing and the schizophrenia-mania dichotomy. Archives of General Psychiatry, 44(2), 178–188.PubMedCrossRefGoogle Scholar
  48. Hoffman, R. E., Anderson, A. W., Varanko, M., Gore, J. C., & Hampson, M. (2008). Time course of regional brain activation associated with onset of auditory/verbal hallucinations. The British Journal of Psychiatry, 193(5), 424–425.PubMedCrossRefGoogle Scholar
  49. Hoffman, R. E., & Dobscha, S. K. (1989). Cortical pruning and the development of schizophrenia: A computer model. Schizophrenia Bulletin, 15(3), 477–490.PubMedCrossRefGoogle Scholar
  50. Hoffman, R. E., Fernandez, T., Pittman, B., & Hampson, M. (2011). Elevated functional connectivity along a corticostriatal loop and the mechanism of auditory/verbal hallucinations in patients with schizophrenia. Biological Psychiatry, 69(5), 407–414.PubMedCrossRefGoogle Scholar
  51. Hohwy, J., Roepstorff, A., & Friston, K. J. (2008). Predictive coding explains binocular rivalry: An epistemological review. Cognition, 108(3), 687–701.PubMedCrossRefGoogle Scholar
  52. Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences of the United States of America, 79(8), 2554–2558.PubMedCrossRefGoogle Scholar
  53. Hubl, D., Koenig, T., Strik, W., Federspiel, A., Kreis, R., Boesch, C., et al. (2004). Pathways that make voices: White matter changes in auditory hallucinations. Archives of General Psychiatry, 61(7), 658–668.PubMedCrossRefGoogle Scholar
  54. Huq, S. F., Garety, P. A., & Hemsley, D. R. (1988). Probabilistic judgements in deluded and non-deluded subjects. The Quarterly Journal of Experimental Psychology. A, Human Experimental Psychology, 40(4), 801–812.PubMedGoogle Scholar
  55. Huys, Q. J., & Dayan, P. (2009). A Bayesian formulation of behavioral control. Cognition, 113(3), 314–328.PubMedCrossRefGoogle Scholar
  56. Huys, Q. J., Moutoussis, M., & Williams, J. (2011). Are computational models of any use to psychiatry? Neural Networks, 24(6), 544–551.PubMedCrossRefGoogle Scholar
  57. Jardri, R., Pouchet, A., Pins, D., & Thomas, P. (2011). Cortical activations during auditory-verbal hallucinations in schizophrenia: A coordinate-based meta-analysis. The American Journal of Psychiatry, 168(1), 73–81.PubMedCrossRefGoogle Scholar
  58. Kandel, E. R., Schwartz, J. H., & Jessell, T. M. (2000). Principle of neural science (4th ed.). New York: McGraw-Hill.Google Scholar
  59. Kemp, C., Tenenbaum, J. B., Niyogi, S., & Griffiths, T. L. (2009). A probabilistic model of theory formation. Cognition, 114(2), 165–196.PubMedCrossRefGoogle Scholar
  60. Kim, D., Pearlson, G. D., Kiehl, K. A., Bedrick, E., Demirci, O., & Calhoun, V. D. (2008). A method for multi-group inter-participant correlation: Abnormal synchrony in patients with schizophrenia during auditory target detection. NeuroImage, 39(3), 1129–1141.PubMedCrossRefGoogle Scholar
  61. Knill, D. C., & Richards, W. (1996). Perception as Bayesian inference. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  62. Kording, K. P., & Wolpert, D. M. (2004). Bayesian integration in sensorimotor learning. Nature, 427(6971), 244–247.PubMedCrossRefGoogle Scholar
  63. Krouchev, N. I., & Kalaska, J. F. (2007). Motor control in a meta-network with attractor dynamics. Progress in Brain Research, 165, 395–410.PubMedCrossRefGoogle Scholar
  64. Lewis, D. A., Hashimoto, T., & Volk, D. W. (2005). Cortical inhibitory neurons and schizophrenia. Nature Reviews. Neuroscience, 6(4), 312–324.PubMedCrossRefGoogle Scholar
  65. Liddle, P. F. (1987). Schizophrenic syndromes, cognitive performances and neurological dysfunction. Psychological Medicine, 17, 49–57.PubMedCrossRefGoogle Scholar
  66. Litvak, S., & Ullman, S. (2009). Cortical circuitry implementing graphical models. Neural Computation, 21(11), 3010–3056.PubMedCrossRefGoogle Scholar
  67. Lochmann, T., & Deneve, S. (2011). Contextual modulation of visual receptive fields: A Bayesian perspective. In J. Trommershauser, K. Kording, & M. S. Landy (Eds.), Sensory cue integration (pp. 448–456). Oxford: Oxford University Press.Google Scholar
  68. Loh, M., Rolls, E. T., & Deco, G. (2007). A dynamical systems hypothesis of schizophrenia. PLoS Computational Biology, 3(11), e228.PubMedCrossRefGoogle Scholar
  69. Lubow, R. E., & Weiner, L. (2010). Latent inhibition: Data, theories, and applications to schizophrenia. New York: Cambridge University Press.CrossRefGoogle Scholar
  70. Ma, W. J., Beck, J. M., & Pouget, A. (2008). Spiking networks for Bayesian inference and choice. Current Opinion in Neurobiology, 18(2), 217–222.PubMedCrossRefGoogle Scholar
  71. McDonnell, M. D., & Ward, L. M. (2011). The benefits of noise in neural systems: Bridging theory and experiment. Nature Reviews. Neuroscience, 12(7), 415–426.PubMedCrossRefGoogle Scholar
  72. McGlashan, T. H., & Hoffman, R. E. (2000). Schizophrenia as a disorder of developmentally reduced synaptic connectivity. Archives of General Psychiatry, 57(7), 637–648.PubMedCrossRefGoogle Scholar
  73. Mechelli, A., Allen, P., Amaro, E., Jr., Fu, C. H., Williams, S. C., Brammer, M. J., et al. (2007). Misattribution of speech and impaired connectivity in patients with auditory verbal hallucinations. Human Brain Mapping, 28(11), 1213–1222.PubMedCrossRefGoogle Scholar
  74. Migliore, M., De Blasi, I., Tegolo, D., & Migliore, R. (2011). A modeling study suggesting how a reduction in the context-dependent input on CA1 pyramidal neurons could generate schizophrenic behavior. Neural Networks, 24(6), 552–559.PubMedCrossRefGoogle Scholar
  75. Modinos, G., Costafreda, S., van Tol, M., McGuire, P., Aleman, A., & Allen, P. (2012). Neuroanatomy of auditory hallucinations in schizophrenia: A meta-analysis of voxel-based morphometry studies. Cortex, in press. doi: 10.1016/j.cortex.2012.01.009.Google Scholar
  76. Moritz, S., & Woodward, T. S. (2005). Jumping to conclusions in delusional and non-delusional schizophrenic patients. The British Journal of Clinical Psychology, 44(Pt 2), 193–207.PubMedCrossRefGoogle Scholar
  77. Moutoussis, M., Bentall, R. P., El-Deredy, W., & Dayan, P. (2011). Bayesian modelling of jumping-to-conclusions bias in delusional patients. Cognitive Neuropsychiatry, 16(5), 422–447.PubMedCrossRefGoogle Scholar
  78. Murray, G. K., Corlett, P. R., Clark, L., Pessiglione, M., Blackwell, A. D., Honey, G., et al. (2008). Substantia nigra/ventral tegmental reward prediction error disruption in psychosis. Molecular Psychiatry, 13(3), 239, 267–276.Google Scholar
  79. Paus, T., Keshavan, M., & Giedd, J. N. (2008). Why do many psychiatric disorders emerge during adolescence? Nature Reviews. Neuroscience, 9(12), 947–957.PubMedGoogle Scholar
  80. Rolls, E. T., & Deco, G. (2010). The noisy brain: Stochastic dynamics as a principle of brain function. Oxford: Oxford University Press.CrossRefGoogle Scholar
  81. Rolls, E. T., & Deco, G. (2011). A computational neuroscience approach to schizophrenia and its onset. Neuroscience and Biobehavioral Reviews, 35(8), 1644–1653.PubMedCrossRefGoogle Scholar
  82. Rolls, E. T., Loh, M., Deco, G., & Winterer, G. (2008). Computational models of schizophrenia and dopamine modulation in the prefrontal cortex. Nature Reviews. Neuroscience, 9(9), 696–709.PubMedCrossRefGoogle Scholar
  83. Shergill, S. S., Kanaan, R. A., Chitnis, X. A., O’Daly, O., Jones, D. K., Frangou, S., et al. (2007). A diffusion tensor imaging study of fasciculi in schizophrenia. The American Journal of Psychiatry, 164(3), 467–473.PubMedCrossRefGoogle Scholar
  84. Speechley, W. J., Whitman, J. C., & Woodward, T. S. (2010). The contribution of hypersalience to the “jumping to conclusions” bias associated with delusions in schizophrenia. Journal of Psychiatry & Neuroscience, 35(1), 7–17.CrossRefGoogle Scholar
  85. Stein, R. B., Gossen, E. R., & Jones, K. E. (2005). Neuronal variability: Noise or part of the signal? Nature Reviews. Neuroscience, 6(5), 389–397.PubMedCrossRefGoogle Scholar
  86. Stephan, K. E., Baldeweg, T., & Friston, K. J. (2006). Synaptic plasticity and dysconnection in schizophrenia. Biological Psychiatry, 59(10), 929–939.PubMedCrossRefGoogle Scholar
  87. Stephan, K. E., Friston, K. J., & Frith, C. D. (2009). Dysconnection in schizophrenia: From abnormal synaptic plasticity to failures of self-monitoring. Schizophrenia Bulletin, 35(3), 509–527.PubMedCrossRefGoogle Scholar
  88. Tolhurst, D., Movshon, J., & Dean, A. (1982). The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vision Research, 23, 775–785.CrossRefGoogle Scholar
  89. Trappenberg, T. P. (2010). Fundamentals of computational neuroscience. New York: Oxford University Press.Google Scholar
  90. Tschacher, W., Schuler, D., & Junghan, U. (2006). Reduced perception of the motion-induced blindness illusion in schizophrenia. Schizophrenia Research, 81(2–3), 261–267.PubMedCrossRefGoogle Scholar
  91. Uhlhaas, P. J., & Singer, W. (2010). Abnormal neural oscillations and synchrony in schizophrenia. Nature Reviews. Neuroscience, 11(2), 100–113.PubMedCrossRefGoogle Scholar
  92. van Ooyen, A. (2011). Using theoretical models to analyse neural development. Nature Reviews. Neuroscience, 12(6), 311–326.PubMedCrossRefGoogle Scholar
  93. Vercammen, A., Knegtering, H., den Boer, J. A., Liemburg, E. J., & Aleman, A. (2010). Auditory hallucinations in schizophrenia are associated with reduced functional connectivity of the temporo-parietal area. Biological Psychiatry, 67(10), 912–918.PubMedCrossRefGoogle Scholar
  94. von Helmholtz, H. (1866). Handbuch der Physiologischen Optik. Leipzig: Voss.Google Scholar
  95. Wales, D. J. (2003). Energy landscapes. From applications to clusters, biomolecules and glasses. Cambridge: Cambridge University Press.Google Scholar
  96. Wehr, M., & Zador, A. M. (2003). Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature, 426(6965), 442–446.PubMedCrossRefGoogle Scholar
  97. Weiss, Y., Simoncelli, E. P., & Adelson, E. H. (2002). Motion illusions as optimal percepts. Nature Neuroscience, 5(6), 598–604.PubMedCrossRefGoogle Scholar
  98. Wills, T. J., Lever, C., Cacucci, F., Burgess, N., & O’Keefe, J. (2005). Attractor dynamics in the hippocampal representation of the local environment. Science, 308(5723), 873–876.PubMedCrossRefGoogle Scholar
  99. Winterer, G., Musso, F., Vucurevic, G., Stoeter, P., Konrad, A., Seker, B., et al. (2006). COMT genotype predicts BOLD signal and noise characteristics in prefrontal circuits. NeuroImage, 32(4), 1722–1732.PubMedCrossRefGoogle Scholar
  100. Winterer, G., & Weinberger, D. R. (2004). Genes, dopamine and cortical signal-to-noise ratio in schizophrenia. Trends in Neurosciences, 27(11), 683–690.PubMedCrossRefGoogle Scholar
  101. Winterer, G., Ziller, M., Dorn, H., Frick, K., Mulert, C., Wuebben, Y., et al. (2000). Schizophrenia: Reduced signal-to-noise ratio and impaired phase-locking during information processing. Clinical Neurophysiology, 111(5), 837–849.PubMedCrossRefGoogle Scholar
  102. Wolpert, D. M., & Ghahramani, Z. (2000). Computational principles of movement neuroscience. Nature Neuroscience, 3(Suppl), 1212–1217.PubMedCrossRefGoogle Scholar
  103. Yuille, A. L., & Bülthoff, H. H. (1996). Bayesian decision theory and psychophysics. In D. C. Knill & W. Richards (Eds.), Perception as Bayesian inference. New York: Cambridge University Press.Google Scholar
  104. Yuille, A., & Kersten, D. (2006). Vision as Bayesian inference: Analysis by synthesis? Trends in Cognitive Sciences, 10(7), 301–308.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Functional Neurosciences & Disorders Laboratory, UDSLUniversity Lille North of FranceLilleFrance
  2. 2.Group for Neural Theory, LNC, INSERM U-960, Institute of Cognitive Studies (DEC)École Normale SupérieureParisFrance
  3. 3.Pediatric Psychiatry DepartmentUniversity Medical Centre of Lille (CHU Lille)LilleFrance

Personalised recommendations