Skip to main content

Animal Models and Hallucinogenic Drugs

  • Chapter
  • First Online:

Abstract

The neuropsychological effects of naturally occurring psychoactive ­substances have been recognized for millennia. Hallucinogens, which include naturally occurring chemicals, such as mescaline and psilocybin, as well as synthetic compounds, such as lysergic acid diethylamide (LSD), induce profound alterations of human consciousness, emotion, and cognition. The discovery of the hallucinogenic effects of LSD, and the observations that LSD and the endogenous neurotransmitter serotonin share chemical and pharmacological profiles, led to the suggestion that biogenic amines like serotonin were involved in the psychosis of mental disorders such as schizophrenia. Understanding the mechanism by which hallucinogens elicit unique neurobehavioral effects may open up new avenues in drug abuse research, as well as contributing to the understanding of the endogenous psychosis of psychiatric diseases. Here we summarize recent advances in our understanding of the molecular mechanism of action of hallucinogenic drugs, as well as findings obtained in animal models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

5-HT:

5-HTP decarboxylation into serotonin

5-HTP:

5-Hydroxytryptophan

ALD:

N-acetyl-LSD

BPM:

Behavioral pattern monitor

DMT:

N,N-dimethyltryptamine

DOM:

2,5-Dimethoxy-4-methylamphetamine

KO:

Knockout

LSD:

Lysergic acid diethylamide

NMDA:

N-methyl-d-aspartate

PCP:

Phencyclidine

PPI:

Prepulse inhibition

TRH:

Thyrotropin-releasing hormone

References

  • Abbas, A. I., Yadav, P. N., Yao, W. D., Arbuckle, M. I., Grant, S. G., Caron, M. G., et al. (2009). PSD-95 is essential for hallucinogen and atypical antipsychotic drug actions at serotonin receptors. The Journal of Neuroscience, 29 (22), 7124–7136.

    Article  PubMed  CAS  Google Scholar 

  • Adams, B. W., & Moghaddam, B. (2001). Effect of clozapine, haloperidol, or M100907 on phencyclidine-activated glutamate efflux in the prefrontal cortex. Biological Psychiatry, 50 (10), 750–757.

    Article  PubMed  CAS  Google Scholar 

  • Aghajanian, G. K., & Marek, G. J. (1999). Serotonin and hallucinogens. Neuropsychopharmacology, 21 (2 Suppl), 16S–23S.

    PubMed  CAS  Google Scholar 

  • Amargos-Bosch, M., Adell, A., Bortolozzi, A., & Artigas, F. (2003). Stimulation of alpha1-adrenoceptors in the rat medial prefrontal cortex increases the local in vivo 5-hydroxytryptamine release: Reversal by antipsychotic drugs. Journal of Neurochemistry, 87 (4), 831–842.

    Article  PubMed  CAS  Google Scholar 

  • Appel, J. B., & Cunningham, K. A. (1986). The use of drug discrimination procedures to characterize hallucinogenic drug actions. Psychopharmacology Bulletin, 22 (3), 959–967.

    PubMed  CAS  Google Scholar 

  • Appel, J. B., & Freedman, D. X. (1968). Tolerance and cross-tolerance among psychotomimetic drugs. Psychopharmacologia, 13 (3), 267–274.

    Article  PubMed  CAS  Google Scholar 

  • Appel, J. B., West, W. B., & Buggy, J. (2004). LSD, 5-HT (serotonin), and the evolution of a behavioral assay. Neuroscience and Biobehavioral Reviews, 27 (8), 693–701.

    Article  PubMed  CAS  Google Scholar 

  • Appel, J. B., White, F. J., & Holohean, A. M. (1982). Analyzing mechanism(s) of hallucinogenic drug action with drug discrimination procedures. Neuroscience and Biobehavioral Reviews, 6 (4), 529–536.

    Article  PubMed  CAS  Google Scholar 

  • Balestrieri, A., & Fontanari, D. (1959). Acquired and crossed tolerance to mescaline, LSD-25, and BOL-148. Archives of General Psychiatry, 1, 279–282.

    Article  PubMed  CAS  Google Scholar 

  • Beique, J. C., Imad, M., Mladenovic, L., Gingrich, J. A., & Andrade, R. (2007). Mechanism of the 5-hydroxytryptamine 2A receptor-mediated facilitation of synaptic activity in prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 104 (23), 9870–9875.

    Article  PubMed  CAS  Google Scholar 

  • Bell, R. L., Rodd, Z. A., Hsu, C. C., Lumeng, L., Murphy, J. M., & McBride, W. J. (2003). Amphetamine-modified acoustic startle responding and prepulse inhibition in adult and adolescent alcohol-preferring and -nonpreferring rats. Pharmacology Biochemistry and Behavior, 75 (1), 163–171.

    Article  CAS  Google Scholar 

  • Benneyworth, M. A., Smith, R. L., Barrett, R. J., & Sanders-Bush, E. (2005). Complex discriminative stimulus properties of (+)lysergic acid diethylamide (LSD) in C57Bl/6J mice. Psychopharmacology, 179 (4), 854–862.

    Article  PubMed  CAS  Google Scholar 

  • Boulton, C. S., & Handley, S. L. (1973). Factors modifying the head-twitch response to 5-hydroxytryptophan. Psychopharmacologia, 31 (3), 205–214.

    Article  PubMed  CAS  Google Scholar 

  • Callahan, P. M., & Appel, J. B. (1990). Differentiation between the stimulus effects of (+)-lysergic acid diethylamide and lisuride using a three-choice, drug discrimination procedure. Psychopharmacology, 100 (1), 13–18.

    Article  PubMed  CAS  Google Scholar 

  • Canal, C. E., Olaghere da Silva, U. B., Gresch, P. J., Watt, E. E., Sanders-Bush, E., & Airey, D. C. (2010). The serotonin 2C receptor potently modulates the head-twitch response in mice induced by a phenethylamine hallucinogen. Psychopharmacology, 209 (2), 163–174.

    Article  PubMed  CAS  Google Scholar 

  • Carlini, E. A. (2003). Plants and the central nervous system. Pharmacology Biochemistry and Behavior, 75 (3), 501–512.

    Article  CAS  Google Scholar 

  • Carlsson, M. L., Martin, P., Nilsson, M., Sorensen, S. M., Carlsson, A., Waters, S., et al. (1999). The 5-HT2A receptor antagonist M100907 is more effective in counteracting NMDA antagonist- than dopamine agonist-induced hyperactivity in mice. Journal of Neural Transmission, 106 (2), 123–129.

    Article  PubMed  CAS  Google Scholar 

  • Celada, P., Puig, M. V., Diaz-Mataix, L., & Artigas, F. (2008). The hallucinogen DOI reduces low-frequency oscillations in rat prefrontal cortex: Reversal by antipsychotic drugs. Biological Psychiatry, 64 (5), 392–400.

    Article  PubMed  CAS  Google Scholar 

  • Charney, D. S., & Nestler, E. J. (2009). Neurobiology of mental illness (3rd ed.). Oxford: Oxford University Press.

    Google Scholar 

  • Corne, S. J., & Pickering, R. W. (1967). A possible correlation between drug-induced hallucinations in man and a behavioural response in mice. Psychopharmacologia, 11 (1), 65–78.

    Article  PubMed  CAS  Google Scholar 

  • Corne, S. J., Pickering, R. W., & Warner, B. T. (1963). A method for assessing the effects of drugs on the central actions of 5-hydroxytryptamine. British Journal of Pharmacology and Chemotherapy, 20, 106–120.

    PubMed  CAS  Google Scholar 

  • Creese, I., Burt, D. R., & Synder, S. H. (1975). The dopamine receptor: Differential binding of d-LSD and related agents to agonist and antagonist states. Life Sciences, 17 (11), 1715–1719.

    Article  PubMed  CAS  Google Scholar 

  • Darmani, N. A. (1998). The silent and selective 5-HT1A antagonist, WAY 100635, produces via an indirect mechanism, a 5-HT2A receptor-mediated behaviour in mice during the day but not at night. Short communication. Journal of Neural Transmission, 105 (6–7), 635–643.

    Article  PubMed  CAS  Google Scholar 

  • Darmani, N. A., Janoyan, J. J., Kumar, N., & Crim, J. L. (2003). Behaviorally active doses of the CB1 receptor antagonist SR 141716A increase brain serotonin and dopamine levels and turnover. Pharmacology Biochemistry and Behavior, 75 (4), 777–787.

    Article  CAS  Google Scholar 

  • Darmani, N. A., & Pandya, D. K. (2000). Involvement of other neurotransmitters in behaviors induced by the cannabinoid CB1 receptor antagonist SR 141716A in naive mice. Journal of Neural Transmission, 107 (8–9), 931–945.

    Article  PubMed  CAS  Google Scholar 

  • Darmani, N. A., & Reeves, S. L. (1996). The mechanism by which the selective 5-HT1A receptor antagonist S-(-) UH 301 produces head-twitches in mice. Pharmacology Biochemistry and Behavior, 55 (1), 1–10.

    Article  CAS  Google Scholar 

  • Darmani, N. A., Shaddy, J., & Gerdes, C. F. (1996). Differential ontogenesis of three DOI-induced behaviors in mice. Physiology and Behavior, 60 (6), 1495–1500.

    Article  PubMed  CAS  Google Scholar 

  • Dave, K. D., Harvey, J. A., & Aloyo, V. J. (2002). A novel behavioral model that discriminates between 5-HT2A and 5-HT2C receptor activation. Pharmacology Biochemistry and Behavior, 72 (1–2), 371–378.

    Article  CAS  Google Scholar 

  • Deegan, J. F., & Cook, L. (1958). A study of the anti-mescaline property of a series of CNS-active agents in mice. The Journal of Pharmacology and Experimental Therapeutics, 122, 17.

    Google Scholar 

  • Dekeyne, A., Iob, L., Hautefaye, P., & Millan, M. J. (2002). The selective serotonin(2A) receptor antagonist, MDL100,907, elicits a specific interoceptive cue in rats. Neuropsychopharmacology, 26 (4), 552–556.

    Article  PubMed  CAS  Google Scholar 

  • DeWire, S. M., Ahn, S., Lefkowitz, R. J., & Shenoy, S. K. (2007). Beta-arrestins and cell signaling. Annual Review of Physiology, 69, 483–510.

    Article  PubMed  CAS  Google Scholar 

  • Doat, M. M., Rabin, R. A., & Winter, J. C. (2003). Characterization of the discriminative stimulus properties of centrally administered (-)-DOM and LSD. Pharmacology Biochemistry and Behavior, 74 (3), 713–721.

    Article  CAS  Google Scholar 

  • Dolphin, A., Enjalbert, A., Tassin, J. P., Lucas, M., & Bockaert, J. (1978). Direct interaction of LSD with central “beta”-adrenergic receptors. Life Sciences, 22 (4), 345–352.

    Article  PubMed  CAS  Google Scholar 

  • Faillace, L. A., Vourlekis, A., & Szara, S. (1967). Clinical evaluation of some hallucinogenic tryptamine derivatives. The Journal of Nervous and Mental Disease, 145 (4), 306–313.

    Article  PubMed  CAS  Google Scholar 

  • Fantegrossi, W. E., Murnane, K. S., & Reissig, C. J. (2008). The behavioral pharmacology of hallucinogens. Biochemical Pharmacology, 75 (1), 17–33.

    Article  PubMed  CAS  Google Scholar 

  • Fiorella, D., Helsley, S., Lorrain, D. S., Rabin, R. A., & Winter, J. C. (1995a). The role of the 5-HT2A and 5-HT2C receptors in the stimulus effects of hallucinogenic drugs. III: The mechanistic basis for supersensitivity to the LSD stimulus following serotonin depletion. Psychopharmacology, 121 (3), 364–372.

    Article  PubMed  CAS  Google Scholar 

  • Fiorella, D., Rabin, R. A., & Winter, J. C. (1995b). Role of 5-HT2A and 5-HT2C receptors in the stimulus effects of hallucinogenic drugs. II: Reassessment of LSD false positives. Psychopharmacology, 121 (3), 357–363.

    Article  PubMed  CAS  Google Scholar 

  • Florio, V., Fuentes, J. A., Ziegler, H., & Longo, V. G. (1972). EEG and behavioral effects in ­animals of some amphetamine derivatives with hallucinogenic properties. Behavioral Biology, 7 (3), 401–414.

    Article  PubMed  CAS  Google Scholar 

  • Geyer, M. A., & Light, R. K. (1979). LSD-induced alterations of investigatory responding in rats. Psychopharmacology, 65 (1), 41–47.

    Article  PubMed  CAS  Google Scholar 

  • Giacomelli, S., Palmery, M., Romanelli, L., Cheng, C. Y., & Silvestrini, B. (1998). Lysergic acid diethylamide (LSD) is a partial agonist of D2 dopaminergic receptors and it potentiates dopamine-mediated prolactin secretion in lactotrophs in vitro. Life Sciences, 63 (3), 215–222.

    Article  PubMed  CAS  Google Scholar 

  • Glennon, R. A., Titeler, M., & McKenney, J. D. (1984). Evidence for 5-HT2 involvement in the mechanism of action of hallucinogenic agents. Life Sciences, 35 (25), 2505–2511.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Maeso, J., & Sealfon, S. C. (2009a). Agonist-trafficking and hallucinogens. Current Medicinal Chemistry, 16 (8), 1017–1027.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Maeso, J., & Sealfon, S. C. (2009b). Psychedelics and schizophrenia. Trends in Neurosciences, 32 (4), 225–232.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Maeso, J., Weisstaub, N. V., Zhou, M., Chan, P., Ivic, L., Ang, R., et al. (2007). Hallucinogens recruit specific cortical 5-HT(2A) receptor-mediated signaling pathways to affect behavior. Neuron, 53 (3), 439–452.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Maeso, J., Yuen, T., Ebersole, B. J., Wurmbach, E., Lira, A., Zhou, M., et al. (2003). Transcriptome fingerprints distinguish hallucinogenic and nonhallucinogenic 5-hydroxytryptamine 2A receptor agonist effects in mouse somatosensory cortex. The Journal of Neuroscience, 23 (26), 8836–8843.

    PubMed  CAS  Google Scholar 

  • Grailhe, R., Waeber, C., Dulawa, S. C., Hornung, J. P., Zhuang, X., Brunner, D., et al. (1999). Increased exploratory activity and altered response to LSD in mice lacking the 5-HT(5A) receptor. Neuron, 22 (3), 581–591.

    Article  PubMed  CAS  Google Scholar 

  • Green, B., Kavanagh, D., & Young, R. (2003). Being stoned: A review of self-reported cannabis effects. Drug and Alcohol Review, 22 (4), 453–460.

    Article  PubMed  Google Scholar 

  • Gresch, P. J., Smith, R. L., Barrett, R. J., & Sanders-Bush, E. (2005). Behavioral tolerance to lysergic acid diethylamide is associated with reduced serotonin-2A receptor signaling in rat cortex. Neuropsychopharmacology, 30 (9), 1693–1702.

    Article  PubMed  CAS  Google Scholar 

  • Griffiths, R. R., Richards, W. A., McCann, U., & Jesse, R. (2006). Psilocybin can occasion mystical-type experiences having substantial and sustained personal meaning and spiritual significance. Psychopharmacology (Berl), 187 (3), 268–283; discussion 284–292.

    Google Scholar 

  • Haddjeri, N., de Montigny, C., & Blier, P. (1999). Modulation of the firing activity of rat serotonin and noradrenaline neurons by (+/-)pindolol. Biological Psychiatry, 45 (9), 1163–1169.

    Article  PubMed  CAS  Google Scholar 

  • Halberstadt, A. L., & Geyer, M. A. (2010). LSD but not lisuride disrupts prepulse inhibition in rats by activating the 5-HT(2A) receptor. Psychopharmacology, 208 (2), 179–189.

    Article  PubMed  CAS  Google Scholar 

  • Halberstadt, A. L., van der Heijden, I., Ruderman, M. A., Risbrough, V. B., Gingrich, J. A., Geyer, M. A., et al. (2009). 5-HT(2A) and 5-HT(2C) receptors exert opposing effects on locomotor activity in mice. Neuropsychopharmacology, 34 (8), 1958–1967.

    Article  PubMed  CAS  Google Scholar 

  • Halpern, J. H. (2004). Hallucinogens and dissociative agents naturally growing in the United States. Pharmacology and Therapeutics, 102 (2), 131–138.

    Article  PubMed  CAS  Google Scholar 

  • Handley, L. S., & Singh, L. (1986). Neurotransmitters and shaking behavior—more than a ‘gut-bath’ for the brain? Trends in Pharmacological Sciences, 7, 324–328.

    Article  CAS  Google Scholar 

  • Heekeren, K., Neukirch, A., Daumann, J., Stoll, M., Obradovic, M., Kovar, K. A., et al. (2007). Prepulse inhibition of the startle reflex and its attentional modulation in the human S-ketamine and N,N-dimethyltryptamine (DMT) models of psychosis. Journal of Psychopharmacology, 21 (3), 312–320.

    Article  PubMed  CAS  Google Scholar 

  • Heffter, A. (1897). Über Peyote. Archiv für Experimentelle Pathologie and Pharmakologie 40:418–425.

    Google Scholar 

  • Hirschhorn, I. D., & Winter, J. C. (1971). Mescaline and lysergic acid diethylamide (LSD) as discriminative stimuli. Psychopharmacologia, 22 (1), 64–71.

    Article  PubMed  CAS  Google Scholar 

  • Hofmann, A. (1959). Psychotomimetic drugs; chemical and pharmacological aspects. Acta Physiologica et Pharmacologica Neerlandica, 8, 240–258.

    PubMed  CAS  Google Scholar 

  • Hofmann, A. (1980). LSD, my problem child. New York: McGraw-Hill.

    Google Scholar 

  • Ismaiel, A. M., De Los Angeles, J., Teitler, M., Ingher, S., & Glennon, R. A. (1993). Antagonism of 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane stimulus with a newly identified 5-HT2- versus 5-HT1C-selective antagonist. Journal of Medicinal Chemistry, 36 (17), 2519–2525.

    Article  PubMed  CAS  Google Scholar 

  • Iwasato, T., Datwani, A., Wolf, A. M., Nishiyama, H., Taguchi, Y., Tonegawa, S., et al. (2000). Cortex-restricted disruption of NMDAR1 impairs neuronal patterns in the barrel cortex. Nature, 406 (6797), 726–731.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs, B. L., Trulson, M. E., & Stern, W. C. (1977). Behavioral effects of LSD in the cat: Proposal of an animal behavior model for studying the actions of hallucinogenic drugs. Brain Research, 132 (2), 301–314.

    Article  PubMed  CAS  Google Scholar 

  • Jakab, R. L., & Goldman-Rakic, P. S. (1998). 5-Hydroxytryptamine2A serotonin receptors in the primate cerebral cortex: Possible site of action of hallucinogenic and antipsychotic drugs in pyramidal cell apical dendrites. Proceedings of the National Academy of Sciences of the United States of America, 95 (2), 735–740.

    Article  PubMed  CAS  Google Scholar 

  • Jodo, E., Suzuki, Y., Katayama, T., Hoshino, K. Y., Takeuchi, S., Niwa, S., et al. (2005). Activation of medial prefrontal cortex by phencyclidine is mediated via a hippocampo-prefrontal pathway. Cerebral Cortex, 15 (5), 663–669.

    Article  PubMed  Google Scholar 

  • Kehne, J. H., Baron, B. M., Carr, A. A., Chaney, S. F., Elands, J., Feldman, D. J., et al. (1996). Preclinical characterization of the potential of the putative atypical antipsychotic MDL 100,907 as a potent 5-HT2A antagonist with a favorable CNS safety profile. The Journal of Pharmacology and Experimental Therapeutics, 277 (2), 968–981.

    PubMed  CAS  Google Scholar 

  • Kety, S. S. (1959). Biochemical theories of schizophrenia. I. Science, 129 (3362), 1528–1532.

    Article  PubMed  CAS  Google Scholar 

  • Kim, H. S., Park, I. S., & Park, W. K. (1998). NMDA receptor antagonists enhance 5-HT2 receptor-mediated behavior, head-twitch response, in mice. Life Sciences, 63 (26), 2305–2311.

    Article  PubMed  CAS  Google Scholar 

  • Kovacs, J. J., Hara, M. R., Davenport, C. L., Kim, J., & Lefkowitz, R. J. (2009). Arrestin development: Emerging roles for beta-arrestins in developmental signaling pathways. Developmental Cell, 17 (4), 443–458.

    Article  PubMed  CAS  Google Scholar 

  • Krall, C. M., Richards, J. B., Rabin, R. A., & Winter, J. C. (2008). Marked decrease of LSD-induced stimulus control in serotonin transporter knockout mice. Pharmacology Biochemistry and Behavior, 88 (3), 349–357.

    Article  CAS  Google Scholar 

  • Krebs-Thomson, K., & Geyer, M. A. (1996). The role of 5-HT(1A) receptors in the locomotor-suppressant effects of LSD: WAY-100635 studies of 8-OH-DPAT, DOI and LSD in rats. Behavioural Pharmacology, 7 (6), 551–559.

    PubMed  CAS  Google Scholar 

  • Krebs-Thomson, K., Paulus, M. P., & Geyer, M. A. (1998). Effects of hallucinogens on locomotor and investigatory activity and patterns: Influence of 5-HT2A and 5-HT2C receptors. Neuropsychopharmacology, 18 (5), 339–351.

    Article  PubMed  CAS  Google Scholar 

  • Lambe, E. K., & Aghajanian, G. K. (2001). The role of Kv1.2-containing potassium channels in serotonin-induced glutamate release from thalamocortical terminals in rat frontal cortex. The Journal of Neuroscience, 21 (24), 9955–9963.

    PubMed  CAS  Google Scholar 

  • Li, J. X., Rice, K. C., & France, C. P. (2008). Discriminative stimulus effects of 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane in rhesus monkeys. The Journal of Pharmacology and Experimental Therapeutics, 324 (2), 827–833.

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Gil, X., Babot, Z., Amargos-Bosch, M., Sunol, C., Artigas, F., & Adell, A. (2007). Clozapine and haloperidol differently suppress the MK-801-increased glutamatergic and serotonergic transmission in the medial prefrontal cortex of the rat. Neuropsychopharmacology, 32 (10), 2087–2097.

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Gimenez, J. F., Vilaro, M. T., Palacios, J. M., & Mengod, G. (2001). Mapping of 5-HT2A receptors and their mRNA in monkey brain: [3H]MDL100,907 autoradiography and in situ hybridization studies. The Journal of Comparative Neurology, 429 (4), 571–589.

    Article  PubMed  CAS  Google Scholar 

  • Lorrain, D. S., Baccei, C. S., Bristow, L. J., Anderson, J. J., & Varney, M. A. (2003). Effects of ketamine and N-methyl-D-aspartate on glutamate and dopamine release in the rat prefrontal cortex: Modulation by a group II selective metabotropic glutamate receptor agonist LY379268. Neuroscience, 117 (3), 697–706.

    Article  PubMed  CAS  Google Scholar 

  • Luby, E. D., Cohen, B. D., Rosenbaum, G., Gottlieb, J. S., & Kelley, R. (1959). Study of a new schizophrenomimetic drug; sernyl. AMA Archives of Neurology and Psychiatry, 81 (3), 363–369.

    Article  PubMed  CAS  Google Scholar 

  • Ludewig, K., Ludewig, S., Seitz, A., Obrist, M., Geyer, M. A., & Vollenweider, F. X. (2003). The acoustic startle reflex and its modulation: Effects of age and gender in humans. Biological Psychology, 63 (3), 311–323.

    Article  PubMed  Google Scholar 

  • Marona-Lewicka, D., Chemel, B. R., & Nichols, D. E. (2009). Dopamine D4 receptor involvement in the discriminative stimulus effects in rats of LSD, but not the phenethylamine hallucinogen DOI. Psychopharmacology, 203 (2), 265–277.

    Article  PubMed  CAS  Google Scholar 

  • Marona-Lewicka, D., & Nichols, D. E. (1995). Complex stimulus properties of LSD: A drug discrimination study with alpha 2-adrenoceptor agonists and antagonists. Psychopharmacology, 120 (4), 384–391.

    Article  PubMed  CAS  Google Scholar 

  • Marona-Lewicka, D., & Nichols, D. E. (2007). Further evidence that the delayed temporal dopaminergic effects of LSD are mediated by a mechanism different than the first temporal phase of action. Pharmacology Biochemistry and Behavior, 87 (4), 453–461.

    Article  CAS  Google Scholar 

  • Marona-Lewicka, D., Thisted, R. A., & Nichols, D. E. (2005). Distinct temporal phases in the behavioral pharmacology of LSD: Dopamine D2 receptor-mediated effects in the rat and implications for psychosis. Psychopharmacology, 180 (3), 427–435.

    Article  PubMed  CAS  Google Scholar 

  • Meert, T. F., de Haes, P., & Janssen, P. A. (1989). Risperidone (R 64 766), a potent and complete LSD antagonist in drug discrimination by rats. Psychopharmacology, 97 (2), 206–212.

    Article  PubMed  CAS  Google Scholar 

  • Mittman, S. M., & Geyer, M. A. (1991). Dissociation of multiple effects of acute LSD on exploratory behavior in rats by ritanserin and propranolol. Psychopharmacology, 105 (1), 69–76.

    Article  PubMed  CAS  Google Scholar 

  • Morris, B. J., Cochran, S. M., & Pratt, J. A. (2005). PCP: From pharmacology to modelling schizophrenia. Current Opinion in Pharmacology, 5 (1), 101–106.

    Article  PubMed  CAS  Google Scholar 

  • Mouri, A., Noda, Y., Enomoto, T., & Nabeshima, T. (2007). Phencyclidine animal models of schizophrenia: Approaches from abnormality of glutamatergic neurotransmission and neurodevelopment. Neurochemistry International, 51 (2–4), 173–184.

    Article  PubMed  CAS  Google Scholar 

  • Nabeshima, T., Ishikawa, K., Yamaguchi, K., Furukawa, H., & Kameyama, T. (1987). Phencyclidine-induced head-twitch responses as 5-HT2 receptor-mediated behavior in rats. Neuroscience Letters, 76 (3), 335–338.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, M., & Carney, J. M. (1983). Separation of clonazepam-induced head twitches and muscle relaxation in mice. Pharmacology Biochemistry and Behavior, 19 (3), 549–552.

    Article  CAS  Google Scholar 

  • Nichols, D. E. (2004). Hallucinogens. Pharmacology and Therapeutics, 101 (2), 131–181.

    Article  PubMed  CAS  Google Scholar 

  • Nielsen, E. B. (1985). Discriminative stimulus properties of lysergic acid diethylamide in the monkey. The Journal of Pharmacology and Experimental Therapeutics, 234 (1), 244–249.

    PubMed  CAS  Google Scholar 

  • O’Neill, M. F., Hicks, C. A., Shaw, G., Parameswaran, T., Cardwell, G. P., & O’Neill, M. J. (1998). Effects of 5-hydroxytryptamine2 receptor antagonism on the behavioral activation and immediate early gene expression induced by dizocilpine. The Journal of Pharmacology and Experimental Therapeutics, 287 (3), 839–846.

    PubMed  Google Scholar 

  • Ouagazzal, A., Grottick, A. J., Moreau, J., & Higgins, G. A. (2001a). Effect of LSD on prepulse inhibition and spontaneous behavior in the rat. A pharmacological analysis and comparison between two rat strains. Neuropsychopharmacology, 25 (4), 565–575.

    Article  PubMed  CAS  Google Scholar 

  • Ouagazzal, A. M., Jenck, F., & Moreau, J. L. (2001b). Drug-induced potentiation of prepulse inhibition of acoustic startle reflex in mice: A model for detecting antipsychotic activity? Psychopharmacology, 156 (2–3), 273–283.

    Article  PubMed  CAS  Google Scholar 

  • Paulus, M. P., Geyer, M. A., Gold, L. H., & Mandell, A. J. (1990). Application of entropy measures derived from the ergodic theory of dynamical systems to rat locomotor behavior. Proceedings of the National Academy of Sciences of the United States of America, 87 (2), 723–727.

    Article  PubMed  CAS  Google Scholar 

  • Pomarol-Clotet, E., Honey, G. D., Murray, G. K., Corlett, P. R., Absalom, A. R., Lee, M., et al. (2006). Psychological effects of ketamine in healthy volunteers. Phenomenological study. British Journal of Psychiatry, 189, 173–179.

    Article  PubMed  CAS  Google Scholar 

  • Powell, S. B., Palomo, J., Carasso, B. S., Bakshi, V. P., & Geyer, M. A. (2005). Yohimbine disrupts prepulse inhibition in rats via action at 5-HT1A receptors, not alpha2-adrenoceptors. Psychopharmacology, 180 (3), 491–500.

    Article  PubMed  CAS  Google Scholar 

  • Rajagopal, K., Lefkowitz, R. J., & Rockman, H. A. (2005). When 7 transmembrane receptors are not G protein-coupled receptors. The Journal of Clinical Investigation, 115 (11), 2971–2974.

    Article  PubMed  CAS  Google Scholar 

  • Reimherr, F. W., Wood, D. R., & Wender, P. H. (1986). The use of MK-801, a novel sympathomimetic, in adults with attention deficit disorder, residual type. Psychopharmacology Bulletin, 22 (1), 237–242.

    PubMed  CAS  Google Scholar 

  • Reissig, C. J., Eckler, J. R., Rabin, R. A., & Winter, J. C. (2005). The 5-HT1A receptor and the stimulus effects of LSD in the rat. Psychopharmacology, 182 (2), 197–204.

    Article  PubMed  CAS  Google Scholar 

  • Schmid, C. L., & Bohn, L. M. (2010). Serotonin, but not N-methyltryptamines, activates the serotonin 2A receptor via a ss-arrestin2/Src/Akt signaling complex in vivo. The Journal of Neuroscience, 30 (40), 13513–13524.

    Article  PubMed  CAS  Google Scholar 

  • Schmid, C. L., Raehal, K. M., & Bohn, L. M. (2008). Agonist-directed signaling of the serotonin 2A receptor depends on beta-arrestin-2 interactions in vivo. Proceedings of the National Academy of Sciences of the United States of America, 105 (3), 1079–1084.

    Article  PubMed  CAS  Google Scholar 

  • Schreiber, R., Brocco, M., & Millan, M. J. (1994). Blockade of the discriminative stimulus effects of DOI by MDL 100,907 and the ‘atypical’ antipsychotics, clozapine and risperidone. European Journal of Pharmacology, 264 (1), 99–102.

    Article  PubMed  CAS  Google Scholar 

  • Schultes, R. E., & Hofmann, A. (1980). The botany and chemistry of hallucinogens (Rev. and enl. 2d ed., American lecture series publication no. 1025). Springfield, IL: Thomas.

    Google Scholar 

  • Seeman, P., Ko, F., & Tallerico, T. (2005). Dopamine receptor contribution to the action of PCP, LSD and ketamine psychotomimetics. Molecular Psychiatry, 10 (9), 877–883.

    Article  PubMed  CAS  Google Scholar 

  • Sheffler, D. J., Kroeze, W. K., Garcia, B. G., Deutch, A. Y., Hufeisen, S. J., Leahy, P., et al. (2006). p90 ribosomal S6 kinase 2 exerts a tonic brake on G protein-coupled receptor signaling. Proceedings of the National Academy of Sciences of the United States of America, 103 (12), 4717–4722.

    Article  PubMed  CAS  Google Scholar 

  • Shulgin, A., & Shulgin, A. (1991). PiHKAL, a chemical love story. Berkeley: Transform Press.

    Google Scholar 

  • Shulgin, A., & Shulgin, A. (1997). TiHKAL, the continuation. Berkeley: Transform Press.

    Google Scholar 

  • Sipes, T. A., & Geyer, M. A. (1994). Multiple serotonin receptor subtypes modulate prepulse inhibition of the startle response in rats. Neuropharmacology, 33 (3–4), 441–448.

    Article  PubMed  CAS  Google Scholar 

  • Sipes, T. E., & Geyer, M. A. (1995). DOI disruption of prepulse inhibition of startle in the rat is mediated by 5-HT(2A) and not by 5-HT(2C) receptors. Behavioural Pharmacology, 6 (8), 839–842.

    Article  PubMed  CAS  Google Scholar 

  • Sipes, T. E., & Geyer, M. A. (1997). DOI disrupts prepulse inhibition of startle in rats via 5-HT2A receptors in the ventral pallidum. Brain Research, 761 (1), 97–104.

    Article  PubMed  CAS  Google Scholar 

  • Smith, R. L., Barrett, R. J., & Sanders-Bush, E. (2003). Discriminative stimulus properties of 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane [(+/-)DOI] in C57BL/6J mice. Psychopharmacology, 166 (1), 61–68.

    PubMed  CAS  Google Scholar 

  • Snyder, S. H., Banerjee, S. P., Yamamura, H. I., & Greenberg, D. (1974). Drugs, neurotransmitters, and schizophrenia. Science, 184 (4143), 1243–1253.

    Article  PubMed  CAS  Google Scholar 

  • Strachan, R. T., Allen, J. A., Sheffler, D. J., & Roth, B. L. (2010). p90 Ribosomal S6 kinase 2, a novel GPCR kinase, is required for growth factor-mediated attenuation of GPCR signaling. Biochemistry, 49 (12), 2657–2671.

    Article  PubMed  CAS  Google Scholar 

  • Strachan, R. T., Sheffler, D. J., Willard, B., Kinter, M., Kiselar, J. G., & Roth, B. L. (2009). Ribosomal S6 kinase 2 directly phosphorylates the 5-hydroxytryptamine 2A (5-HT2A) serotonin receptor, thereby modulating 5-HT2A signaling. The Journal of Biological Chemistry, 284 (9), 5557–5573.

    Article  PubMed  CAS  Google Scholar 

  • Strassman, R. J., Qualls, C. R., Uhlenhuth, E. H., & Kellner, R. (1994). Dose-response study of N,N-dimethyltryptamine in humans. II. Subjective effects and preliminary results of a new rating scale. Archives of General Psychiatry, 51 (2), 98–108.

    Article  PubMed  CAS  Google Scholar 

  • Su, Y. A., Si, T. M., Zhou, D. F., Guo, C. M., Wang, X. D., Yang, Y., et al. (2007). Risperidone attenuates MK-801-induced hyperlocomotion in mice via the blockade of serotonin 5-HT 2A/2C receptors. European Journal of Pharmacology, 564 (1–3), 123–130.

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow, N. R., Stephany, N., Wasserman, L. C., Talledo, J., Shoemaker, J., & Auerbach, P. P. (2003). Amphetamine effects on prepulse inhibition across-species: Replication and parametric extension. Neuropsychopharmacology, 28 (4), 640–650.

    Article  PubMed  CAS  Google Scholar 

  • Szara, I., Sai-Halasz, A., & Boszormenyi, Z. (1957). Dimethyltryptamine as a new psychotic agent. Acta Physiologica Hungarica, 11 (Suppl), 78–79.

    PubMed  CAS  Google Scholar 

  • Szara, S. (2007). DMT at fifty. Neuropsychopharmacologia Hungarica, 9 (4), 201–205.

    PubMed  Google Scholar 

  • Tadano, T., Hozumi, M., Satoh, N., Oka, R., Hishinuma, T., Mizugaki, M., et al. (2001). Central serotonergic mechanisms on head twitch response induced by benzodiazepine receptor agonists. Pharmacology, 62 (3), 157–162.

    Article  PubMed  CAS  Google Scholar 

  • Tong, C., Li, P., Wu, N. L., Yan, Y., & Ying, Q. L. (2010). Production of p53 gene knockout rats by homologous recombination in embryonic stem cells. Nature, 467 (7312), 211–213.

    Article  PubMed  CAS  Google Scholar 

  • Violin, J. D., & Lefkowitz, R. J. (2007). Beta-arrestin-biased ligands at seven-transmembrane receptors. Trends in Pharmacological Sciences, 28 (8), 416–422.

    Article  PubMed  CAS  Google Scholar 

  • Vollenweider, F. X., & Kometer, M. (2010). The neurobiology of psychedelic drugs: Implications for the treatment of mood disorders. Nature Reviews. Neuroscience, 11 (9), 642–651.

    Article  PubMed  CAS  Google Scholar 

  • Vollenweider, F. X., & Vollenweider-Scherpenhuyzen, M. F. (2003). Hallucinogens, amphetamines and entactogens. Therapeutische Umschau, 60 (6), 323–328.

    Article  PubMed  CAS  Google Scholar 

  • Vollenweider, F. X., Vollenweider-Scherpenhuyzen, M. F., Babler, A., Vogel, H., & Hell, D. (1998). Psilocybin induces schizophrenia-like psychosis in humans via a serotonin-2 agonist action. Neuroreport, 9 (17), 3897–3902.

    Article  PubMed  CAS  Google Scholar 

  • von Hungen, K., Roberts, S., & Hill, D. F. (1974). LSD as an agonist and antagonist at central dopamine receptors. Nature, 252 (5484), 588–589.

    Article  Google Scholar 

  • Vortherms, T. A., & Roth, B. L. (2006). Salvinorin A: From natural product to human therapeutics. Molecular Interventions, 6 (5), 257–265.

    Article  PubMed  CAS  Google Scholar 

  • Wachtel, S. R., ElSohly, M. A., Ross, S. A., Ambre, J., & de Wit, H. (2002). Comparison of the subjective effects of Delta(9)-tetrahydrocannabinol and marijuana in humans. Psychopharmacology, 161 (4), 331–339.

    Article  PubMed  CAS  Google Scholar 

  • Waeber, C., Grailhe, R., Yu, X. J., Hen, R., & Moskowitz, M. A. (1998). Putative 5-ht5 receptors: Localization in the mouse CNS and lack of effect in the inhibition of dural protein extravasation. Annals of the New York Academy of Sciences, 861, 85–90.

    Article  PubMed  CAS  Google Scholar 

  • Watts, V. J., Lawler, C. P., Fox, D. R., Neve, K. A., Nichols, D. E., & Mailman, R. B. (1995). LSD and structural analogs: Pharmacological evaluation at D1 dopamine receptors. Psychopharmacology, 118 (4), 401–409.

    Article  PubMed  CAS  Google Scholar 

  • Weber, E. T., & Andrade, R. (2010). Htr2a gene and 5-HT(2A) receptor expression in the cerebral cortex studied using genetically modified mice. Frontiers in Neuroscience, 4, 36.

    PubMed  CAS  Google Scholar 

  • Weisstaub, N. V., Zhou, M., Lira, A., Lambe, E., Gonzalez-Maeso, J., Hornung, J. P., et al. (2006). Cortical 5-HT2A receptor signaling modulates anxiety-like behaviors in mice. Science, 313 (5786), 536–540.

    Article  PubMed  CAS  Google Scholar 

  • Wing, L. L., Tapson, G. S., & Geyer, M. A. (1990). 5HT-2 mediation of acute behavioral effects of hallucinogens in rats. Psychopharmacology, 100 (3), 417–425.

    Article  PubMed  CAS  Google Scholar 

  • Winter, J. C. (1971). Tolerance to a behavioral effect of lysergic acid diethylamide and cross-tolerance to mescaline in the rat: Absence of a metabolic component. The Journal of Pharmacology and Experimental Therapeutics, 178 (3), 625–630.

    PubMed  CAS  Google Scholar 

  • Winter, J. C. (1974). Hallucinogens as discriminative stimuli. Federation Proceedings, 33 (7), 1825–1832.

    PubMed  CAS  Google Scholar 

  • Winter, J. C. (2009). Hallucinogens as discriminative stimuli in animals: LSD, phenethylamines, and tryptamines. Psychopharmacology, 203 (2), 251–263.

    Article  PubMed  CAS  Google Scholar 

  • Winter, J. C., Kieres, A. K., Zimmerman, M. D., Reissig, C. J., Eckler, J. R., Ullrich, T., et al. (2005). The stimulus properties of LSD in C57BL/6 mice. Pharmacology Biochemistry and Behavior, 81 (4), 830–837.

    Article  CAS  Google Scholar 

  • Yadav, P. N., Abbas, A. I., Farrell, M. S., Setola, V., Sciaky, N., Huang, X. P., et al. (2011). The presynaptic component of the serotonergic system is required for clozapine’s efficacy. Neuropsychopharmacology, 36 (3), 638–651.

    Article  PubMed  CAS  Google Scholar 

  • Yan, F., Mosier, P. D., Westkaemper, R. B., Stewart, J., Zjawiony, J. K., Vortherms, T. A., et al. (2005). Identification of the molecular mechanisms by which the diterpenoid salvinorin A binds to kappa-opioid receptors. Biochemistry, 44 (24), 8643–8651.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier González-Maeso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kozlenkov, A., González-Maeso, J. (2013). Animal Models and Hallucinogenic Drugs. In: Jardri, R., Cachia, A., Thomas, P., Pins, D. (eds) The Neuroscience of Hallucinations. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4121-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4121-2_14

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4120-5

  • Online ISBN: 978-1-4614-4121-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics