Skip to main content

Evaluation of the Blood Compatibility of Materials, Cells, and Tissues: Basic Concepts, Test Models, and Practical Guidelines

  • Chapter
  • First Online:
Complement Therapeutics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 735))

Abstract

Medicine today uses a wide range of biomaterials, most of which make contact with blood permanently or transiently upon implantation. Contact between blood and nonbiological materials or cells or tissue of nonhematologic origin initiates activation of the cascade systems (complement, contact activation/coagulation) of the blood, which induces platelet and leukocyte activation.

Although substantial progress regarding biocompatibility has been made, many materials and medical treatment procedures are still associated with severe side effects. Therefore, there is a great need for adequate models and guidelines for evaluating the blood compatibility of biomaterials. Due to the substantial amount of cross talk between the different cascade systems and cell populations in the blood, it is advisable to use an intact system for evaluation.

Here, we describe three such in vitro models for the evaluation of the biocompatibility of materials and therapeutic cells and tissues. The use of different anticoagulants and specific inhibitors in order to be able to dissect interactions between the different cascade systems and cells of the blood is discussed. In addition, we describe two clinically relevant medical treatment modalities, the integration of titanium implants and transplantation of islets of Langerhans to patients with type 1 diabetes, whose mechanisms of action we have addressed using these in vitro models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amara U, Flierl MA, Rittirsch D, Klos A, Chen H, Acker B et al (2010) Molecular intercommunication between the complement and coagulation systems. J Immunol 185(9):5628–5636

    Article  CAS  PubMed  Google Scholar 

  • Andersson J, Ekdahl KN, Larsson R, Nilsson UR, Nilsson B (2002) C3 adsorbed to a polymer surface can form an initiating alternative pathway convertase. J Immunol 168(11):5786–5791

    Article  CAS  PubMed  Google Scholar 

  • Andersson J, Sanchez J, Ekdahl KN, Elgue G, Nilsson B, Larsson R (2003) Optimal heparin surface concentration and antithrombin binding capacity as evaluated with human non-anticoagulated blood in vitro. J Biomed Mater Res A 67(2):458–466

    Article  CAS  PubMed  Google Scholar 

  • Andersson J, Ekdahl KN, Lambris JD, Nilsson B (2005a) Binding of C3 fragments on top of adsorbed plasma proteins during complement activation on a model biomaterial surface. Biomaterials 26(13):1477–1485

    Article  CAS  PubMed  Google Scholar 

  • Andersson M, Andersson J, Sellborn A, Berglin M, Nilsson B, Elwing H (2005b) Quartz crystal microbalance-with dissipation monitoring (QCM-D) for real time measurements of blood coagulation density and immune complement activation on artificial surfaces. Biosens Bioelectron 21(1):79–86

    Article  CAS  PubMed  Google Scholar 

  • Arima Y, Toda M, Iwata H (2011) Surface plasmon resonance in monitoring of complement activation on biomaterials. Adv Drug Deliv Rev 63:988–999

    Article  CAS  PubMed  Google Scholar 

  • Attanasio M, Gori AM, Giusti B, Pepe G, Comeglio P, Brunelli T et al (1998) Cytokine gene expression in human LPS- and IFN gamma-stimulated mononuclear cells is inhibited by heparin. Thromb Haemost 79(5):959–962

    CAS  PubMed  Google Scholar 

  • Bäck J, Huber-Lang M, Elgue G, Kalbitz M, Sanchez J, Ekdahl KN et al (2009) Distinctive regulation of contact activation by antithrombin and C1-inhibitor on activated platelets and material surfaces. Biomaterials 30(34):6573–6580

    Article  CAS  PubMed  Google Scholar 

  • Bäck J, Sanchez J, Elgue G, Ekdahl KN, Nilsson B (2010) Activated human platelets induce factor XIIa-mediated contact activation. Biochem Biophys Res Commun 391(1):11–17

    Article  CAS  PubMed  Google Scholar 

  • Bennet W, Sundberg B, Groth CG, Brendel MD, Brandhorst D, Brandhorst H et al (1999) Incompatibility between human blood and isolated islets of Langerhans: a finding with implications for clinical intraportal islet transplantation? Diabetes 48(10):1907–1914

    Article  CAS  PubMed  Google Scholar 

  • Bennet W, Sundberg B, Elgue G, Larsson R, Korsgren O, Nilsson B (2001) A new in vitro model for the study of pig-to-human vascular hyperacute rejection. Xenotransplantation 8(3):176–184

    Article  CAS  PubMed  Google Scholar 

  • Berglin M, Pinori E, Sellborn A, Andersson M, Hulander M, Elwing H (2009) Fibrinogen adsorption and conformational change on model polymers: novel aspects of mutual molecular rearrangement. Langmuir 25(10):5602–5608

    Article  CAS  PubMed  Google Scholar 

  • Bexborn F, Engberg AE, Sandholm K, Mollnes TE, Hong J, Nilsson Ekdahl K (2009) Hirudin versus heparin for use in whole blood in vitro biocompatibility models. J Biomed Mater Res A 89(4):951–959

    Article  CAS  PubMed  Google Scholar 

  • Bogdanov V, Balasubramanian V, Hathcock J, Vele O, Lieb M, Nemerson Y (2003) Alternatively spliced human tissue factor: a circulating, soluble, thrombogenic protein. Nat Med 9(4):458–462

    Article  CAS  PubMed  Google Scholar 

  • Cabric S, Sanchez J, Lundgren T, Foss A, Felldin M, Kallen R et al (2007) Islet surface heparinization prevents the instant blood-mediated inflammatory reaction in islet transplantation. Diabetes 56(8):2008–2015

    Article  CAS  PubMed  Google Scholar 

  • Cabric S, Eich T, Sanchez J, Nilsson B, Korsgren O, Larsson R (2008) A new method for incorporating functional heparin onto the surface of islets of Langerhans. Tissue Eng C Methods 14(2):141–147

    Article  CAS  Google Scholar 

  • Chang JY (1983) The functional domain of hirudin, a thrombin-specific inhibitor. FEBS Lett 164(2):307–313

    Article  CAS  PubMed  Google Scholar 

  • Christensen K, Larsson R, Emanuelsson H, Elgue G, Larsson A (2001) Heparin coating of the stent graft—effects on platelets, coagulation and complement activation. Biomaterials 22(4):349–355

    Article  CAS  PubMed  Google Scholar 

  • Christensen K, Larsson R, Emanuelsson H, Elgue G, Larsson A (2006) Effects on blood compatibility in vitro by combining a direct P2Y12 receptor inhibitor and heparin coating of stents. Platelets 17(5):318–327

    Article  CAS  PubMed  Google Scholar 

  • Distelmaier K, Adlbrecht C, Jakowitsch J, Winkler S, Dunkler D, Gerner C et al (2009) Local complement activation triggers neutrophil recruitment to the site of thrombus formation in acute myocardial infarction. Thromb Haemost 102(3):564–572

    Article  CAS  PubMed  Google Scholar 

  • Ekdahl KN, Nilsson B, Pekna M, Nilsson UR (1992) Generation of iC3 at the interface between blood and gas. Scand J Immunol 35(1):85–91

    Article  CAS  Google Scholar 

  • Ekdahl KN, Lambris JD, Elwing H, Ricklin D, Nilsson PH, Teramura Y et al (2011) Innate immunity activation on biomaterial surfaces: a mechanistic model and coping strategies. Adv Drug Deliv Rev 63(12):1042–1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engberg AE, Rosengren-Holmberg JP, Chen H, Nilsson B, Lambris JD, Nicholls IA et al (2011) Blood protein-polymer adsorption: implications for understanding complement-mediated hemoincompatibility. J Biomed Mater Res A 94A:74–84

    Article  CAS  Google Scholar 

  • Engstad CS, Gutteberg TJ, Osterud B (1997) Modulation of blood cell activation by four commonly used anticoagulants. Thromb Haemost 77(4):690–696

    Article  CAS  PubMed  Google Scholar 

  • Ettelaie C, Fountain D, Collier M, Elkeeb A, Xiao Y, Maraveyas A (2011) Low molecular weight heparin downregulates tissue factor expression and activity by modulating growth factor receptor-mediated induction of nuclear factor-κB. Biochim Biophys Acta 1812(12):1591–1600

    Article  CAS  PubMed  Google Scholar 

  • Fink H, Hong J, Drotz K, Risberg B, Sanchez J, Sellborn A (2011) An in vitro study of blood compatibility of vascular grafts made of bacterial cellulose in comparison with conventionally-used graft materials. J Biomed Mater Res A [Epub ahead of print]

    Google Scholar 

  • Ghebrehiwet B, Randazzo BP, Dunn JT, Silverberg M, Kaplan AP (1983) Mechanisms of activation of the classical pathway of complement by Hageman factor fragment. J Clin Invest 71(5):1450–1456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong J, Larsson R, Ekdahl KN, Mollnes TE, Nilsson U, Nilsson B (1996) Tubing loops as a model for cardiopulmonary bypass circuits: both the biomaterial and the blood-gas phase interfaces induce complement activation in an in vitro model. J Clin Immunol 16(4):222–229

    Article  CAS  PubMed  Google Scholar 

  • Gorbet MB, Sefton MV (2004) Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes. Biomaterials 25(26):5681–5703

    Article  CAS  PubMed  Google Scholar 

  • Gori AM, Pepe G, Attanasio M, Falciani M, Abbate R, Prisco D et al (1999) Tissue factor reduction and tissue factor pathway inhibitor release after heparin administration. Thromb Haemost 81(4):589–593

    CAS  PubMed  Google Scholar 

  • Grabowski E (1990) Platelet aggregation in flowing blood at a site of injury to an endothelial cell monolayer: quantitation and real-time imaging with the TAB monoclonal antibody. Blood 75(2):390–398

    CAS  PubMed  Google Scholar 

  • Grabowski E, Curran M, Van Cott E (2012) Assessment of a cohort of primarily pediatric patients with a presumptive diagnosis of type 1 von Willebrand disease with a novel high shear rate, non-citrated blood flow device. Thromb Res [Epub ahead of print]

    Google Scholar 

  • Gulla K, Gupta K, Krarup A, Gal P, Schwaeble W, Sim R et al (2010) Activation of mannan-binding lectin-associated serine proteases leads to generation of a fibrin clot. Immunology 129(4):482–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gustafson EK, Elgue G, Hughes RD, Mitry RR, Sanchez J, Haglund U et al (2011) The instant blood-mediated inflammatory reaction characterized in hepatocyte transplantation. Transplantation 91(6):632–638

    Article  CAS  PubMed  Google Scholar 

  • Hamad OA, Ekdahl KN, Nilsson PH, Andersson J, Magotti P, Lambris JD et al (2008) Complement activation triggered by chondroitin sulfate released by thrombin receptor-activated platelets. J Thromb Haemost 6(8):1413–1421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamad OA, Nilsson PH, Wouters D, Lambris JD, Ekdahl KN, Nilsson B (2010a) Complement component C3 binds to activated normal platelets without preceding proteolytic activation and promotes binding to complement receptor 1. J Immunol 185(5):2686–2692

    Article  CAS  Google Scholar 

  • Hamad O, Nilsson P, Lasaosa M, Ricklin D, Lambris J, Nilsson B et al (2010b) Contribution of chondroitin sulfate A to the binding of complement proteins to activated platelets. PLoS One 5(6):e12889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harboe M, Ulvund G, Vien L, Fung M, Mollnes TE (2004) The quantitative role of alternative pathway amplification in classical pathway induced terminal complement activation. Clin Exp Immunol 138(3):439–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hess K, Alzahran SH, Mathai M, Schroeder V, Carter A, Howell G et al (2011) A novel mechanism for hypofibrinolysis in diabetes: the role of complement C3. Diabetologia [Epub ahead of print]

    Google Scholar 

  • Hojima Y, Pierce J, Pisano J (1980) Hageman factor fragment inhibitor in corn seeds: purification and characterization. Thromb Res 20:149–162

    Article  CAS  PubMed  Google Scholar 

  • Hong J, Nilsson Ekdahl K, Reynolds H, Larsson R, Nilsson B (1999a) A new in vitro model to study interaction between whole blood and biomaterials. Studies of platelet and coagulation activation and the effect of aspirin. Biomaterials 20(7):603–611

    Article  CAS  PubMed  Google Scholar 

  • Hong J, Andersson J, Ekdahl KN, Elgue G, Axen N, Larsson R et al (1999b) Titanium is a highly thrombogenic biomaterial: possible implications for osteogenesis. Thromb Haemost 82(1):58–64

    Article  CAS  PubMed  Google Scholar 

  • Hong J, Larsson A, Ekdahl KN, Elgue G, Larsson R, Nilsson B (2001) Contact between a polymer and whole blood: sequence of events leading to thrombin generation. J Lab Clin Med 138(2):139–145

    Article  CAS  PubMed  Google Scholar 

  • Hong J, Azens A, Ekdahl K, Granqvist CG, Nilsson B (2005) Material-specific thrombin generation following contact between metal surfaces and whole blood. Biomaterials 26:1397–1403

    Article  CAS  PubMed  Google Scholar 

  • Hong J, Kurt S, Thor A (2011) A hydrophilic dental implant surface exhibit thrombogenic properties in vitro. Clin Implant Dent Relat Res [Epub ahead of print]

    Google Scholar 

  • Howes J, Richardson V, Smith K, Schroeder V, Somani R, Shore A et al (2012) Complement C3 is a novel plasma clot component with anti-fibrinolytic properties. Diab Vasc Dis Res [Epub ahead of print]

    Google Scholar 

  • Huber-Lang M, Sarma JV, Zetoune FS, Rittirsch D, Neff TA, McGuire SR et al (2006) Generation of C5a in the absence of C3: a new complement activation pathway. Nat Med 12(6):682–687

    Article  CAS  PubMed  Google Scholar 

  • Hussaini B, Treanor P, Healey N, Tilahun D, Srey R, Lu X et al (2009) Evaluation of blood components exposed to coated arterial filters in extracorporeal circuits. Perfusion 24(5):317–323

    Article  PubMed  Google Scholar 

  • Ikeda K, Nagasawa K, Horiuchi T, Tsuru T, Nishizaka H, Niho Y (1997) C5a induces tissue factor activity on endothelial cells. Thromb Haemost 77(2):394–398

    Article  CAS  PubMed  Google Scholar 

  • Johansson U, Olsson A, Gabrielsson S, Nilsson B, Korsgren O (2003) Inflammatory mediators expressed in human islets of Langerhans: implications for islet transplantation. Biochem Biophys Res Commun 308(3):474–479

    Article  CAS  PubMed  Google Scholar 

  • Johansson H, Lukinius A, Moberg L, Lundgren T, Berne C, Foss A et al (2005) Tissue factor produced by endocrine cells of the islets of Langerhans is associated with a negative outcome of clinical islet transplantation. Diabetes 54(6):1755–1762

    Article  CAS  PubMed  Google Scholar 

  • Johnell M, Larsson R, Siegbahn A (2005) The influence of different heparin surface concentrations and antithrombin-binding capacity on inflammation and coagulation. Biomaterials 26(14):1731–1739

    Article  CAS  PubMed  Google Scholar 

  • Jokiranta TS, Westin J, Nilsson B, Ekdahl KN, Hellwage J, Gordon DL et al (2001) Complement C3b interactions with its ligands measured by Biacore equipment: a new powerful and informative method. Int Immunopharmacol 1:495–506

    Article  CAS  PubMed  Google Scholar 

  • Katragadda M, Lambris JD (2006) Expression of compstatin in Escherichia coli: incorporation of unnatural amino acids enhances its activity. Protein Expr Purif 47(1):289–295

    Article  CAS  PubMed  Google Scholar 

  • Keil L, Jimenez E, Guma M, Reyes M, Liguori C, DeBari V (1995) Biphasic response of complement to heparin: fluid-phase generation of neoantigens in human serum and in a reconstituted alternative pathway amplification cycle. Am J Hematol 50(4):254–262

    Article  CAS  PubMed  Google Scholar 

  • Kourtzelis I, Markiewski MM, Doumas M, Rafail S, Kambas K, Mitroulis I et al (2010) Complement anaphylatoxin C5a contributes to hemodialysis-associated thrombosis. Blood 116(4):631–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krarup A, Gulla C, Gál P, Hajela K, Sim R (2008) The action of MBL-associated serine protease 1 (MASP1) on factor XIII and fibrinogen. Biochim Biophys Acta 1784:1294–1300

    Article  CAS  PubMed  Google Scholar 

  • Lachmann PJ, Pangburn MK, Oldroyd RG (1982) Breakdown of C3 after complement activation. Identification of a new fragment C3g, using monoclonal antibodies. J Exp Med 156(1):205–216

    Article  CAS  PubMed  Google Scholar 

  • Lappegård K, Fung M, Bergseth G, Riesenfeld J, Lambris J, Videm V et al (2004) Effect of complement inhibition and heparin coating on artificial surface-induced leukocyte and platelet activation. Ann Thorac Surg 77(3):932–941

    Article  PubMed  Google Scholar 

  • Lappegård K, Riesenfeld J, Brekke O, Bergseth G, Lambris J, Mollnes T (2005) Differential effect of heparin coating and complement inhibition on artificial surface-induced eicosanoid production. Ann Thorac Surg 79(3):917–923

    Article  PubMed  Google Scholar 

  • Lappegård KT, Bergseth G, Riesenfeld J, Pharo A, Magotti P, Lambris JD et al (2008) The artificial surface-induced whole blood inflammatory reaction revealed by increases in a series of chemokines and growth factors is largely complement dependent. J Biomed Mater Res A 87(1):129–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsson R, Elgue G, Larsson A, Ekdahl KN, Nilsson UR, Nilsson B (1997) Inhibition of complement activation by soluble recombinant CR1 under conditions resembling those in a cardiopulmonary circuit: reduced up-regulation of CD11b and complete abrogation of binding of PMNs to the biomaterial surface. Immunopharmacology 38(1–2):119–127

    Article  CAS  PubMed  Google Scholar 

  • Lindorfer M, Pawluczkowycz A, Peek E, Hickman K, Taylor R, Parker CJ (2010) A novel approach to preventing the hemolysis of paroxysmal nocturnal hemoglobinuria: both complement-mediated cytolysis and C3 deposition are blocked by a monoclonal antibody specific for the alternative pathway of complement. Blood 115(11):2283–2291

    Article  CAS  PubMed  Google Scholar 

  • Logue GL (1977) Effect of heparin on complement activation and lysis of paroxysmal nocturnal hemoglobinuria (PNH) red cells. Blood 50(2):239–247

    CAS  PubMed  Google Scholar 

  • Mahoney W, Hermodson M, Jones B, Powers D, Corfman R, Reeck G (1984) Amino acid sequence and secondary structural analysis of the corn inhibitor of trypsin and activated Hageman Factor. J Biol Chem 259(13):8412–8416

    CAS  PubMed  Google Scholar 

  • Mangsbo SM, Sanchez J, Anger K, Lambris JD, Ekdahl KN, Loskog AS et al (2009) Complement activation by CpG in a human whole blood loop system: mechanisms and immunomodulatory effects. J Immunol 183(10):6724–6732

    Article  CAS  PubMed  Google Scholar 

  • Matsushita M, Thiel S, Jensenius J, Terai I, Fujita T (2000) Proteolytic activities of two types of mannose-binding ­lectin-associated serine protease. J Immunol 165:2637–2642

    Article  CAS  PubMed  Google Scholar 

  • Moberg L, Johansson H, Luknius A, Berne C, Foss A, Källen R et al (2002) Production of tissue factor by pancreatic islet cells as a trigger of detrimental thrombotic reactions in clinical islet transplantation. Lancet 360:2039–2045

    Article  CAS  PubMed  Google Scholar 

  • Moberg L, Olsson A, Berne C, Felldin M, Foss A, Kallen R et al (2003) Nicotinamide inhibits tissue factor expression in isolated human pancreatic islets: implications for clinical islet transplantation. Transplantation 76(9):1285–1288

    Article  CAS  PubMed  Google Scholar 

  • Moberg L, Korsgren O, Nilsson B (2005) Neutrophilic granulocytes are the predominant cell type infiltrating pancreatic islets in contact with ABO-compatible blood. Clin Exp Immunol 142(1):125–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mollnes TE, Riesenfeld J, Garred P, Nordstrom E, Hogasen K, Fosse E et al (1995) A new model for evaluation of biocompatibility: combined determination of neoepitopes in blood and on artificial surfaces demonstrates reduced complement activation by immobilization of heparin. Artif Organs 19(9):909–917

    Article  CAS  PubMed  Google Scholar 

  • Mollnes TE, Brekke OL, Fung M, Fure H, Christiansen D, Bergseth G et al (2002) Essential role of the C5a receptor in E. coli-induced oxidative burst and phagocytosis revealed by a novel lepirudin-based human whole blood model of inflammation. Blood 100(5):1869–1877

    CAS  PubMed  Google Scholar 

  • Nilsson B, Larsson R, Hong J, Elgue G, Ekdahl KN, Sahu A et al (1998) Compstatin inhibits complement and cellular activation in whole blood in two models of extracorporeal circulation. Blood 92(5):1661–1667

    CAS  PubMed  Google Scholar 

  • Nilsson B, Ekdahl KN, Mollnes TE, Lambris JD (2007) The role of complement in biomaterial-induced inflammation. Mol Immunol 44(1–3):82–94

    Article  CAS  PubMed  Google Scholar 

  • Nilsson P, Engberg A, Bäck J, Faxälv L, Lindahl T, Nilsson B et al (2010) The creation of an antithrombotic surface by apyrase immobilization. Biomaterials 31(16):4484–4491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsson B, Nilsson Ekdahl K, Korsgren O (2011) Control of IBMIR (Instant Blood-Mediated Inflammatory Reaction) to improve islets of Langerhans engraftment. Curr Opin Organ Transplant 16(6):620–626

    Article  CAS  PubMed  Google Scholar 

  • Ozmen L, Ekdahl KN, Elgue G, Larsson R, Korsgren O, Nilsson B (2002) Inhibition of thrombin abrogates the instant blood-mediated inflammatory reaction triggered by isolated human islets: possible application of the thrombin inhibitor melagatran in clinical islet transplantation. Diabetes 51(6):1779–1784

    Article  CAS  PubMed  Google Scholar 

  • Patston P, Gettins P, Beechem J, Schapira M (1991) Mechanism of serpin action: evidence that C1 inhibitor functions as a suicide substrate. Biochemistry 30(36):8876–8882

    Article  CAS  PubMed  Google Scholar 

  • Ratner BD (2007) The catastrophe revisited: blood compatibility in the 21st century. Biomaterials 28(34):5144–5147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ritis K, Doumas M, Mastellos D, Micheli A, Giaglis S, Magotti P et al (2006) A novel C5a receptor-tissue factor cross-talk in neutrophils links innate immunity to coagulation pathways. J Immunol 177(7):4794–4802

    Article  CAS  PubMed  Google Scholar 

  • Schousboe I, Nystrøm BT, Hansen GH (2008) Differential binding of factor XII and activated factor XII to soluble and immobilized fibronectin–localization of the Hep-1/Fib-1 binding site for activated factor XII. FEBS J 275(20):5161–5172

    Article  CAS  PubMed  Google Scholar 

  • Selborn A, Andersson M, Fant C, Gretzer C, Elwing H (2003) Methods for research on immune complement activation on modified sensor surfaces. Colloids Surf B: Biointerfaces 27:295–301

    Article  Google Scholar 

  • Seyfert UT, Biehl V, Schenk J (2002) In vitro hemocompatibility testing of biomaterials according to the ISO 10993–4. Biomol Eng 19(2–6):91–96

    Article  CAS  PubMed  Google Scholar 

  • Shankar R, de la Motte CA, Poptic EJ, DiCorleto PE (1994) Thrombin receptor-activating peptides differentially stimulate platelet-derived growth factor production, monocytic cell adhesion, and E-selectin expression in human umbilical vein endothelial cells. J Biol Chem 269(19):13936–13941

    CAS  PubMed  Google Scholar 

  • Sinn S, Scheuermann T, Deichelbohrer S, Ziemer G, Wendel HP (2011) A novel in vitro model for preclinical testing of the hemocompatibility of intravascular stents according to ISO 10993–4. J Mater Sci Mater Med 22(6):1521–1528

    Article  CAS  PubMed  Google Scholar 

  • Strey CW, Markiewski M, Mastellos D, Tudoran R, Spruce LA, Greenbaum LE et al (2003) The proinflammatory mediators C3a and C5a are essential for liver regeneration. J Exp Med 198(6):913–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor F, Müller-Eberhard H (1970) Qualitative description of factors involved in the retraction and lysis of dilute whole blood clots and in the aggregation and retraction of platelets. J Clin Invest 49(1):2068–2085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tengvall P, Askendal A, Lundstrom I (2001) Ellipsometric in vitro studies on the activation of complement by human immunoglobulins M and G after adsorption to methylated silicon. Colloids Surf B: Biointerfaces 20(1):51–62

    Article  CAS  PubMed  Google Scholar 

  • Thoman ML, Meuth JL, Morgan EL, Weigle WO, Hugli TE (1984) C3d-K, a kallikrein cleavage fragment of iC3b is a potent inhibitor of cellular proliferation. J Immunol 133(5):2629–2633

    CAS  PubMed  Google Scholar 

  • Thor A, Rasmusson L, Wennerberg A, Thomsen P, Hirsch JM, Nilsson B et al (2007) The role of whole blood in thrombin generation in contact with various titanium surfaces. Biomaterials 28(6):966–974

    Article  CAS  PubMed  Google Scholar 

  • Wettero J, Bengtsson T, Tengvall P (2001) C1q-independent activation of neutrophils by immunoglobulin M-coated surfaces. J Biomed Mater Res 57(4):550–558

    Article  CAS  PubMed  Google Scholar 

  • Wouters D, Wiessenberg H, Hart M, Bruins P, Voskuyl A, Daha M et al (2005) Complexes between C1q and C3 or C4: novel and specific markers for classical complement pathway activation. J Immunol Methods 298:35–45

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Simonovsky FI, Ratner BD, Horbett TA (2005) The role of adsorbed fibrinogen in platelet adhesion to polyurethane surfaces: a comparison of surface hydrophobicity, protein adsorption, monoclonal antibody binding, and platelet adhesion. J Biomed Mater Res A 74(4):722–738

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Swedish Research Council (VR) 2009–4675, 2009–4462, the Swedish Research Council, and the Swedish Research Council/SSF/Vinnova contract grant number 60761701 and by faculty grants from the Linnæus University. Reagents for preparing heparin-coated surfaces were obtained from Corline Systems AB. We thank Dr. Deborah McClellan for excellent editorial assistance and Mr. Hans Nilsson for preparing the illustrations in Fig. 18.1.

Conflict of Interest StatementThe author Professor R. Larsson is an employee of Corline Systems AB, Uppsala, Sweden. None of the other authors has conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristina N. Ekdahl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ekdahl, K.N., Hong, J., Hamad, O.A., Larsson, R., Nilsson, B. (2013). Evaluation of the Blood Compatibility of Materials, Cells, and Tissues: Basic Concepts, Test Models, and Practical Guidelines. In: Lambris, J., Holers, V., Ricklin, D. (eds) Complement Therapeutics. Advances in Experimental Medicine and Biology, vol 735. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4118-2_18

Download citation

Publish with us

Policies and ethics