Microbial Monitoring During Bioaugmentation with Dehalococcoides

  • Erik A. Petrovskis
  • Wayne R. Amber
  • Christopher B. Walker
Part of the SERDP ESTCP Environmental Remediation Technology book series (SERDP/ESTCP)


Molecular biological tools (MBTs) measure specific biomarkers that are indicators of the ability of bacteria to degrade specific contaminants. Among all MBTs, application of nucleic acid-based tools is the most advanced, and specific tests for the presence and abundance of key dechlorinating (i.e., Dehalococcoides) bacteria, as well as other key contaminant-degrading bacteria, are commercially available. Used in conjunction with contaminant and geochemical data, nucleic acid-based MBTs can be used to: (1) confirm the presence of naturally occurring bacterial populations capable of biodegradation; (2) identify the need for bioaugmentation at a site; and (3) monitor the performance of a bioremediation treatment. Quantitative real-time polymerase chain reaction (qPCR) techniques have been most widely used to quantify key bacteria and the functional genes (e.g., tceA, vcrA and bvcA) responsible for reductive dechlorination processes. This chapter provides a practical introduction into the science behind several MBTs, as well as their value to remedial practitioners for site characterization, remedial technology screening and performance monitoring. Strategies and procedures for groundwater sampling, as well as data interpretation for qPCR, FISH and community profiling techniques are presented.


Microbial Community Vinyl Chloride Reductive Dechlorination Chlorinate Ethene Complete Dechlorination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank Mark Davidson of Geosyntec Consultants for a thoughtful review of the manuscript.


  1. Alvarez-Cohen L. 2007. Application of microarrays and qPCR to identify phylogenetic and fundamental biomarkers diagnostic of microbial communities that biodegrade chlorinated solvents to ethene. SERDP Project ER-1587 Fact Sheet. Accessed June 12, 2012.
  2. Amos BK, Suchomel EJ, Pennell KD, Löffler FE. 2009. Spatial and temporal distributions of Geobacter lovleyi and Dehalococcoides spp. during bioenhanced PCE-DNAPL dissolution. Environ Sci Technol 43:1977–1985.CrossRefGoogle Scholar
  3. Cupples AM. 2008. Real-time PCR quantification of Dehalococcoides populations: Methods and applications. J Microbiol Method 72:1–11.CrossRefGoogle Scholar
  4. Da Silva MLB, Alvarez PJJ. 2008. Exploring the correlation between halorespirer biomarker concentrations and TCE dechlorination rates. J Environ Eng 134:895–901.CrossRefGoogle Scholar
  5. Ellis DE, Lutz EJ, Odom JM, Buchanan RJ, Bartlett CL, Lee MD, Harkness MR, Deweerd KA. 2000. Bioaugmentation for accelerated in situ anaerobic bioremediation. Environ Sci Technol 34:2254–2260.CrossRefGoogle Scholar
  6. ESTCP (Environmental Security Technology Certification Program). 2002. Final evaluation of performance and costs associated with anaerobic dechlorination techniques: Phase 1 site survey (rev 2). Project ER-200125. 135 p. Accessed June 12, 2012.
  7. Fletcher KE, Cruz-Garcia C, Ramaswamy NS, Costanza J, Pennell KD, Löffler FE. 2011. Effects of elevated temperatures on Dehalococcoides dechlorination performance and biomarker gene and transcript quantification. Environ Sci Technol 45:712–718.CrossRefGoogle Scholar
  8. He J, Ritalahti KM, Yang K-L, Koenigsberg SS, Löffler FE. 2003. Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nat 424:62–65.CrossRefGoogle Scholar
  9. Hendrickson ER, Payne JA, Young RM, Starr MG, Perry MP, Fahnestock S, Ellis DE, Ebersole RC. 2002. Molecular analysis of Dehalococcoides16S ribosomal DNA from chloroethene-contaminated sites throughout North America and Europe. Appl Environ Microbiol 68:485–495.CrossRefGoogle Scholar
  10. Holmes VF, He J, Lee PKH, Alvarez-Cohen L. 2006. Discrimination of multiple Dehalococcoides strains in a trichloroethene enrichment by quantification of their reductive dehalogenase genes. Appl Environ Microbiol 72:5877–5883.CrossRefGoogle Scholar
  11. Johnson R. 2007. Fact sheet: Cryogenic collection of complete subsurface samples for molecular biological analysis. SERDP project ER-1559. Accessed June 12, 2012.
  12. Lebrón CA, Acheson C, Dennis P, Druar X, Wilkinson J, Ney E, Major D, Petrovskis EA, Barros N, Yeager C, Löffler FE, Ritalahti K, Hatt J, Edwards E, Duhamel M, and Chan W. 2008. Literature review report: Standardized procedures for use of nucleic acid-based tools. SERDP project ER-1561. Accessed December 13, 2011.
  13. Lebrón CA, Petrovskis EA, Löffler FE, Henn K. 2011a. Final Report: Application of nucleic acid-based tools for monitoring monitored natural attenuation (MNA), biostimulation and bioaugmentation at chlorinated solvent sites. ESTCP project ER-200518. Accessed December 13, 2011.
  14. Lebrón CA, Petrovskis E, Loeffler FE, Henn K. 2011b. Guidance Document: Application of nucleic acid-based tools for monitoring monitored natural attenuation (MNA), biostimulation, and bioaugmentation at chlorinated solvent sites. ESTCP Project ER-200518. Accessed December 13, 2011.
  15. Lendvay JM, Löffler FE, Dollhopf M, Aiello MR, Daniels G, Fathepure BZ, Gebhard M, Heine R, Helton R, Shi J, Krajmalnik-Brown R, Major CL Jr, Barcelona MJ, Petrovskis E, Hickey R, Tiedje JM, Adriaens P. 2003. Bioreactive barriers: Bioaugmentation and biostimulation for chlorinated solvent remediation. Environ Sci Technol 37:1422–1431.CrossRefGoogle Scholar
  16. Liu W, Marsh T, Cheng H, and Forney L. 1997. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63:4516–4522.Google Scholar
  17. Löffler FE, Sun Q, Li J, Tiedje JM. 2000. 16S rRNA gene-based detection of tetrachloroethene-dechlorinating Desulfuromonas and Dehalococcoides species. Appl Environ Microbiol 66:1369–1374.CrossRefGoogle Scholar
  18. Lookman R, Paulus D, Marnette E, Pijls C, Ryngaert A, Diels L, Volkering F. 2007. Ground water transfer initiates complete reductive dechlorination in a PCE-contaminated aquifer. Ground Water Monitor Remediat 3:65–74.CrossRefGoogle Scholar
  19. Lu X, Wilson JT, Kampbell DH. 2006. Relationship between Dehalococcoides DNA in ground water and rates of reductive dechlorination at field scale. Water Res 40:3131–3140.CrossRefGoogle Scholar
  20. Lu X, Wilson JT, Kampbell DH. 2009. Comparison of an assay for Dehalococcoides DNA and a microcosm study in predicting reductive dechlorination of chlorinated ethenes in the field. Environ Pollut 157:809–815.CrossRefGoogle Scholar
  21. Madigan MT, Martinko JM, and Parker J. 2003. Brock Biology of Microorganisms. Tenth edition, Pearson Education, NJ, USA.Google Scholar
  22. Major DW, McMaster ML, Cox EE, Edwards EA, Dworatzek SM, Hendrickson ER, Starr MG, Payne JA, Buonamici LW. 2002. Field demonstration of successful bioaugmentation to achieve dechlorination of tetrachloroethene to ethene. Environ Sci Technol 36:5106–5116.CrossRefGoogle Scholar
  23. Peacock AD, Chang YJ, Istok JD, Krumholtz L, Geyer R, Kinstall B, Watson D, Sublette KL, White DC. 2004. Utilization of microbial biofilms as monitors of bioremediation. Microbial Ecol 473:284.Google Scholar
  24. Polz MF, Cavanaugh CM. 1998. Bias in template-to-product ratios in multitemplate PCR. Appl Environ Microbiol 64:3724–3730.Google Scholar
  25. Puls RW, Barcelona MJ. 1996. Low-flow (minimal drawdown) ground water sampling procedures. USEPA, Ground Water Issue, EPA/540/S-95/504:1–12.Google Scholar
  26. Regeard C, Maillard J, Holliger C. 2004. Development of degenerate and specific PCR primers for the detection and isolation of known and putative chloroethene reductive dehalogenase genes. J Microbiol Method 56:107–118.CrossRefGoogle Scholar
  27. Regenesis. 2011. Case studies for enhanced aerobic bioremediation. Accessed May 2011.
  28. Reysenbach A-L, Giver LJ, Wickham GS, Pace NR. 1992. Differential amplification of rRNA genes by polymerase chain reaction. Appl Environ Microbiol 58:3417–3418.Google Scholar
  29. Ritalahti KM, Löffler FE, Rasch EE, Koenigsberg SS. 2005. Bioaugmentation for chlorinated ethene detoxification: Bioaugmentation and molecular diagnostics in the bioremediation of chlorinated ethene-contaminated sites. Ind Biotechnol 1:114–118.CrossRefGoogle Scholar
  30. Ritalahti KM, Amos BK, Sung Y, Wu Q, Koenigsberg SS, Löffler FE. 2006. Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides strains. Appl Environ Microbiol 72: 2765–2774.CrossRefGoogle Scholar
  31. Ritalahti KM, Hatt JK, Lugmayr V, Henn K, Petrovskis EA, Ogles DM, Davis GA, Yeager CM, Lebrón CA, Löffler FE. 2010. Comparing on-site to off-site collection for Dehalococcoides biomarker gene quantification to predict in situ chlorinated ethene detoxification potential. Environ Sci Technol 44:5127–5133.CrossRefGoogle Scholar
  32. SERDP and ESTCP (Strategic Environmental Research and Development Program and Environmental Security Technology Certification Program). 2005. Research and Development Needs for the Environmental Remediation Application of Molecular Biological Tools. SERDP and ESTCP, Arlington, VA, US. Accessed December 13, 2011.
  33. Stroo HF, Leeson A, Shepard AJ, Koenigsberg SS, Casey CC. 2006. Monitored natural attenuation forum: Environmental remediation applications of molecular biological tools. Remediat J 16:125–137.CrossRefGoogle Scholar
  34. USEPA (U.S. Environmental Protection Agency). 2009. DNAPL remediation: Selected projects where regulatory closure goals have been achieved. 542-R-09-008. Accessed December 13, 2011.
  35. van der Zaan B, Hannes F, Hoekstra N, Rijnaarts H, de Vos WM, Smidt H, Gerritse J. 2010. Correlation of Dehalococcoides 16S rRNA and chloroethene reductive dehalogenase genes to different geochemcial conditions in chloroethene-contaminated groundwater. Appl Environ Microbiol 76:843–850.CrossRefGoogle Scholar
  36. Yang Y, Zeyer J. 2003. Specific detection of Dehalococcoides species by fluorescence in situ hybridization with 16S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 69:2879–2883.CrossRefGoogle Scholar
  37. Yeskis D, Zavala B. 2002. Ground-water sampling guidelines for superfund and RCRA project managers. Ground Water Forum Issue Paper EPA 542-S-02-001:1–53.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Erik A. Petrovskis
    • 1
  • Wayne R. Amber
    • 1
  • Christopher B. Walker
    • 2
  1. 1.Geosyntec Consultants Inc.Ann ArborUSA
  2. 2.Geosyntec Consultants Inc.SeattleUSA

Personalised recommendations