Research Needs for Bioaugmentation

  • Laura A. Hug
  • Elizabeth A. Edwards
  • Helen Vrionis
  • David W. Major
Part of the SERDP ESTCP Environmental Remediation Technology book series (SERDP/ESTCP)


Bioaugmentation represents a remarkable success story of applied research, and future research should lead to more successful applications. This chapter provides an introduction to the future potential of bioaugmentation (and bioremediation in general), and seeks to identify the research needs that, if addressed, will help realize this potential. First, a discussion of bioremediation at the molecular, organismal, community and ecosystem scales is presented. Cultivating a deeper understanding and/or developing new techniques at any of these levels may lead to advances and novel discoveries, and some future initiatives are suggested. Three linchpin concepts that will likely direct the future of bioremediation are examined in detail: niche specialization as a means to enhance bioremediation specificity; microcosms as valuable tools for directed research; and the enrichment paradox, which enacts a balance between research ideals, regulatory requirements and remediation activities. From these three concepts, an optimal scenario for successful bioremediation is proposed. Some practical applied research needs are outlined, and finally, future perspectives are described. While not presently feasible or in practice, these ideas give hints as to what may eventually be possible within the field of bioremediation.


Enrichment Culture Vinyl Chloride Reductive Dechlorination Dechlorination Rate Reductive Dehalogenase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adrian L. 2009. ERC-group microflex: Microbiology of Dehalococcoides-like Chloroflexi. Rev Environ Sci Biotechnol 8:1569–1705.CrossRefGoogle Scholar
  2. Adrian L, Rahnenfuhrer J, Gobom J, Holscher T. 2007. Identification of a chlorobenzene reductive dehalogenase in Dehalococcoides sp. strain CBDB1. Appl Environ Microbiol 73:7717–7724.CrossRefGoogle Scholar
  3. Ahsanul Islam M, Edwards EA, Mahadevan R. 2010. Characterizing the metabolism of Dehalococcoides with a constraint-based model. PLoS Comput Biol 6:e1000887. doi: 10.1371/journal.pcbi.1000887.CrossRefGoogle Scholar
  4. Arora P K, Kumar M, Chauhan A, Raghava GP, Jain RK. 2009. OxDBase: A database of oxygenases involved in biodegradation. BMC Res Notes 2:doi: 10.1186/1756-0500-2-67.
  5. Bisaillon A, Beaudet R, Lepine F, Deziel E, Villemur R. 2010. Identification and characterization of a novel CprA reductive dehalogenase specific to highly chlorinated phenols from Desulfitobacterium hafniense strain PCP-1. Appl Environ Microbiol 76:7536–7540.CrossRefGoogle Scholar
  6. Bosma T, Damborsky J, Stucki G, Janssen DB. 2002. Biodegradation of 1,2,3-trichloropropane through directed evolution and heterologous expression of a haloalkane dehalogenase gene. Appl Environ Microbiol 68:3582–3587.CrossRefGoogle Scholar
  7. Cameron RA, Yeung CW, Greer CW, Gould WD, Mortazavi S, Bedard PL, Morin L, Lortie L, Dinardo O, Kennedy KJ. 2010. The bacterial community structure during bioleaching of a low-grade nickel sulphide ore in stirred-tank reactors at different combinations of temperature and pH. Hydrometall 104:207–215.CrossRefGoogle Scholar
  8. Chan WY, Wong M, Guthrie J, Savchenko AV, Yakunin AF, Pai EF, Edwards EA. 2010. Sequence- and activity-based screening of microbial genomes for novel dehalogenases. Microb Biotechnol 3:107–120.CrossRefGoogle Scholar
  9. Cheng D, He J. 2009. Isolation and characterization of Dehalococcoides sp. strain MB, which dechlorinates tetrachloroethene to trans-1,2-dichloroethene. Appl Environ Microbiol 75:5910–5918.CrossRefGoogle Scholar
  10. Cortez D, Forterre P, Gribaldo S. 2009. A hidden reservoir of integrative elements is the major source of recently acquired foreign genes and ORFans in archaeal and bacterial genomes. Genome Biol 10(6):R65, doi: 10.1186/gb-2009-10-6-r65.CrossRefGoogle Scholar
  11. Da Silva MLB, Daprato RC, Gomez DE, Hughes JB, Ward CH, Alvarez PJJ. 2006. Comparison of bioaugmentation and biostimulation for the enhancement of dense nonaqueous phase liquid source zone bioremediation. Water Environ Res 78:2456–2465.CrossRefGoogle Scholar
  12. Dawson JJ, Iroegbu CO, Maciel H, Paton GI. 2008. Application of luminescent biosensors for monitoring the degradation and toxicity of BTEX compounds in soils. J Appl Microbiol 104:141–151.Google Scholar
  13. De Lorenzo V. 2009. Recombinant bacteria for environmental release: what went wrong and what we have learnt from it. Clin Microbiol Infect 15 (Suppl 1):63–65.CrossRefGoogle Scholar
  14. Dhillon JK, Drew PD, Porter AJ. 1999. Bacterial surface display of an anti-pollutant antibody fragment. Lett Appl Microbiol 28:350–354.CrossRefGoogle Scholar
  15. Duhamel M, Mo K, Edwards EA. 2004. Characterization of a highly enriched Dehalococcoides-containing culture that grows on vinyl chloride and trichloroethene. Appl Environ Microbiol 70:5538–5545.CrossRefGoogle Scholar
  16. Dybas MJ, Tatara GM, Criddle CS. 1995. Localization and characterization of the carbon tetrachloride transformation activity of Pseudomonas sp. Strain KC. Appl Environ Microbiol 61:758–762.Google Scholar
  17. Edwards JS, Ibarra RU, Palsson BO. 2001. In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat Biotechnol 19:125–130.CrossRefGoogle Scholar
  18. El Ichi S, Marzouki MN, Korri-Youssoufi H. 2009. Direct monitoring of pollutants based on an electrochemical biosensor with novel peroxidase (POX1B). Biosens Bioelectron 24:3084–3090.CrossRefGoogle Scholar
  19. Essen SA, Johnsson A, Bylund D, Pedersen K, Lundstrom US. 2007. Siderophore production by Pseudomonas stutzeri under aerobic and anaerobic conditions. Appl Environ Microbiol 73:5857–5864.CrossRefGoogle Scholar
  20. Feist AM, Herrgard MJ, Thiele I, Reed JL, Palsson BO. 2009. Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol 7:129–143.CrossRefGoogle Scholar
  21. Fennell DE, Gossett JM, Zinder S. 1997. Comparison of butyric acid, ethanol, lactic acid, and propionic acid as hydrogen donors for the reductive dechlorination of tetrachloroethene. Environ Sci Technol 31:918–926.CrossRefGoogle Scholar
  22. Freedman DL, Gossett JM. 1989. Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Appl Environ Microbiol 55:2144–2151.Google Scholar
  23. Gibson DG, Glass JI, Lartigue C, Noskov VN, Chuang RY, Algire MA, Benders GA, Montague MG, Ma L, Moodie MM, Merryman C, Vashee S, Krishnakumar R, Assad-Garcia N, Andrews-Pfannkoch C, Denisova EA, Young L, Qi ZQ, Segall-Shapiro TH, Calvey CH, Parmar PP, Hutchison 3rd CA, Smith HO, Venter JC. 2010. Creation of a bacterial cell controlled by a chemically synthesized genome. Sci 329:52–56.CrossRefGoogle Scholar
  24. Grostern A, Chan WW, Edwards EA. 2009a. 1,1,1-trichloroethane and 1,1-dichloroethane reductive dechlorination kinetics and co-contaminant effects in a Dehalobacter-containing mixed culture. Environ Sci Technol 437:6799–6807.CrossRefGoogle Scholar
  25. Grostern A, Edwards EA. 2006. Growth of Dehalobacter and Dehalococcoides spp. during degradation of chlorinated ethanes. Appl Environ Microbiol 72:428–436.CrossRefGoogle Scholar
  26. Grostern A, Edwards EA. 2009b. Characterization of a Dehalobacter coculture that dechlorinates 1,2-dichloroethane to ethene and identification of the putative reductive dehalogenase gene. Appl Environ Microbiol 75:2684–2693.CrossRefGoogle Scholar
  27. Hafenbradl D, Keller M, Dirmeier R, Rachel R, Rossnagel P, Burggraf S, Huber H, Stetter KO. 1996. Ferroglobus placidus gen nov, sp nov, a novel hyperthermophilic archaeum that oxidizes Fe2+ at neutral pH under anoxic conditions. Arch Microbiol 166:308–314.CrossRefGoogle Scholar
  28. Hazen TC, Dubinsky EA, Desantis TZ, Andersen GL, Piceno YM, Singh N, Jansson JK, Probst A, Borglin SE, Fortney JL, Stringfellow WT, Bill M, Conrad ME, Tom LM, Chavarria KL, Alusi TR, Lamendella R, Joyner DC, Spier C, Baelum J, Auer M, Zemla ML, Chakraborty R, Sonnenthal EL, D’haeseleer P, Holman HYN, Osman S, Lu ZM, Van Nostrand JD, Deng Y, Zhou JZ, Mason OU. 2010. Deep-sea oil plume enriches indigenous oil-degrading bacteria. Sci 330:204–208.CrossRefGoogle Scholar
  29. Heimann AC, Batstone DJ, Jakobsen R. 2006. Methanosarcina spp. drive vinyl chloride dechlorination via interspecies hydrogen transfer. Appl Environ Microbiol 72:2942–2949.CrossRefGoogle Scholar
  30. Holliger C, Hahn D, Harmsen H, Ludwig W, Schumacher W, Tindall B, Vazquez F, Weiss N, Zehnder AJ. 1998. Dehalobacter restrictus gen. nov. and sp. nov., a strictly anaerobic bacterium that reductively dechlorinates tetra- and trichloroethene in an anaerobic respiration. Arch Microbiol 169:313–321.CrossRefGoogle Scholar
  31. Ibarra RU, Edwards JS, Palsson BO. 2002. Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nat 420:186–189.CrossRefGoogle Scholar
  32. Johnson DR, Brodie EL, Hubbard AE, Andersen GL, Zinder SH, Alvarez-Cohen L. 2008. Temporal transcriptomic microarray analysis of Dehalococcoides ethenogenes strain 195 during the transition into stationary phase. Appl Environ Microbiol 74:2864–2872.CrossRefGoogle Scholar
  33. Johnson DR, Nemir A, Andersen GL, Zinder SH, Alvarez-Cohen L. 2009. Transcriptomic microarray analysis of corrinoid responsive genes in Dehalococcoides ethenogenes strain 195. FEMS Microbiol Lett 294:198–206.CrossRefGoogle Scholar
  34. Jones EJP, Voytek MA, Lorah MM, Kirshtein JD. 2006. Characterization of a microbial consortium capable of rapid and simultaneous dechlorination of 1,1,2,2-tetrachloroethane and chlorinated ethane and ethene intermediates. Bioremediation J 10:153–168.CrossRefGoogle Scholar
  35. Krajmalnik-Brown R, Holscher T, Thomson IN, Saunders FM, Ritalahti KM, Löffler FE. 2004. Genetic identification of a putative vinyl chloride reductase in Dehalococcoides sp. strain BAV1. Appl Environ Microbiol 70:6347–6351.CrossRefGoogle Scholar
  36. Krasotkina J, Walters T, Maruya KA, Ragsdale SW. 2001. Characterization of the B12- and iron-sulfur-containing reductive dehalogenase from Desulfitobacterium chlororespirans. J Biol Chem 276:40991–40997.CrossRefGoogle Scholar
  37. Kristensen AH, Henriksen K, Mortensen L, Scow KM, Moldrup P. 2010. Soil physical constraints on intrinsic biodegradation of petroleum vapors in a layered subsurface. Vadose Zone J 9:137–147.CrossRefGoogle Scholar
  38. Kube M, Beck A, Zinder SH, Kuhl H, Reinhardt R, Adrian L. 2005. Genome sequence of the chlorinated compound-respiring bacterium Dehalococcoides species strain CBDB1. Nat Biotechnol 23:1269–1273.CrossRefGoogle Scholar
  39. Langer JJ, Langer K, Barczynski P, Warchol J, Bartkowiak KH. 2009. New “ON-OFF”-type nanobiodetector. Biosens Bioelectron 24:2947–2949.CrossRefGoogle Scholar
  40. Lee JM, Gianchandani EP, Papin JA. 2006. Flux balance analysis in the era of metabolomics. Brief Bioinform 7:140–150.CrossRefGoogle Scholar
  41. Lovley DR, Giovannoni SJ, White DC, Champine JE, Phillips EJ, Gorby YA, Goodwin S. 1993. Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol 159:336–344.CrossRefGoogle Scholar
  42. Macdonell M, Colwell R. 1985. Phylogeny of the Vibrionaceae, and recommendation for two new genera, Listonella and Shewanella. Syst Appl Microbiol 6:171–182.CrossRefGoogle Scholar
  43. Magnuson JK, Stern RV, Gossett JM, Zinder SH, Burris DR. 1998. Reductive dechlorination of tetrachloroethene to ethene by a two-component enzyme pathway. Appl Environ Microbiol 64:1270–1275.Google Scholar
  44. Mahadevan R, Bond DR, Butler JE, Esteve-Nunez A, Coppi MV, Palsson BO, Schilling CH, Lovley DR. 2006. Characterization of metabolism in the Fe(III)-reducing organism Geobacter sulfurreducens by constraint-based modeling. Appl Environ Microbiol 72:1558–1568.CrossRefGoogle Scholar
  45. Maillard J, Regeard C, Holliger C. 2005. Isolation and characterization of Tn-Dha1, a transposon containing the tetrachloroethene reductive dehalogenase of Desulfitobacterium hafniense strain TCE1. Environ Microbiol 7:107–117.CrossRefGoogle Scholar
  46. Maillard J, Schumacher W, Vazquez F, Regeard C, Hagen WR, Holliger C. 2003. Characterization of the corrinoid iron-sulfur protein tetrachloroethene reductive dehalogenase of Dehalobacter restrictus. Appl Environ Microbiol 69:4628–4638.CrossRefGoogle Scholar
  47. Manchester MJ, Hug LA, Zarek M, Zila A, Edwards EA. 2012. Discovery of a trans-dichloroethene respiring Dehalogenimonas in the 1,1,2,2-Tetrachloroethane-dechlorinating WBC-2 consortium. Appl Environ Microbiol doi: 10.1128/AEM.00384-12.Google Scholar
  48. Marzorati M, De Ferra F, Van Raemdonck H, Borin S, Allifranchini E, Carpani G, Serbolisca L, Verstraete W, Boon N, Daffonchio D. 2007. A novel reductive dehalogenase, identified in a contaminated groundwater enrichment culture and in Desulfitobacterium dichloroeliminans strain DCA1 is linked to dehalogenation of 1,2-dichloroethane. Appl Environ Microbiol 73:2990–2999.CrossRefGoogle Scholar
  49. Maymó-Gatell X, Chien Y, Gossett JM, Zinder SH. 1997. Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Sci 276:1568–1571.CrossRefGoogle Scholar
  50. McGuire TM, McDade JM, Newell CJ. 2006. Performance of DNAPL source depletion technologies at 59 chlorinated solvent-impacted sites. Ground Water Monit Remediat 26:73–84.CrossRefGoogle Scholar
  51. McMurdie PJ, Behrens SF, Holmes S, Spormann AM. 2007. Unusual codon bias in vinyl chloride reductase genes of Dehalococcoides species. Appl Environ Microbiol 73:2744–2747.CrossRefGoogle Scholar
  52. McMurdie PJ, Behrens SF, Muller JA, Goke J, Ritalahti KM, Wagner R, Goltsman E, Lapidus A, Holmes S, Löffler FE, Spormann A M. 2009. Localized plasticity in the streamlined genomes of vinyl chloride respiring Dehalococcoides. PLoS Genet 5:e1000714.CrossRefGoogle Scholar
  53. McMurdie PJ, Hug LA, Edwards EA, Holmes S, Spormann AM. 2011. Site-specific mobilization of vinyl chloride respiration islands by a mechanism common in Dehalococcoides. BMC Genomics 12:287.CrossRefGoogle Scholar
  54. Miller E, Wohlfarth G, Diekert G. 1998. Purification and characterization of the tetrachloroethene reductive dehalogenase of strain PCE-S. Arch Microbiol 169:497–502.CrossRefGoogle Scholar
  55. Moe WM, Yan J, Nobre MF, Da Costa MS, Rainey FA. 2009. Dehalogenimonas lykanthroporepellens gen. nov., sp. nov., a reductively dehalogenating bacterium isolated from chlorinated solvent-contaminated groundwater. Int J Syst Evol Microbiol 59(Pt 11):2692–2697.CrossRefGoogle Scholar
  56. Morris RM, Fung JM, Rahm BG, Zhang S, Freedman DL, Zinder SH, Richardson RE. 2007. Comparative proteomics of Dehalococcoides spp. reveals strain-specific peptides associated with activity. Appl Environ Microbiol 73:320–326.CrossRefGoogle Scholar
  57. Muller JA, Rosner BM, Von Abendroth G, Meshulam-Simon G, Mccarty PL, Spormann AM. 2004. Molecular identification of the catabolic vinyl chloride reductase from Dehalococcoides sp. strain VS and its environmental distribution. Appl Environ Microbiol 70:4880–4888.CrossRefGoogle Scholar
  58. N’guessan AL, Elifantz H, Nevin KP, Mouser PJ, Methe B, Woodard TL, Manley K, Williams KH, Wilkins MJ, Larsen JT, Long PE, Lovley DR. 2010. Molecular analysis of phosphate limitation in Geobacteraceae during the bioremediation of a uranium-contaminated aquifer. ISME J 4:253–266.CrossRefGoogle Scholar
  59. Nakamura K, Mizumoto M, Ueno T, Hiroaki I. 2006. Cloning and analysis of trichloroethene reductive dehalogenase gene and its detection by quantitative real-time PCR. Environ Eng Res 43:119–125.Google Scholar
  60. Nalinakumari B, Cha W, Fox P. 2010. Effects of primary substrate concentration on NDMA transport during simulated aquifer recharge. J Environ Eng 136:363–370.CrossRefGoogle Scholar
  61. Nebe J, Baldwin BR, Kassab RL, Nies L, Nakatsu CH. 2009. Quantification of aromatic oxygenase genes to evaluate enhanced bioremediation by oxygen releasing materials at a gasoline-contaminated site. Environ Sci Technol 43:2029–2034.CrossRefGoogle Scholar
  62. Nicolau E, Kuhn L, Marchal R, Jouanneau Y. 2009. Proteomic investigation of enzymes involved in 2-ethylhexyl nitrate biodegradation in Mycobacterium austroafricanum IFP 2173. Res Microbiol 160:838–847.CrossRefGoogle Scholar
  63. Oh YK, Palsson BO, Park SM, Schilling CH, Mahadevan R. 2007. Genome-scale reconstruction of metabolic network in Bacillus subtilis based on high-throughput phenotyping and gene essentiality data. J Biol Chem 282:28791–28799.CrossRefGoogle Scholar
  64. Rahm BG, Richardson RE. 2008. Correlation of respiratory gene expression levels and pseudo-steady-state PCE respiration rates in Dehalococcoides ethenogenes. Environ Sci Technol 42:416–421.CrossRefGoogle Scholar
  65. Reeves T, Miller JT, Johnson PC, Balshaw-Biddle K, Oubre CL, Ward CH. 1999. Modular remediation testing system. AATDF monographs. Lewis Publishers, Boca Raton, FL.Google Scholar
  66. Rittmann BE, Krajmalnik-Brown R, Halden RU. 2008. Pre-genomic, genomic and postgenomic study of microbial communities involved in bioenergy. Nat Rev Microbiol 6:604–612.CrossRefGoogle Scholar
  67. Saleem M, Brim H, Hussain S, Arshad M, Leigh MB, Zia Ul H. 2008. Perspectives on microbial cell surface display in bioremediation. Biotechnol Adv 26:151–161.CrossRefGoogle Scholar
  68. Schaefer CE, Lippincott DR, Steffan RJ. 2010. Field-scale evaluation of bioaugmentation dosage for treating chlorinated ethenes. Ground Water Monit Remediat 30:113–124.CrossRefGoogle Scholar
  69. Scheibe TD, Mahadevan R, Fang YL, Garg S, Long PE, Lovley DR. 2009. Coupling a genome-scale metabolic model with a reactive transport model to describe in situ uranium bioremediation. Microb Biotechnol 2:274–286.CrossRefGoogle Scholar
  70. Schneiker S, Martins Dos Santos VA, Bartels D, Bekel T, Brecht M, Buhrmester J, Chernikova TN, Denaro R, Ferrer M, Gertler C, Goesmann A, Golyshina OV, Kaminski F, Khachane AN, Lang S, Linke B, Mchardy AC, Meyer F, Nechitaylo T, Puhler A, Regenhardt D, Rupp O, Sabirova JS, Selbitschka W, Yakimov MM, Timmis KN, Vorholter FJ, Weidner S, Kaiser O, Golyshin PN. 2006. Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis. Nat Biotechnol 24:997–1004.CrossRefGoogle Scholar
  71. Schuetz R, Kuepfer L, Sauer U. 2007. Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol Syst Biol 3:119.CrossRefGoogle Scholar
  72. Selesi D, Jehmlich N, Von Bergen M, Schmidt F, Rattei T, Tischler P, Lueders T, Meckenstock RU. 2010. Combined genomic and proteomic approaches identify gene clusters involved in anaerobic 2-methylnaphthalene degradation in the sulfate-reducing enrichment culture N47. J Bacteriol 192:295–306.CrossRefGoogle Scholar
  73. Seshadri R, Adrian L, Fouts DE, Eisen JA, Phillippy AM, Methe BA, Ward NL, Nelson WC, Deboy RT, Khouri HM, Kolonay JF, Dodson RJ, Daugherty SC, Brinkac LM, Sullivan SA, Madupu R, Nelson KE, Kang KH, Impraim M, Tran K, Robinson JM, Forberger HA, Fraser CM, Zinder SH, Heidelberg JF. 2005. Genome sequence of the PCE-dechlorinating bacterium Dehalococcoides ethenogenes. Sci 307:105–108.CrossRefGoogle Scholar
  74. Sharp JO, Wood TK, Alvarez-Cohen L. 2005. Aerobic biodegradation of N-nitrosodimethylamine (NDMA) by axenic bacterial strains. Biotechnol Bioeng 89:608–618.CrossRefGoogle Scholar
  75. Sobecky PA, Coombs JM. 2009. Horizontal gene transfer in metal and radionuclide contaminated soils. Methods Mol Biol 532:455–472.CrossRefGoogle Scholar
  76. Suenaga H, Mizuta S, Miyazaki K. 2009. The molecular basis for adaptive evolution in novel extradiol dioxygenases retrieved from the metagenome. FEMS Microbiol Ecol 69:472–480.CrossRefGoogle Scholar
  77. Tsukagoshi N, Ezaki S, Uenaka T, Suzuki N, Kurane R. 2006. Isolation and transcriptional analysis of novel tetrachloroethene reductive dehalogenase gene from Desulfitobacterium sp. strain KBC1. Appl Microbiol Biotechnol 69:543–553.CrossRefGoogle Scholar
  78. Van De Pas BA, Smidt H, Hagen WR, Van Der Oost J, Schraa G, Stams AJ, De Vos WM. 1999. Purification and molecular characterization of ortho-chlorophenol reductive dehalogenase, a key enzyme of halorespiration in Desulfitobacterium dehalogenans. J Biol Chem 274:20287–20292.CrossRefGoogle Scholar
  79. Varma A, Boesch BW, Palsson BO. 1993. Stoichiometric interpretation of Escherichia coli glucose catabolism under various oxygenation rates. Appl Environ Microbiol 59:2465–2473.Google Scholar
  80. Wei D, Bailey MJ, Andrew P, Ryhanen T. 2009. Electrochemical biosensors at the nanoscale. Lab Chip 9:2123–2131.CrossRefGoogle Scholar
  81. West KA, Johnson DR, Hu P, Desantis TZ, Brodie EL, Lee PK, Feil H, Andersen GL, Zinder SH, Alvarez-Cohen L. 2008. Comparative genomics of Dehalococcoides ethenogenes 195 and an enrichment culture containing unsequenced Dehalococcoides strains. Appl Environ Microbiol 74:3533–3540.CrossRefGoogle Scholar
  82. Yan J, Rash BA, Rainey FA, Moe WM. 2009. Isolation of novel bacteria within the Chloroflexi capable of reductive dechlorination of 1,2,3-trichloropropane. Environ Microbiol 11:833–843.CrossRefGoogle Scholar
  83. Yu G, Zheng Z, Wang Q, Fu Y, Zhuang J, Sun X, Wang Y. 2010. Spatiotemporal pattern of soil respiration of terrestrial ecosystems in China: The development of a geostatistical model and its simulation. Environ Sci Technol 44:6074–6080.CrossRefGoogle Scholar
  84. Zawadzka AM, Vandecasteele FP, Crawford RL, Paszczynski AJ. 2006. Identification of siderophores of Pseudomonas stutzeri. Can J Microbiol 52:1164–1176.CrossRefGoogle Scholar
  85. Zhao J, Fang Y, Scheibe TD, Lovley DR, Mahadevan R. 2010. Modeling and sensitivity analysis of electron capacitance for Geobacter in sedimentary environments. J Contam Hydrol 112:30–44.CrossRefGoogle Scholar
  86. Zhou J. 2003. Microarrays for bacterial detection and microbial community analysis. Curr Opin Microbiol 6:288–294.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Laura A. Hug
    • 1
  • Elizabeth A. Edwards
    • 1
  • Helen Vrionis
    • 1
  • David W. Major
    • 2
  1. 1.University of TorontoTorontoCanada
  2. 2.Geosyntec Consultants Inc.GuelphCanada

Personalised recommendations