Skip to main content

Bioaugmentation for Groundwater Remediation: an Overview

  • Chapter
  • First Online:
Bioaugmentation for Groundwater Remediation

Part of the book series: SERDP ESTCP Environmental Remediation Technology ((SERDP/ESTCP))

Abstract

In situ bioremediation (ISB) is an increasingly popular remediation technology, largely due to its relatively low cost. Often ISB can be implemented solely by stimulating the native microorganisms, but in some cases the organisms that can degrade a target pollutant are either absent or their numbers are not sufficient for timely or efficient treatment. In such cases, bioaugmentation can allow use of ISB, or improve the performance or costs of treatment. After an initial period of skepticism during the 1990s, the use of bioaugmentation (the addition of biocatalysts to promote degradation of target pollutants) has increased dramatically over the last decade, especially the addition of inocula containing Dehalococcoides strains that can completely degrade chlorinated ethenes. This chapter summarizes the fundamental principles of bioaugmentation in general, as well as its history, status and future prospects. It is likely that use of bioaugmentation will increase, and be expanded to address other contaminants and use new techniques, such as the development of genetically-engineered microbes and additions of mobile genetic elements such as plasmids. Such expansion will require targeted research built on a solid fundamental understanding of microbiology, biochemistry and genetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhilash PC, Jamil S, Singh N. 2009. Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotechnol Adv 27:474–488.

    CAS  Google Scholar 

  • Adamson DT, McDade JM, Hughes JB. 2003. Inoculation of a DNAPL source zone to initiate reductive dechlorination of PCE. Environ Sci Technol 37:2525–2533.

    CAS  Google Scholar 

  • Amos BK, Suchomel EJ, Pennell KD, Löffler FE. 2008. Microbial activity and distribution during enhanced contaminant dissolution from a NAPL source zone. Water Res 42:2963–2974.

    CAS  Google Scholar 

  • Atagana HI, Haynes RJ, Wallis FM. 2003. Optimization of soil physical and chemical conditions for the bioremediation of creosote-contaminated soil. Biodegradation 14:297–307.

    CAS  Google Scholar 

  • Atlas R. 1993. Bacteria and bioremediation of oil spills. Oceanus 36:71–73.

    Google Scholar 

  • Atlas RM, Bartha R. 1972. Degradation and mineralization of petroleum in sea water: Limitation by nitrogen and phosphorous. Biotechnol Bioeng 14:309–318.

    CAS  Google Scholar 

  • Baldi F, Leonardi V, D’Annibale A, Piccolo A, Zecchini F, Petruccioli M. 2007. Integrated approach of metal removal and bioprecipitation followed by fungal degradation of organic pollutants from contaminated soils. Eur J Soil Biol 43:380–387.

    CAS  Google Scholar 

  • Bamforth S, Singleton I. 2005. Bioremediation of polycyclic aromatic hydrocarbons: Current knowledge and future directions. J Chem Technol Biotechnol 80:723–736.

    CAS  Google Scholar 

  • Barbeau C, Deschenes L, Karamanev D, Comeau Y, Samson R. 1997. Bioremediation of pentachlorophenol-contaminated soil by bioaugmentation using activated soil. Appl Microbiol Biotechnol 48:745–752.

    CAS  Google Scholar 

  • Bathe S, Schwarzenbeck N, Hausner M. 2005. Plasmid-mediated bioaugmentation of activated sludge bacteria in a sequencing batch moving bed reactor using pNB2. Lett Appl Microbiol 41:242–247.

    CAS  Google Scholar 

  • Beck EC. 1979. The Love Canal Tragedy. EPA Journal. January. http://www.epa.gov/history/topics/lovecanal/01.html. Accessed March 15, 2012.

  • Bej AK, Perlin M, Atlas RM. 1991. Effect of introducing genetically engineered microorganisms on soil microbial community diversity. FEMS Microbiol Ecol 86:169–176.

    Google Scholar 

  • Bento FM, Camargo FA, Okeke BC, Frankenberger WT. 2005. Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresour Technol 96:1049–1055.

    CAS  Google Scholar 

  • Boon N, Goris J, De Vos P, Verstraete W, Top EM. 2000. Bioaugmentation of activated sludge by an indigenous 3-chloroaniline-degrading Comamonas testosteroni strain, I2gfp. Appl Environ Microbiol 66:2906–2913.

    CAS  Google Scholar 

  • Bott TL, Kaplan LA. 2002. Autecological properties of 3-chlorobenzoate-degrading bacteria and their population dynamics when introduced into sediments. Microb Ecol 43:199–216.

    CAS  Google Scholar 

  • Bouwer EJ, McCarty PL. 1983. Transformations of halogenated organic compounds under denitrification conditions. Appl Environ Microbiol 45:1295–1299.

    CAS  Google Scholar 

  • Brooksbank AM, Latchford JW, Mudge SM. 2007. Degradation and modification of fats, oils and grease by commercial microbial supplements. World J Microbiol Biotechnol 23:977–985.

    CAS  Google Scholar 

  • Bumpus JA. 1989. Biodegradation of polycyclic hydrocarbons by Phanerochaete chrysosporium. Appl Environ Microbiol 55:154–158.

    CAS  Google Scholar 

  • Button DK, Robertson BR, McIntosh D, Juttner F. 1992. Interactions between marine bacteria and dissolved-phase and beached hydrocarbons after the Exxon Valdez oil spill. Appl Environ Microbiol 58:243–251.

    CAS  Google Scholar 

  • Cases I, de Lorenzo V. 2005. Genetically modified organisms for the environment: Stories of success and failure and what we have learned from them. Int Microbiol 8:213–222.

    CAS  Google Scholar 

  • Cerniglia C. 1992. Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368.

    CAS  Google Scholar 

  • Cherian S, Oliveira MM. 2005. Transgenic plants in phytoremediation: Recent advances and new possibilities. Environ Sci Technol 39:9377–9390.

    CAS  Google Scholar 

  • Cohen Y. 2002. Bioremediation of oil by marine microbial mats. Int Microbiol 5:189–193.

    CAS  Google Scholar 

  • Contreras A, Molin S, Ramos JL. 1991. Conditional-suicide containment system for bacteria which mineralize aromatics. Appl Environ Microbiol 57:1504–1508.

    CAS  Google Scholar 

  • Coppotelli BM, Ibarrolaza A, Del Panno MT, Morelli IS. 2008. Effects of the inoculant strain Sphingomonas paucimobilis 20006FA on soil bacterial community and biodegradation in phenanthrene-contaminated soil. Microb Ecol 55:173–183.

    CAS  Google Scholar 

  • Cupples AM, Spormann AM, McCarty PL. 2003. Growth of a Dehalococcoides-like microorganism on vinyl chloride and cis-dichloroethene as electron acceptors as determined by competitive PCR. Appl Environ Microbiol 69:953–959.

    CAS  Google Scholar 

  • Damborsky J. 1999. Tetrachloroethene-dehalogenating bacteria. Folia Microbiol 44:247–262.

    CAS  Google Scholar 

  • Davison J. 2005. Risk mitigation of genetically modified bacteria and plants designed for bioremediation. J Ind Microbiol Biotechnol 32:639–650.

    CAS  Google Scholar 

  • Deeb RA, Scow KM, Alvarez-Cohen L. 2000. Aerobic MTBE biodegradation: An examination of past studies, current challenges and future research directions. Biodegradation 11:171–186.

    CAS  Google Scholar 

  • Desaint S, Arrault S, Siblot S, Fournier JC. 2003. Genetic transfer of the mcd gene in soil. J Appl Microbiol 95:102–108.

    CAS  Google Scholar 

  • DiStefano TD, Gossett JM, Zinder SH. 1991. Reductive dechlorination of high concentrations of tetrachloroethene to ethene by an anaerobic enrichment culture in the absence of methanogenesis. Appl Environ Microbiol 57:2287–2292.

    CAS  Google Scholar 

  • Duhamel M, Wehr SD, Yu L, Rizvi H, Seepersad D, Dworatzek S, Cox EE, Edwards EA. 2002. Comparison of anaerobic dechlorinating enrichment cultures maintained on tetrachloroethene, trichloroethene, cis-dichloroethene and vinyl chloride. Water Res 36:4193–4202.

    CAS  Google Scholar 

  • Dybas MJ, Barcelona M, Bezborodnikov S, Davies S, Forney L, Heuer H, Kawka O, Mayotte T, Sepúlveda-Torres L, Smalla K, Sneathen M, Tiedje J, Voice T, Wiggert DC, Witt ME, Criddle CS. 1998. Pilot-scale evaluation of bioaugmentation for in-situ remediation of a carbon tetrachloride-contaminated aquifer. Environ Sci Technol 32:3598–3611.

    CAS  Google Scholar 

  • Dybas MJ, Hyndman DW, Heine R, Tiedje J, Linning K, Wiggert D, Voice T, Zhao X, Dybas L, Criddle CS. 2002. Development, operation, and long-term performance of a full-scale biocurtain utilizing bioaugmentation. Environ Sci Technol 36:3635–3644.

    CAS  Google Scholar 

  • El Fantroussi S, Agathos SN. 2005. Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr Opin Microbiol 8:268–275.

    CAS  Google Scholar 

  • Ellis DE, Lutz EJ, Odom JM, Buchanan Jr RL, Bartlett CL, Lee MD, Harkness MR, Deweerd KA. 2000. Bioaugmentation for accelerated in situ anaerobic bioremediation. Environ Sci Technol 34:2254–2260.

    CAS  Google Scholar 

  • ESTCP (Environmental Security Technology Cerepsication Program). 2005. Bioaugmentation for Remediation of Chlorinated Solvents: Technology Development, Status, and Research Needs. ESTCP, Arlington, VA, USA. Available at: http://www.serdp-estcp.org/Tools-and-Training/Environmental-Restoration/Groundwater-Plume-Treatment/Bio-augmentation-for-Remediation-of-Chlorinated-Solvents-Technology-Development-Status-and-Research-Needs. Accessed March 15, 2012.

  • EU (European Union). 2001. Directive 2001/18/EC of the European Parliament and of the Council; March 12, 2001; On the Deliberate Release into the Environment of Genetically Modified Organisms and Repealing Council Directive 90/220/EEC. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:2001L0018:20031107:EN:PDF. Accessed June 18, 2012.

  • Fennell DE, Nijenhuis I, Wilson SF, Zinder SH, Haggblom MM. 2004. Dehalococcoides ethenogenes strain 195 reductively dechlorinates diverse chlorinated aromatic pollutants. Environ Sci Technol 38:2075–2081.

    CAS  Google Scholar 

  • Field J, de Jong E, Costa G, de Bont J. 1992. Biodegradation of polycyclic aromatic hydrocarbons by new isolates of white rot fungi. Appl Environ Microbiol 58:2219–2226.

    CAS  Google Scholar 

  • Finneran KT, Lovley DR. 2001. Anaerobic degradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Environ Sci Technol 35:1785–1790.

    CAS  Google Scholar 

  • Fogel MM, Taddeo AR, Fogel S. 1986. Biodegradation of chlorinated ethenes by a methane-utilizing mixed culture. Appl Environ Microbiol 51:720–724.

    CAS  Google Scholar 

  • Freedman DL, Gossett JM. 1989. Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Appl Environ Microbiol 55:2144–2151.

    CAS  Google Scholar 

  • Garbisu C, Alkorta I. 1999. Utilization of genetically engineered microorganisms (GEMs) for bioremediation. J Chem Technol Biotechnol 74:599–606.

    CAS  Google Scholar 

  • Gentry TJ, Rensing C, Pepper IL. 2004. New approaches for bioaugmentation as a remediation technology. Crit Rev Environ Sci Technol 34:447–494.

    CAS  Google Scholar 

  • Glaser J. 1993. Engineering approaches using bioremediation to treat crude oil-contaminated shoreline following the Exxon Valdez accident in Alaska. In Flathman P, Jerger DE, Exner JH, eds, Bioremediation Field Experience. Lewis Publisher, Boca Raton, FL, USA, Chapter 5.

    Google Scholar 

  • Goldstein RM, Mallory LM, Alexander M. 1985. Reasons for possible failure of inoculation to enhance biodegradation. Appl Environ Microbiol 50:977–983.

    CAS  Google Scholar 

  • Goulding C, Gillen CJ, Bolton E. 1988. Biodegradation of substituted benzenes. J Appl Bacteriol 65:1–5.

    CAS  Google Scholar 

  • Gribble G. 1998. Naturally occurring organohalogen compounds. Acc Chem Res 31:141–152.

    CAS  Google Scholar 

  • Häggblom MM, Youngster LK, Somsamak P, Richnow, HH. 2007. Anaerobic biodegradation of methyl tert-butyl ether (MTBE) and related fuel oxygenates. Adv Appl Microbiol 62:1–20.

    Google Scholar 

  • Hazen T, Tabak H. 2005. Developments in bioremediation of soils and sediments polluted with metals and radionuclides: 2. Field research on bioremediation of metals and radionuclides. Rev Environ Sci Biotechnol 4:157–183.

    CAS  Google Scholar 

  • He J, Ritalahti K, Yang K, Koenigsberg S, Löffler F. 2003. Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nat 424:62–65.

    CAS  Google Scholar 

  • He Q, Sanford R. 2002. Induction characteristics of reductive dehalogenation in the ortho-halophenol-respiring bacterium, Anaeromyxobacter dehalogenans. Biodegradation 13:307–316.

    CAS  Google Scholar 

  • Hendrickson ER, Payne JA, Young RM, Starr MG, Perry MP, Fahnestock S, Ellis DE, Ebersole RC. 2002. Molecular analysis of Dehalococcoides 16 S ribosomal DNA from chloroethene-contaminated sites throughout North America and Europe. Appl Environ Microbiol 68:485–495.

    CAS  Google Scholar 

  • Hesselsoe M, Bjerring ML, Henriksen K, Loll P, Nielsen JL. 2008. Method for measuring substrate preferences by individual members of microbial consortia proposed for bioaugmentation. Biodegradation 19:621–633.

    Google Scholar 

  • Holliger C, Wohlfarth G, Diekert G. 1999. Reductive dechlorination in the energy metabolism of an anaerobic bacteria. FEMS Microbiol Rev 22:383–398.

    Google Scholar 

  • Hood ED, Major DW, Quinn JW, Yoon WS, Gavaskar A, Edwards EA. 2008. Demonstration of enhanced bioremediation in a TCE source area at Launch Complex 34, Cape Canaveral Air Force Station. Ground Water Monit Remediat 28:98–107.

    CAS  Google Scholar 

  • Hristova KR, Lutenegger CM, Scow KM. 2001. Detection and quanepsication of methyl tert-butyl ether-degrading strain PM1 by real-time TaqMan PCR. Appl Environ Microbiol 67:5154–5160.

    CAS  Google Scholar 

  • Hunter WJ, Shaner DL. 2010. Biological remediation of groundwater containing both nitrate and atrazine. Curr Microbiol 60:42–46.

    CAS  Google Scholar 

  • ITRC (Interstate Technology & Regulatory Council). 2008. In Situ Bioremediation of Chlorinated Ethene: DNAPL Source Zones. BioDNAPL-3. Prepared by the Bioremediation of DNAPLs Team.

    Google Scholar 

  • Jacques RJ, Okeke BC, Bento FM, Teixeira AS, Peralba MC, Camargo FA. 2008. Microbial consortium bioaugmentation of a polycyclic aromatic hydrocarbons contaminated soil. Bioresour Technol 99:2637–2643.

    CAS  Google Scholar 

  • Jansson JK, Bjorklof K, Elvang AM, Jorgensen KS. 2000. Biomarkers for monitoring efficacy of bioremediation by microbial inoculants. Environ Pollut 107:217–223.

    CAS  Google Scholar 

  • Johnson DR, Brodie EL, Hubbard AE, Andersen GL, Zinder SH, Alvarez-Cohen L. 2008. Temporal transcriptomic microarray analysis of Dehalococcoides ethenogenes strain 195 during the transition into stationary phase. Appl Environ Microbiol 74:2864–2872.

    CAS  Google Scholar 

  • Juhanson J, Truu J, Heinaru E, Heinaru A. 2007. Temporal dynamics of microbial community in soil during phytoremediation field experiment. J Environ Eng Landsc Manag 15:213–220.

    Google Scholar 

  • Kane A, Vidumsky J, Major DW, Bauer NB. 2005. In-situ bioremediation of a chlorinated solvent residual source in unconsolidated sediments and bedrock using bioaugmentation. In Calabrese EJ, Kostecki PT, Dragun J, eds, Contaminated Soils, Sediments and Water: Science in the Real World 9:45–55.

    Google Scholar 

  • Kappeli O, Auberson L. 1997. The science and intricacy of environmental safety evaluations. Trends Biotechnol 15:342–349.

    CAS  Google Scholar 

  • Keppler F, Borchers R, Pracht J, Rheinberger S, Scholer H. 2002. Natural formation of vinyl chloride in the terrestrial environment. Environ Sci Technol 36:2479–2483.

    CAS  Google Scholar 

  • Khomenkov VG, Shevelev AB, Zhukov VG, Zagustina NA, Bezborodov AM, Popov VO. 2008. Organization of metabolic pathways and molecular-genetic mechanisms of xenobiotic biodegradation in microorganisms: A review. Prikl Biokhim Mikrobiol 44:133–152.

    CAS  Google Scholar 

  • Kiesel B, Muller RH, Kleinsteuber R. 2007. Adaptative potential of alkaliphilic bacteria towards chloroaromatic substrates assessed by a gfp-tagged 2,4-D degradation plasmid. Eng Life Sci 7:361–372.

    CAS  Google Scholar 

  • Kramer U. 2005. Phytoremediation: Novel approaches to cleaning up polluted soils. Curr Opin Biotechnol 16:133–141.

    Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJ. 2004. Rhizoremediation: A beneficial plant-microbe interaction. Mol Plant Microbe Interact 17:6–15.

    CAS  Google Scholar 

  • Lebeau T, Braud A, Jezequel K. 2008. Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: A review. Environ Pollut 153:497–522.

    CAS  Google Scholar 

  • Lee JH, Dolan M, Field J, Istok J. 2010. Monitoring bioaugmentation with single-well push-pull tests in sediment systems contaminated with trichloroethene. Environ Sci Technol 44:1085–1092.

    CAS  Google Scholar 

  • Lee K, Levy E. 1987. Enhanced biodegradation of a light crude oil in sandy beaches. Proceedings, 1987 International Oil Spill Conference, pp 411–416. American Petroleum Institute Publication Number 4452, Washington DC, USA.

    Google Scholar 

  • Lee PK, Macbeth TW, Sorenson Jr KS, Deeb RA, Alvarez-Cohen L. 2008. Quanepsying genes and transcripts to assess the in situ physiology of Dehalococcoides spp. in a trichloroethene-contaminated groundwater site. Appl Environ Microbiol 74:2728–2739.

    CAS  Google Scholar 

  • Leisinger T. 1983. Microorganisms and xenobiotic compounds. Experientia 39:1183–1191.

    CAS  Google Scholar 

  • Lendvay JM, Löffler FE, Dollhopf M, Aiello MR, Daniels G, Fathepure BZ, Gebhard M, Heine R, Helton R, Shi J, Krajmalnik-Brown R, Major CL, Barcelona MJ, Petrovskis E, Tiedje JM, Adriaens P. 2003. Bioreactive barriers: A comparison of bioaugmentation and biostimulation for chlorinated solvent remediation. Environ Sci Technol 37:1422–1431.

    CAS  Google Scholar 

  • Lenski RE. 1993. Evaluating the fate of genetically modified microorganisms in the environment: Are they inherently less fit? Experientia 49:201–209.

    CAS  Google Scholar 

  • Little CD, Palumbo AV, Herbes SE, Lidstrom ME, Tyndall RL, Gilmer PJ. 1988. Trichloroethylene biodegradation by a methane-oxidizing bacterium. Appl Environ Microbiol 54:951–956.

    CAS  Google Scholar 

  • Lopes Ferreira N, Malandain C, Fayolle-Guichard F. 2006. Enzymes and genes involved in the aerobic biodegradation of methyl tert-butyl ether (MTBE). Appl Microbiol Biotechnol 72:252–262.

    CAS  Google Scholar 

  • Maes A, van Raemdonck H, Smith K, Ossieur W, Lebbe L, Verstraete W. 2006. Transport and activity of Desulfitobacterium dichloroeliminans strain DCA1 during bioaugmentation of 1,2-DCA-contaminated groundwater. Environ Sci Technol 40:5544–5552.

    CAS  Google Scholar 

  • Major D, Cox E. 1992. Survey of microbial inoculants for bioremediation and idenepsication of information requirements suitable for the feasibility evaluation and validation of bioremediation. Prepared for the Hazardous Contaminants Branch, Ontario Ministry of the Environment. PIB 2152.

    Google Scholar 

  • Major DW, McMaster ML, Cox EE, Edwards EA, Dworatzek SM, Hendrickson ER, Starr MG, Payne JA, Buonamici LW. 2002. Field demonstration of successful bioaugmentation to achieve dechlorination of tetrachloroethene to ethene. Environ Sci Technol 36:5106–5116.

    CAS  Google Scholar 

  • Margesin R. 2007. Alpine microorganisms: Useful tools for low-temperature bioremediation. J Microbiol 45:281–285.

    CAS  Google Scholar 

  • Mathew M, Tan LR, Su Q, Yang X, Baxter M, Senior E. 2006. Bioremediation of 6%[w/w] diesel-contaminated mainland soil in Singapore: Comparison of different biostimulation and bioaugmentation treatments. Eng Life Sci 6:63–67

    CAS  Google Scholar 

  • May HD, Miller GS, Kjellerup BV, Sowers KR. 2008. Dehalorespiration with polychlorinated biphenyls by an anaerobic ultramicrobacterium. Appl Environ Microbiol 74:2089–2094.

    CAS  Google Scholar 

  • McGechan M, Lewis D. 2002. Transport of particulate and colloid-sorbed contaminants through soil, part 1: General principles. Biosyst Eng 83:255–273.

    Google Scholar 

  • Mehmannavaz R, Prasher SO, Ahmad D. 2002. Subsurface irrigation as a microbial delivery tool for bioaugmentation: Transport, distribution and survival in large packed soil columns. Environ Technol 23:707–717.

    CAS  Google Scholar 

  • Mohn W, Tiedje JM. 1990. Strain DCB-1 conserves energy for growth from reductive dechlorination coupled to formate oxidation. Arch Microbiol 153:267–271.

    CAS  Google Scholar 

  • Morrill PL, Lacrampe-Couloume G, Slater GF, Sleep BE, Edwards EA, McMaster ML, Major DW, Sherwood Lollar B. 2005. Quanepsying chlorinated ethene degradation during reductive dechlorination at Kelly AFB using stable carbon isotopes. J Contam Hydrol 76:279–293.

    CAS  Google Scholar 

  • Morse JJ, Alleman BC, Gossett JM, Zinder SH, Fennell DE, Sewell GW, Vogel CM. 1998. Draft Technical Protocol: A Treatability Test for Evaluating the Potential Applicability of the Reductive Anaerobic Biological in situ Treatment Technology (RABITT) to Remediate Chloroethenes. ESTCP, Arlington, VA, USA. http://serdp-estcp.org/Program-Areas/Environmental-Restoration/Contaminated-Groundwater/ER-199719/ER-199719. Accessed May 31, 2012.

  • Nancharaiah YV, Joshi HM, Hausner M, Venugopalan VP. 2008. Bioaugmentation of aerobic microbial granules with Pseudomonas putida carrying TOL plasmid. Chemosphere 71:30–35.

    CAS  Google Scholar 

  • Newby DT, Josephson KL, Pepper IL. 2000. Detection and characterization of plasmid pJP4 transfer to indigenous soil bacteria. Appl Environ Microbiol 66:290–296.

    CAS  Google Scholar 

  • Newcombe DA, Crowley DE. 1999. Bioremediation of atrazine-contaminated soil by repeated applications of atrazine-degrading bacteria. Appl Microbiol Biotechnol 51:877–882.

    CAS  Google Scholar 

  • Nojiri H, Shintani M, Omori T. 2004. Divergence of mobile genetic elements involved in the distribution of xenobiotic-catabolic capacity. Appl Microbiol Biotechnol 64:154–174.

    CAS  Google Scholar 

  • Oldenhuis R, Vink RL, Janssen DB, Witholt B. 1989. Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase. Appl Environ Microbiol 55:2819–2826.

    CAS  Google Scholar 

  • Otte M-P, Gagnon J, Comeau Y, Matte N, Greer CW, Samson R. 1994. Activation of an indigenous microbial consortium for bioaugmentation of pentachlorophenol/creosote contaminated soils. Appl Microbiol Biotechnol 40:926–932.

    CAS  Google Scholar 

  • Padmavathiamma PK, Li LY. 2007. Phytoremediation technology: Hyper-accumulation metals in plants. Water Air Soil Pollut 184:105–126.

    CAS  Google Scholar 

  • Pandey J, Chauhan A, Jain RK. 2009. Integrative approaches for assessing the ecological sustainability of in situ bioremediation. FEMS Microbiol Rev 33:324–375.

    CAS  Google Scholar 

  • Park D, Lee DS, Kim YM, Park JM. 2008. Bioaugmentation of cyanide-degrading microorganisms in a full-scale cokes wastewater treatment facility. Bioresour Technol 99:2092–2096.

    CAS  Google Scholar 

  • Pepper IL, Gentry TJ, Newby DT, Roane TM, Josephson KL. 2002. The role of cell bioaugmentation and gene bioaugmentation in the remediation of co-contaminated soils. Environ Health Perspect 110:943–946.

    CAS  Google Scholar 

  • Pfaender WF, Maggard SP, Gander LK, Watrud LS. 1997. Comparison of three bioremediation agents for mineralization and transformation of pentachlorophenol in soil. Bull Environ Contam Toxicol 59:230–237.

    Google Scholar 

  • Pointing SB. 2001. Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33.

    CAS  Google Scholar 

  • Prince RC. 1993. Petroleum spill bioremediation in marine environments. Crit Rev Microbiol 19:217–242.

    CAS  Google Scholar 

  • Pritchard PH. 1992. Use of inoculation in bioremediation. Curr Opin Biotechnol 3:232–243.

    CAS  Google Scholar 

  • Rahm BG, Chauhan S, Holmes VF, Macbeth TW, Sorenson Jr KS, Alvarez-Cohen L. 2006. Molecular characterization of microbial populations at two sites with differing reductive dechlorination abilities. Biodegradation 17:523–534.

    CAS  Google Scholar 

  • Raina V, Suar M, Singh A, Prakash O, Dadhwal M, Gupta SK, Dogra C, Lawlor K, Lal S, van der Meer JR, Holliger C, Lal R. 2008. Enhanced biodegradation of hexachlorocyclohexane (HCH) in contaminated soils via inoculation with Sphingobium indicum B90A. Biodegradation 19:27–40.

    CAS  Google Scholar 

  • Raymond RL. 1976. Beneficial stimulation of bacterial activity in groundwater containing petroleum hydrocarbons. American Institute of Chemical Engineers (AIChE) Symposium Series 73:390–404.

    Google Scholar 

  • Richard J-Y, Vogel TM. 1999. Characterization of a soil bacterial consortium capable of degrading diesel fuel. Int Biodeterior Biodegrad 44:93–100.

    CAS  Google Scholar 

  • Ripp S, Nivens DE, Werner C, Sayler GS. 2000. Bioluminescent most-probable-number monitoring of a genetically engineered bacterium during a long-term contained field release. Appl Microbiol Biotechnol 53:736–741.

    CAS  Google Scholar 

  • Roane TM, Josephson KL, Pepper IL. 2001. Dual-bioaugmentation strategy to enhance remediation of cocontaminated soil. Appl Environ Microbiol 67:3208–3215.

    CAS  Google Scholar 

  • Rothmel RK, Peters RW, Martin ES, DeFlaun MF. 1998. Surfactant foam/bioaugmentation technology for in situ treatment of TCE-DNAPLs. Environ Sci Technol 32:1667–1675.

    CAS  Google Scholar 

  • Salanitro J, Johnson P, Spinnler GE, Maner PM, Wisniewski HL, Bruce CL. 2000. Field-scale demonstration of enhanced MTBE bioremediation through aquifer bioaugmentation and oxygenation. Environ Sci Technol 34:4152–4162.

    CAS  Google Scholar 

  • Saleh-Lakha S, Miller M, Campbell RG, Schneider K, Elahimanesh P, Hart MM, Trevors JT. 2005. Microbial gene expression in soil: methods, applications and challenges. J Microbiol Methods 63:1–19.

    CAS  Google Scholar 

  • Samanta SK, Singh OV, Jain RK. 2002. Polycyclic aromatic hydrocarbons: Environmental pollution and bioremediation. Trends Biotechnol 20:243–248.

    CAS  Google Scholar 

  • Satoh H, Okabe S, Yamaguchi Y, Watanabe Y. 2003. Evaluation of the impact of bioaugmentation and biostimulation by in situ hybridization and microelectrode. Water Res 37:2206–2216.

    CAS  Google Scholar 

  • Sayler GS, Ripp S. 2000. Field applications of genetically engineered microorganisms for bioremediation processes. Curr Opin Biotechnol 11:286–289.

    CAS  Google Scholar 

  • Sayre P, Seidler RJ. 2005. Application of GMOs in the U.S.: EPA research & regulatory considerations related to soil systems. Plant Soil 275:77–91.

    CAS  Google Scholar 

  • Scheutz C, Durant ND, Dennis P, Hansen MH, Jorgensen T, Jakobsen R, Cox EE, Bjerg PL. 2008. Concurrent ethene generation and growth of Dehalococcoides containing vinyl chloride reductive dehalogenase genes during an enhanced reductive dechlorination field demonstration. Environ Sci Technol 42:9302–9309.

    CAS  Google Scholar 

  • Scow KM, Hicks KA. 2005. Natural attenuation and enhanced bioremediation of organic contaminants in groundwater. Curr Opin Biotechnol 16:246–253.

    CAS  Google Scholar 

  • Semprini L, Dolan ME, Mathias MA, Hopkins GD, McCarty PL. 2007. Laboratory, field, and modeling studies of bioaugmentation of butane-utilizing microorganisms for the in situ cometabolic treatment of 1,1-dichloroethene, 1,1-dichloroethane, and 1,1,1-trichloroethane. Adv Water Resour 30:1528–1546.

    CAS  Google Scholar 

  • Shintani M, Yoshida T, Habe H, Omori T, Nojiri H. 2005. Large plasmid pCAR2 and class II transposon Tn4676 are functional mobile genetic elements to distribute the carbazole/dioxin-degradative car gene cluster in different bacteria. Appl Microbiol Biotechnol 67:370–382.

    CAS  Google Scholar 

  • Short KA, Doyle JD, King RJ, Seidler RJ, Stotzky G, Olsen RH. 1991. Effects of 2,4-dichlorophenol, a metabolite of a genetically engineered bacterium, and 2,4-dichlorophenoxyacetate on some microorganism-mediated ecological processes in soil. Appl Environ Microbiol 57:412–418.

    CAS  Google Scholar 

  • Simon MA, Bonner JS, Page CA, Townsend RT, Mueller DC, Fuller CB, Autenrieth RL. 2004. Evaluation of two commercial bioaugmentation products for enhanced removal of petroleum from a wetland. Ecol Eng 22:263–277.

    Google Scholar 

  • Singer AC, van der Gast CJ, Thompson IP. 2005. Perspectives and vision for strain selection in bioaugmentation. Trends Biotechnol 23:74–77.

    CAS  Google Scholar 

  • Singh R, Paul D, Jain RK. 2006. Biofilms: Implications in bioremediation. Trends Microbiol 14:389–397.

    CAS  Google Scholar 

  • Smets BF, Pritchard PH. 2003. Elucidating the microbial component of natural attenuation. Curr Opin Biotechnol 14:283–288.

    CAS  Google Scholar 

  • Smith AE, Hristova K, Wood I, Mackay DM, Lory E, Lorenzana D, Scow KM. 2005. Comparison of biostimulation versus bioaugmentation with bacterial strain PM1 for treatment of groundwater contaminated with methyl tertiary butyl ether (MTBE). Environ Health Perspect 113:317–322.

    CAS  Google Scholar 

  • Springael D, Top EM. 2004. Horizontal gene transfer and microbial adaptation to xenobiotics: New types of mobile genetic elements and lessons from ecological studies. Trends Microbiol 12:53–58.

    CAS  Google Scholar 

  • Stocking AJ, Deeb RA, Flores AE, Stringfellow W, Talley J, Brownell R, Kavanaugh MC. 2000. Bioremediation of MTBE: A review from a practical perspective. Biodegradation 11:187–201.

    CAS  Google Scholar 

  • Strong L, McTavish H, Sadowsky M, Wackett L. 2000. Field-scale remediation of atrazine-contaminated soil using recombinant Escherichia coli expressing atrazine chlorohydrolase. Environ Microbiol 2:91–98.

    CAS  Google Scholar 

  • Stroo HF, Major DW, Gossett JM. 2010. Bioaugmentation for Anaerobic Bioremediation of Chlorinated Solvents. In Stroo HF, Ward CH, eds, In Situ Remediation of Chlorinated Solvent Plumes. SERDP/ESTCP Remediation Technology Monograph Series (C.H. Ward, ed). Springer, New York, NY, USA, pp 425–454.

    Google Scholar 

  • Suflita JM, Liang LN, Saxena A. 1989. The anaerobic biodegradation of o-, m-, and p-cresol by sulfate-reducing bacteria enrichment cultures obtained from a shallow anoxic aquifer. J Ind Microbiol 4:255–266.

    CAS  Google Scholar 

  • Suresh B, Ravishankar GA. 2004. Phytoremediation – A novel and promising approach for environmental clean-up. Crit Rev Biotechnol 24:97–124.

    CAS  Google Scholar 

  • Swannell R, Head I. 1994. Bioremediation comes of age. Nat 368:396–397.

    Google Scholar 

  • Sylvestre M, Macek T, Mackova M. 2009. Transgenic plants to improve rhizoremediation of polychlorinated biphenyls (PCBs). Curr Opin Biotechnol 20:242–247.

    CAS  Google Scholar 

  • Tagger S, Bianchi A, Juillard M, LePetit J, Roux B. 1983. Effect of microbial seeding of crude oil in seawater in a model system. Mar Biol 78:13–20.

    CAS  Google Scholar 

  • Tam NF, Wong YS. 2008. Effectiveness of bacterial inoculum and mangrove plants on remediation of sediment contaminated with polycyclic aromatic hydrocarbons. Mar Pollut Bull 57:716–726.

    CAS  Google Scholar 

  • Thompson IP, van der Gast CJ, Ciric L, Singer AC. 2005. Bioaugmentation for bioremediation: The challenge of strain selection. Environ Microbiol 7:909–915.

    CAS  Google Scholar 

  • Timmis KN, Steffan RJ, Unterman R. 1994. Designing microorganisms for the treatment of toxic wastes. Annu Rev Microbiol 48:525–557.

    CAS  Google Scholar 

  • Top EM, Springael D, Boon N. 2002. Catabolic mobile genetic elements and their potential use in bioaugmentation of polluted soils and waters. FEMS Microbiol Ecol 42:199–208.

    CAS  Google Scholar 

  • Top EM, Van Daele P, De Saeyer N, Forney LJ. 1998. Enhancement of 2,4-dichlorophenoxyacetic acid (2,4-D) degradation in soil by dissemination of catabolic plasmids. Antonie Leeuwenhoek 73:87–94.

    CAS  Google Scholar 

  • Urgun-Demirtas M, Stark B, Pagilla K. 2006. Use of genetically engineered microorganisms (GEMs) for the bioremediation of contaminants. Crit Rev Biotechnol 26:145–164.

    CAS  Google Scholar 

  • USEPA (U.S. Environmental Protection Agency). 1997. Microbial Products of Biotechnology: Final Rule. Federal Register 62:17910, April 11.

    Google Scholar 

  • USEPA 2004. Cleaning up the Nation’s Waste Sites: Markets and Technology Trends. EPA 542-R-04-015. USEPA, Washington, DC, USA. http://www.clu-in.org/market. Accessed March 15, 2012.

  • USEPA 2007. Treatment Technologies for Site Cleanup: Annual Status Report (Twelfth Edition). EPA-542-R-07-012. USEPA, Washington, DC, USA. http://www.epa.gov/tio/download/remed/asr/12/asr12_main_body.pdf

  • Valdman E, Valdman B, Battaglini F, Leite SGF. 2004. On-line detection of low naphthalene concentrations with a bioluminescent sensor. Process Biochem 39:1217–1222.

    CAS  Google Scholar 

  • Van Aken B. 2009. Transgenic plants for enhanced phytoremediation of toxic explosives. Curr Opin Biotechnol 20:231–236.

    Google Scholar 

  • Van Aken B, Geiger S. 2011. Phytoremediation of Chlorinated Solvent Plumes. In Stroo HF, Ward CH, eds, In Situ Remediation of Chlorinated Solvent Plumes. SERDP/ESTCP Remediation Technology Monograph Series (Ward CH, ed). Springer, New York, NY, USA, pp 631–675.

    Google Scholar 

  • Van Hamme JD, Singh A, Ward OP. 2003. Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67:503–549.

    Google Scholar 

  • Van Raemdonck H, Maes A, Ossieur W, Verthé K, Vercauteren T, Verstraete W, Boon N. 2006. Real time PCR quanepsication in groundwater of the dehalorespiring Desulfitobacterium dichloroeliminans strain DCA1. J Microbiol Methods 67:294–303.

    Google Scholar 

  • van Veen JA, van Overbeek LS, van Elsas JD. 1997. Fate and activity of microorganisms introduced into soil. Microbiol Mol Biol Rev 61:121–135.

    Google Scholar 

  • Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E, van der Lelie D, Mench M. 2009. Phytoremediation of contaminated soils and groundwater: Lessons from the field. Environ Sci Pollut Res 16:765–794.

    CAS  Google Scholar 

  • Venosa A, Suidan M, Wrenn B, Strohmeier K, Haines J, Eberhart B, King D, Holder E. 1996. Bioremediation of an experimental oil spill on the shoreline of Delaware Bay. Environ Sci Technol 30:1764–1775.

    CAS  Google Scholar 

  • Vogel TM. 1996. Bioaugmentation as a soil bioremediation approach. Curr Opin Biotechnol 7:311–316.

    CAS  Google Scholar 

  • Vogel TM, Criddle CS, McCarty PL. 1987. Transformations of halogenated aliphatic compounds. Environ Sci Technol 21:722–736.

    CAS  Google Scholar 

  • Vogel TM, Walter M. 2002. Bioaugmentation. In Hurst CJ, Crawford RL, Knudsen GR, McInerney MJ, Stetzenbach LD, eds, Manual of Environmental Microbiology. ASM Press, Washington, DC, USA, pp 952–959

    Google Scholar 

  • Vrionis HA, Anderson RT, Ortiz-Bernad I, O'Neill KR, Resch CT, Peacock AD, Dayvault R, White DC, Long PE, Lovley DR. 2005. Microbiological and geochemical heterogeneity in an in situ uranium bioremediation field site. Appl Environ Microbiol 71:6308–6318.

    CAS  Google Scholar 

  • West KA, Johnson DR, Hu P, DeSantis TZ, Brodie EL, Lee PKH, Feil H, Andersen GL, Zinder SH, Alvarez-Cohen L. 2008. Comparative genomics of Dehalococcoides ethenogenes 195 and an enrichment culture containing unsequenced Dehalococcoides strains. Appl Environ Microbiol 74:3533–3540.

    CAS  Google Scholar 

  • Weyens N, Van Der Lelie D, Artois T, Smeets K, Taghavi S, Newman L, Carleer R, Vangronsveld J. 2009. Bioaugmentation with engineered endophytic bacteria improves contaminant fate in phytoremediation. Environ Sci Technol 43:9413–9418.

    CAS  Google Scholar 

  • Wilson SC, Jones KC. 1993. Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): A review. Environ Pollut 81:229–249.

    CAS  Google Scholar 

  • Winchell LJ, Novak PJ. 2008. Enhancing polychlorinated biphenyl dechlorination in fresh water sediment with biostimulation and bioaugmentation. Chemosphere 71:176–182.

    CAS  Google Scholar 

  • Wu W-M, Carley J, Fienen M, Mehlhorn T, Lowe K, Nyman J, Luo J, Gentile ME, Rajan R, Wagner D, Hickey RF, Gu B, Watson D, Cirpka OA, Kitanidis PK, Jardine PM, Criddle CS. 2006. Pilot-scale in situ bioremediation of uranium in a highly contaminated aquifer. 1. Conditioning of a treatment zone. Environ Sci Technol 40:3978–3985.

    CAS  Google Scholar 

  • Yang Y, Zeyer J. 2003. Specific detection of Dehalococcoides species by fluorescence in situ hybridization with 16 S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 69:2879–2883.

    CAS  Google Scholar 

  • Zaidi S, Usmani S, Singh BR, Musarrat J. 2006. Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64:991–997.

    CAS  Google Scholar 

  • Zanardini E, Pisoni C, Ranalli G, Zucchi M, Sorlini C. 2002. Methyl tert-butyl ether (MTBE) bioremediation studies. Ann Microbiol 52:207–221.

    CAS  Google Scholar 

  • Zhuang X, Chen J, Shim H, Bai Z. 2007. New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int 33:406–413.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lyon, D.Y., Vogel, T.M. (2013). Bioaugmentation for Groundwater Remediation: an Overview. In: Stroo, H., Leeson, A., Ward, C. (eds) Bioaugmentation for Groundwater Remediation. SERDP ESTCP Environmental Remediation Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4115-1_1

Download citation

Publish with us

Policies and ethics