Skip to main content

Solving an Electromagnetic Scattering Problem in Chiral Media

  • Chapter
  • First Online:
Applications of Mathematics and Informatics in Military Science

Abstract

In this work we consider the problem of scattering of a plane electromagnetic wave by a chiral dielectric obstacle in a chiral environment. We formulate the problem in terms of Beltrami fields in order to state existence and uniqueness. We prove a general scattering theorem when the incident field is a chiral electromagnetic Herglotz pair. Using low-frequency techniques the scattering problem is reduced to an iterative sequence of potential problems which can be solved successively in terms of expansions in appropriate ellipsoidal harmonic functions and we evaluate the zeroth-order approximation.

Mathematics Subject Classification (2010): 35P25, 35Q60, 78A40

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ammari, H., Nedelec, J.C.: Time-harmonic electromagnetic fields in chiral media. Modern Methods Diff. Theory Appl. Eng. 42, 174–202 (1997)

    MathSciNet  Google Scholar 

  2. Ammari, H., Laoudi, M., Nedelec. J.: Low frequency behavior of solutions to electromagnetic scattering problems in chiral media. SIAM J. Appl. Math. 58, 1022–1042 (1998)

    Google Scholar 

  3. Ammari, H., Hamdache, K., Nedelec, J.C.: Chirality in the Maxwell equations by the dipole approximation method. SIAM J. Appl. Math. 59, 2045–2059 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Allam, A.M.RI.: Chiral absorbing material. In: Seventeenth National Radio Science Conference, Minufga University , Egypt, 2000

    Google Scholar 

  5. Arago, D.F.J.: Sur une modification remarquable qu’eprouvent les rayons lumineux dans leur passage a travers certains corps diaphanes, et sur quelques autres nouveaux phenomenes d’optique., Mem. Inst. 12, Part I, 93–134 (1811)

    Google Scholar 

  6. Athanasiadis, C.: Low-frequency electromagnetic scattering for a multi-layered scatterer. Quart. Jl. Mech. Appl. Math. 44, 55–67 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Athanasiadis, C., Martin, P., Stratis, I.G.: Electromagnetic scattering by a homogeneous chiral obstacle: boundary integral relations and low-chirality approximations. SIAM J. Appl. Math. 59, 1745–1762 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Athanasiadis, C., Costakis, G., Stratis, I.G.: Electromagnetic scattering by a homogeneous chiral obstacle in a chiral environment. IMA J. Appl. Math. 64, 245–258 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Athanasiadis, C., Costakis, G., Stratis, I.G.: Electromagnetic scattering by a perfectly conducting obstacle in a homogeneous chiral environment: solvability and low frequency theory. Math. Meth. Appl. Sci. 25, 927–944 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Athanasiadis, C., Costakis, G., Stratis, I.G.: Transmission problems in contrasting chiral media. Rep. Math. Phys. 53, 143–156 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Athanasiadis, C.: On the far field patterns for electromagnetic scattering by a chiral obstacle in a chiral environment. Math.Anal. Appl. 309, 517–533 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Athanasiadis, C., Kardasi, E.: Beltrami Herglotz functions for electromagnetic scattering in chiral media. Appl. Anal. 84, 1–19 (2005)

    Article  MathSciNet  Google Scholar 

  13. Athanasiadis, C., Kardasi E.: On the far field operator for electromagnetic scattering in chiral media. Applicable Analysis. 85, 623–639 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Athanasiadis, C., Berketis, N.: Scattering relations for point-source excitation in chiral media. Math. Meth. Appl. Sci. 29, 27–48 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bohren, C.F.: Light scattering by an oprtically active sphere. Chem. Phys. Lett. 29, 458–462 (1974)

    Article  Google Scholar 

  16. Bohren, C.F.: Scattering of an electromagnetic wave by an optically active cylinder. J. Colloid Interface Sci. 66, 105–109 (1978)

    Article  Google Scholar 

  17. Biot, J.B.: Memorire sur le rotations que certains substances impriment aux axes de polarization de rayons lumineux. Memoiries de la classe de sciences Mathematiques et Physiques de l’Institut Imperial de France II, 41–136 (1812)

    Google Scholar 

  18. Colton, D., Kress, R.: Integral Equation Methods in Scattering Theory. Wiley, New York (1983)

    MATH  Google Scholar 

  19. Colton, D., Kress R.: Inverse Acoustic and Electromagnetic Scattering Theory. Springer, Berlin (1992)

    MATH  Google Scholar 

  20. Colton, D., Kress, R.: Eigenvalues of the far field operator and inverse scattering theory. SIAM J. Math. Anal. 26(3), 601–615 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Colton, D., Kress, R.: Eigenvalues of the far field operator for the Helmholtz equation in an absorbing medium. SIAM J. Appl. Math. 26(6), 1724–1735 (1995)

    Article  MathSciNet  Google Scholar 

  22. Dassios, G., Kleinman, R.: Low Frequency Scattering Theory. Clarendon Press, Oxford (2000)

    Google Scholar 

  23. Hobson, E.W.: The Theory of Spherical and Ellipsoidal Harmonics. Chelsea, New York (1955)

    Google Scholar 

  24. Lakhtakia, A., Varadan, V., Varadan K.: Time-harmonic electromagnetic fields in chiral media. Lecture Notes in Physics, No 335, Springer, Berlin (1989)

    Google Scholar 

  25. Lakhtakia, A., Varadan, V., Varadan, K.: Effective properties of a sparse random distribution of non-interacting small chiral spheres in a chiral host medium. J. Phys. D. Appl. Phys. 24, 1–6 (1991)

    Article  Google Scholar 

  26. Lakhtakia, A.: Beltrami Fields in Chiral Media. World Scientific, Singapore (1994)

    Google Scholar 

  27. Lindell, I.V., Sihvola, A.H., Tretyakov, S.A., Viitanen A. J.: Electromagnetic waves in chiral and Bi-isotropic media. Artech House, Boston (1994)

    Google Scholar 

  28. Ola, P.: Boundary integral equations for the scattering of electromagnetic waves by a homogeneous chiral obstacle. J.Math.Phys. 35, 3969–3980 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pasteur, L.C.R.: Acad. Sci. Paris, 26, 48–49 (1848)

    Google Scholar 

  30. Pasteur, L.C.R.: Acad. Sci. Paris, 28, 56–59 (1850)

    Google Scholar 

  31. Roach, G.F.: Green’s Functions. Cambridge University Press, London (1982)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christodoulos Athanasiadis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Athanasiadis, C., Dimitroula, S., Skourogiannis, K. (2012). Solving an Electromagnetic Scattering Problem in Chiral Media. In: Daras, N. (eds) Applications of Mathematics and Informatics in Military Science. Springer Optimization and Its Applications, vol 71. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4109-0_4

Download citation

Publish with us

Policies and ethics