Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 598 Accesses

Abstract

In this chapter, the experimental setup and the results elaborated during this doctorate work are presented. The results include power scaling experiments of a femtosecond enhancement cavity, the development of output coupling techniques for intracavity generated XUV radiation and XUV generation at multi-10-MHz repetition rates.

Lehrling ist Jedermann. Geselle, der was kann. Meister, der was ersann. Alter Handwerkerspruch.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the frame of this thesis, the THG in the cavity mirrors was not investigated quantitatively. The main reason for this is the characteristic of the cavity mirrors at the third harmonic of the fundamental radiation. Since the employed mirrors are dielectric quarter-wave stacks, they have a strong reflection band in the vicinity of the third harmonic. However, the exact position of this band in the frequency domain depends on the mirror dispersion and also strongly depends on the angle of incidence.

  2. 2.

    The graphic illustration was done by Jan Kaster.

  3. 3.

    This picture was taken by Thorsten Näser.

  4. 4.

    The graphic illustration was done by Jan Kaster.

  5. 5.

    This simulation was carried out by Ernst Fill.

References

  1. T. Eidam, F. Röser, O. Schmidt, J. Limpert, A. Tünnermann, 57 W, 27 fs pulses from a fiber laser system using nonlinear compression. Appl. Phys. B 92, 9 (2008)

    Article  ADS  Google Scholar 

  2. K.W. Holman, R.J. Jones, A. Marian, S.T. Cundiff, J. Ye, Intensity-related dynamics of femtosecond frequency combs. Opt. Lett. 28, 851 (2003)

    Article  ADS  Google Scholar 

  3. N. Haverkamp, H. Hundertmark, C. Fallnich, H.R. Telle, Frequency stabilization of mode-locked Erbium fiber lasers using pump power control. Appl. Phys. B 78, 321 (2004)

    Article  ADS  Google Scholar 

  4. D.R. Walker, T. Udem, C. Gohle, B. Stein, T.W. Hänsch, Frequency dependence of the fixed point in a fluctuating frequency comb. Appl. Phys. B 89, 535 (2007)

    Article  ADS  Google Scholar 

  5. T.C. Briles, D.C. Yost, A. Cingöz, J. Ye, T.R. Schibli, Simple piezoelectric-actuated mirror with 180 kHz servo bandwidth. Opt. Express 18, 9739 (2010)

    Article  ADS  Google Scholar 

  6. T. Clausnitzer, J. Limpert, K. Zöllner, H. Zellmer, H.J. Fuchs, E.B. Kley, A. Tünnermann, M. Jupe, D. Ristau, Highly efficient transmission gratings in fused silica for chirped-pulse amplification systems. Appl. Opt. 42, 6934 (2003)

    Article  ADS  Google Scholar 

  7. G. Stobrawa, “Aufbau und Anwendungen eines hochauflösenden Impulsformers zur Kontrolle ultrakurzer Laserimpulse, Dissertation, Friedrich-Schiller-Universität Jena, 2003

    Google Scholar 

  8. I. Pupeza, T. Eidam, J. Rauschenberger, B. Bernhardt, A. Ozawa, E. Fill, A. Apolonski, T. Udem, J. Limpert, Z.A. Alahmed, A.M. Azzeer, A. Tünnermann, T.W. Hänsch, F. Krausz, Power scaling of a high repetition rate enhancement cavity. Opt. Lett. 12, 2052 (2010)

    Article  ADS  Google Scholar 

  9. I. Pupeza, X. Gu, E. Fill, T. Eidam, J. Limpert, A. Tünnermann, F. Krausz, T. Udem, Highly sensitive dispersion measurement of a high-power passive optical resonator using spatial-spectral Interferometry. Opt. Express 18, 26184 (2010)

    Google Scholar 

  10. J. Weitenberg, P. Russbüldt, T. Eidam, I. Pupeza, Transverse mode tailoring in a quasi-imaging high-finesse femtosecond enhancement cavity. Opt. Express 19, 9551 (2011)

    Article  ADS  Google Scholar 

  11. Y.-Y. Yang, F. Süssmann, S. Zherebtsov, I. Pupeza, J. Kaster, D. Lehr, E.-B. Kley, E. Fill, X.-M. Duan, Z.-S. Zhao, F. Krausz, S. Stebbings, M.F. Kling, Optimization and characterization of a highly-efficient diffraction nanograting for MHz XUV pulses. Opt. Express 19, 1955 (2011)

    ADS  Google Scholar 

  12. M. Sheik-Bahae, A.A. Said, E.W.V. Styrland, High-sensitivity, single-beam \(n_2\) measurements. Opt. Lett. 14, 955 (1989)

    Article  ADS  Google Scholar 

  13. M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W.V. Styrland, Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 26, 760 (1990)

    Article  ADS  Google Scholar 

  14. T.Y.F. Tsang, Optical third-harmonic generation at interfaces. Phys. Rev. A 52, 4116 (1995)

    Article  ADS  Google Scholar 

  15. C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H.A. Schuessler, F. Krausz, T.W. Hänsch, A frequency comb in the extreme ultraviolet. Nature 436, 234 (2005)

    Article  ADS  Google Scholar 

  16. R. Jones, K.D. Moll, M.J. Thorpe, J. Ye, Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity. Phys. Rev. Lett. 94, 193201 (2005)

    Google Scholar 

  17. A. Ozawa, J. Rauschenberger, C. Gohle, M. Herrmann, D.R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. Hänsch, T. Udem, High harmonic frequency combs for high resolution spectroscopy. Phys. Rev. Lett. 100, 253901 (2008)

    Google Scholar 

  18. A. Ozawa, Y. Kobayashi, Intracavity high harmonic generation driven by Yb-fiber based MOPA system at 80 MHz repetition rate. CLEO, paper CThB4 (2011)

    Google Scholar 

  19. K. Moll, R. Jones, J. Ye, Output coupling methods for cavity-based high-harmonic generation. Opt. Express 14, 8189 (2006)

    Article  ADS  Google Scholar 

  20. D. Esser, W. Bröring, J. Weitenberg, H.-D. Hoffmann, Laser-manufactured mirrors for geometrical output coupling of intracavity-generated high harmonics. manuscript in preparation

    Google Scholar 

  21. D.C. Yost, T.R. Schibli, J. Ye, Efficient output coupling of intracavity high harmonic generation. Opt. Lett. 33, 1099–1101 (2008)

    Article  ADS  Google Scholar 

  22. O. Pronin, V. Pervak, E. Fill, J. Rauschenberger, F. Krausz, A. Apolonski, Ultrabroadband efficient intracavity XUV output coupler. Opt. Express 19, 10232 (2011)

    Google Scholar 

  23. C. Altucci, T. Starczewski, E. Mevel, C.-G. Wahlström, B. Carré, A. L’Huillier, Influence of atomic density in high-order harmonic generation. J. Opt. Soc. Am B 13, 148 (1996)

    Article  ADS  Google Scholar 

  24. E.D. Palik, G. Ghosh, E.J. Prucha, Handbook of Optical Constants of Solids (Academic Press, New York, 1985)

    Google Scholar 

  25. Center for X-ray Optics (http://www.cxro.lbl.gov)

  26. M. Lewenstein, P. Balcou, M.Y. Ivanov, A. L’Huillier, P.B. Corkum, Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioachim Pupeza .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pupeza, I. (2012). Experimental Setup and Results. In: Power Scaling of Enhancement Cavities for Nonlinear Optics. Springer Theses. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4100-7_4

Download citation

Publish with us

Policies and ethics