Skip to main content

Malignancies of the Spinal Cord

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 760))

Abstract

The management of intramedullary spinal cord tumors (IMSCT) is primarily concerned with the preservation of existing neurologic function. To this end, clinical scientists are continually seeking tools and techniques to improve the safety and efficacy of tumor resection and control. Further advances in safety and efficacy can be proposed at each phase of management, from pre-operative screening to post-treatment monitoring. Innovations within the areas of molecular biology and genetics, intraoperative imaging and stereotactic radiosurgery offer exciting new options to explore in the management of IMSCT. This section will review the pathophysiology and epidemiology of IMSCT and the state-of-the-art management before delving into the promising new tools and techniques for each phase of management.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Elsberg C, Beer E. The operability of intramedullary tumors of the spinal cord. A report of two operations with remarks upon the extrusion of intraspinal tumors. Am J Med Sci 1911; 142:636–647.

    Article  Google Scholar 

  2. Harrop JS, Ganju A, Groff M et al. Primary intramedullary tumors of the spinal cord. Spine 2009; 34:S69–77.

    Article  Google Scholar 

  3. Grimm S, Chamberlain MC. Adult primary spinal cord tumors. Expert Rev Neurother 2009; 9:1487–1495.

    Article  Google Scholar 

  4. Fischer G, Brotchi J, Mahla K. Surgical management of intramedullary spinal cord tumors in adults. In: Schmidek H, Roberts D, eds. Schmidek and Sweet’s Operative Neurosurgical Techniques, 5th ed. Philadelphia: Elsevier, 2006.

    Google Scholar 

  5. Goh K, Epstein F. Intramedullary tumors of the spinal cord. In: Fessler RG, Sekhar L, eds. Atlas of Neurosurgical Techniques. New York: Thieme Medical Publishers, 2006:169–175.

    Google Scholar 

  6. Greenberg MS. Handbook of Neurosurgery, 6th ed. New York: Thieme Medical Publishers, 2006.

    Google Scholar 

  7. Karikari IO, Nimjee SM, Hodges TR et al. Impact of tumor histology on resectability and neurological outcome in primary intramedullary spinal cord tumors: a single-center experience with 102 patients. Neurosurgery 2011; 68:188–197.

    Article  Google Scholar 

  8. Chamberlain MC, Tredway TL. Adult primary intradural spinal cord tumors: a review. Curr Neurol Neurosci Rep 2011; 11:320–328.

    Article  Google Scholar 

  9. Kalayci M, Cagavi F, Gul S. Intramedullary spinal cord metastases: diagnosis and treatment—an illustrated review. Acta Neurochir (Wien) 2004; 146:1347–1354.

    Article  CAS  Google Scholar 

  10. Quinones-Hinojosa A, Gulat M, Lyon R et al. Spinal cord mapping as an adjunct for resection of intramedullary tumors: surgical technique with case illustrations. Neurosurgery 2002; 51:1199–1206.

    Article  Google Scholar 

  11. Antonio Raco VE, Jacopo Lenzi, Manolo Piccirilli et al. Long-term follow-up of intramedullary spinal cord tumors: a series of 202 cases. Neurosurgery 2005; 56:972–981.

    Google Scholar 

  12. Boström A, von Lehe M, Hartmann W et al. Surgery for spinal cord ependymomas: outcome and prognostic factors. Neurosurgery 2011; 68:302–309.

    Article  Google Scholar 

  13. Burger P, Scheithaur B, Vogal F. Surgical Pathology of the Nervous System and its Coverings. 4th Edition ed. Philadelphia: Elsevier; 2002.

    Google Scholar 

  14. Daumas-Duport C, BW BS, O’Fallon J et al. Grading of astrocytomas: a simple and reproducible method. Cancer 1988; 62:2152–2165.

    Article  CAS  Google Scholar 

  15. Albert F, Forsting M, Sartor K et al. Early postoperative magnetic resonance imaging after resection of malignant glioma: objective evaluation of residual tumor and its influence on regrowth and prognosis. Neurosurgery 1994; 34:45–61.

    CAS  PubMed  Google Scholar 

  16. Halvorsen CM, Kolstad F, Hald J et al. Long-term outcome after resection of intraspinal ependymomas: report of 86 consecutive cases. Neurosurgery 2010; 67:1622–1631.

    Article  Google Scholar 

  17. McCormick P, Torres R, Post K et al. Intramedullary ependymoma of the spinal cord. J Neurosurg 1990; 72:523–532.

    Article  CAS  Google Scholar 

  18. Cooper P, Epstein F. Radical resection of intramedullary spinal cord tumors in adults. Recent experience in 29 patients. J Neurosurg 1985; 63:492–499.

    Article  CAS  Google Scholar 

  19. McDermott U, Downing JR, Stratton MR. Genomics and the continuum of cancer care. N Engl J Med 2011; 364:340–350.

    Article  CAS  Google Scholar 

  20. Pleasance ED, Cheetham RK, Stephens PJ et al. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 2009; 463:191–196.

    Article  Google Scholar 

  21. Bentwich I AA, Karov Y, Aharonov R et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 2005; 37:766–770.

    Article  CAS  Google Scholar 

  22. Parsa AT, Fiore AJ, McCormick PC et al. Genetic basis of intramedullary spinal cord tumors and therapeutic implications. J Neurooncol 2000; 47:239–251.

    Article  CAS  Google Scholar 

  23. Portin P. The concept of the gene: short history and present status. Q Rev Biol 1993; 68:173–223.

    Article  CAS  Google Scholar 

  24. Boumber Y IJ. Epigenetics in cancer: what’s the future? Oncology 2011; 25:220–226,8.

    PubMed  Google Scholar 

  25. Srinivas PR VM, Zhao Y, Srivastava S. Proteomics for cancer biomarker discovery. Clin Chem 2002; 48:1160–1169.

    CAS  PubMed  Google Scholar 

  26. Saydam O SO, Schaaij-Visser TB, Pham TV et al. Comparative protein profiling reveals minichromosome maintenance (MCM) proteins as novel potential tumor markers for meningiomas. J Proteome Res 2010; 9:485–494.

    Article  CAS  Google Scholar 

  27. Cuellar-Baena S MJ, Martinetto H, Calvar J et al. Comparative metabolic profiling of paediatric ependymoma, medulloblastoma and pilocytic astrocytoma. Int J Mol Med 2010; 26:941–948.

    CAS  PubMed  Google Scholar 

  28. Monleón D MJ, Gonzalez-Darder J, Talamantes F et al. Benign and atypical meningioma metabolic signatures by high-resolution magic-angle spinning molecular profiling. J Proteome Res 2008; 7:2882–2888.

    Article  Google Scholar 

  29. Nordström A LR. Metabolomics: moving to the clinic. J Neuroimmune Pharmacol 2010; 5:4–17.

    Article  Google Scholar 

  30. Ebert C, von Haken M, Meyer-Puttlitz B et al. Molecular genetic analysis of ependymal tumors NF2 mutations and chromosome 22q loss occur preferentially in intramedullary spinal ependymomas. Am J Pathol 1999; 155:627–632.

    Article  CAS  Google Scholar 

  31. Lamszus K, Lachenmayer L, Heinemann U et al. Molecular genetic alterations on chromosomes 11 and 22 in ependymomas. Int J Cancer 2001; 91:803–808.

    Article  CAS  Google Scholar 

  32. The Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008; 455:1061–1068.

    Article  Google Scholar 

  33. Verhaak RGW, Hoadley KA, Purdom E et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR and NF1. Cancer Cell 2010; 17:98–110.

    Article  CAS  Google Scholar 

  34. Gusella JF RV, MacCollin M, Jacoby LB. 1423: M29-36, 1999. Merlin: the neurofibromatosis 2 tumor suppressor. Biochim Biophys Acta 1999; 1423:M29–M36.

    CAS  PubMed  Google Scholar 

  35. Lee M RA, Freed D, Epstein FJ. Intramedullary spinal cord tumors in neurofibromatosis. Neurosurgery 1996; 38:32–37.

    Article  CAS  Google Scholar 

  36. Richard S CC, Taillandier L, Parker F et al. Haemangioblastoma of the central nervous system in von Hippel-Lindau disease. French VHL Study Group. J Intern Med 1998; 243:547–553.

    Article  CAS  Google Scholar 

  37. Stebbins CE KW Jr, Pavletich NP. Structure of the VHL-ElonginC-ElonginB complex: implications for VHL tumor suppressor function. Science 1999; 284:455–461.

    Article  CAS  Google Scholar 

  38. Gnarra JR ZS, Merrill MJ, Wagner JR et al. Post-transcriptional regulation of vascular endothelial growth factor mRNA by the product of the VHL tumor suppressor gene. Proc Natl Acad Sci USA 1996; 93:10589–10594.

    Article  CAS  Google Scholar 

  39. Hegi ME DA, Gorlia T, Hamou MF et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 2005; 352:997–1003.

    Article  CAS  Google Scholar 

  40. Gläsker S LR, Okamoto H, Li J et al. Vortmeyer AO Proteomic profiling: a novel method for differential diagnosis? Cancer Biol Ther 2007; 6:343–345.

    Article  Google Scholar 

  41. Hrisomalos FN, Maturi RK, Pata V. Long-term use of intravitreal bevacizumab (avastin) for the treatment of von hippel-lindau associated retinal hemangioblastomas. Open Ophthalmol J 2010; 4:66–69.

    Article  CAS  Google Scholar 

  42. Aiello LP GD, Cahill MT et al. Rapid and durable recovery of visual function in a patient with von Hippel-Lindau syndrome after systemic therapy with vascular endothelial growth factor receptor inhibitor SU5416. Ophthalmology 2002; 109:1745–1751.

    Article  Google Scholar 

  43. Dahr SS CM, Rodriguez-Coleman H et al. Intravitreal anti-vascular endothelial growth factor therapy with pegaptanib for advanced von Hippel-Lindau disease of the retina. Retina 2007; 27:150–158.

    Article  Google Scholar 

  44. Wong WT LK, Hammel K et al. Intravitreal ranibizumab therapy for retinal capillary hemangioblastoma related to von Hippel-Landau disease. Ophthalmology 2008; 115:1057–1065.

    CAS  Google Scholar 

  45. Cheng L, Bao S, Rich JN. Potential therapeutic implications of cancer stem cells in glioblastoma. Biochem Pharmacol 2010; 80:654–665.

    Article  CAS  Google Scholar 

  46. Hegi ME, Diserens AC, Bady P et al. Pathway analysis of glioblastoma tissue after preoperative treatment with the egfr tyrosine kinase inhibitor gefitinib—a phase II trial. Mol Cancer Ther 2011; 10(6):1102–12.

    Article  CAS  Google Scholar 

  47. Chiocca EA. Gene therapy: a primer for neurosurgeons. Neurosurgery 2003:364–373.

    Article  Google Scholar 

  48. Westphal M LK. Other experimental therapies for glioma. Recent Results Cancer Res 2009; 171:155–164.

    Article  Google Scholar 

  49. Määttä AM SH, Pikkarainen J, Wirth T et al. Adenovirus mediated herpes simplex virus-thymidine kinase/ ganciclovir gene therapy for resectable malignant glioma. Curr Gene Ther 2009; 9:356–367.

    Article  Google Scholar 

  50. Kay MA, Glorioso JG, Naldini L. Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med 2001; 7:33–40.

    Article  CAS  Google Scholar 

  51. De Oliveira JG BJ, Seifert V, Teixeira MJ et al. Assessment of flow in perforating arteries during intracranial aneurysm surgery using intraoperative near infrared indocyanine green videoangiography. Neurosurgery 2007; 61:63–72.

    Article  Google Scholar 

  52. Imizu S KY, Sangli A, Oguri D et al. Assessment of incomplete clipping of aneurysms intraoperatively by a near-infrared indocyanine green-video angiography (Niicg-Va) integrated microscope. Minim Invasive Neurosurg 2008; 51:199–203.

    Article  CAS  Google Scholar 

  53. Raabe A NP, Beck J, Kim LJ et al. Prospective evaluation of surgical microscope-integrated intraoperative near-infrared indocyanine green videoangiography during aneurysm surgery. J Neurosurg 2005; 103:982–989.

    Article  Google Scholar 

  54. Hwang SW, Malek AM, Schapiro R et al. Intraoperative use of indocyanine green fluorescence videography for resection of a spinal cord hemangioblastoma. Neurosurgery 2010; 67:ons300-3.

    Article  Google Scholar 

  55. Schubert GA, Schmieder K, Seiz-Rosenhagen M et al. ICG videography facilitates interpretation of vascular supply and anatomical landmarks in intramedullary spinal lesions—Two case reports. Spine 2011; 36(12):E811–3.

    Article  Google Scholar 

  56. Ryu SI, Kim DH, Chang SD. Stereotactic radiosurgery for hemangiomas and ependymomas of the spinal cord. Neurosurg Focus 2003; 15(5):E10.

    Google Scholar 

  57. Shin DA, Huh R, Chung SS et al. Stereotactic spine radiosurgery for intradural and intramedullary metastasis. Neurosurg Focus 2009; 27:E10.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Waters, J.D., Peran, E.M.N., Ciacci, J. (2012). Malignancies of the Spinal Cord. In: Jandial, R., Chen, M.Y. (eds) Regenerative Biology of the Spine and Spinal Cord. Advances in Experimental Medicine and Biology, vol 760. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4090-1_7

Download citation

Publish with us

Policies and ethics