Skip to main content

Clinical Efficacy of Stem Cell Mediated Osteogenesis and Bioceramics for Bone Tissue Engineering

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 760))

Abstract

Lower back pain is a common disorder that often requires bony spinal fusion for long-term relief. Current arthrodesis procedures use bone grafts from autogenous bone, allogenic backed bone or synthetic materials. Autogenous bone grafts can result in donor site morbidity and pain at the donor site, while allogenic backed bone and synthetic materials have variable effectiveness. Given these limitations, researchers have focused on new treatments that will allow for safe and successful bone repair and regeneration. Mesenchymal stem cells (MSCs) have received attention for their ability to differentiate into osteoblasts, cells that synthesize the extracellular matrix and regulate matrix mineralization. Successful bone regeneration requires three elements: MSCs that serve as osteoblastic progenitors, osteoinductive growth factors and their pathways that promote development and differentiation of the cells as well as an osteoconductive scaffold that allows for the formation of a vascular network. Future treatments should strive to combine mesenchymal stem cells, cell-seeded scaffolds and gene therapy to optimize the efficiency and safety of tissue repair and bone regeneration.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ciacci J, Ho A Ames CP et al. Stem cell horizons in intervertebral disc degeneration. Stem cells and Cloning: Advances and Applications. 2008; 1:31–39.

    Google Scholar 

  2. Sheyn D, Pelled G, Zilberman Y et al. Nonvirally engineered porcine adipose tissue-derived stem cells: use in posterior spinal fusion. Stem Cells 2008; 26(4):1056–1064.

    Article  PubMed  Google Scholar 

  3. Deyo RA, Nachemson A, Mirza SK. Spinal-fusion surgery—the case for restraint. N Engl J Med 2004; 350(7):722–726.

    Article  CAS  PubMed  Google Scholar 

  4. Lee CK, Langrana NA. Lumbosacral spinal fusion. A biomechanical study. Spine (Phila Pa 1976). 1984; 9(6):574–581.

    Article  CAS  Google Scholar 

  5. Carragee EJ. Clinical practice. Persistent low back pain. N Engl J Med 2005; 352(18):1891–1898.

    Article  CAS  PubMed  Google Scholar 

  6. Miyazaki M, Tsumura H, Wang JC et al. An update on bone substitutes for spinal fusion. Eur Spine J 2009; 18(6):783–799.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bueno EM, Glowacki J. Cell-free and cell-based approaches for bone regeneration. Nat Rev Rheumatol 2009; 5(12):685–697.

    Article  PubMed  Google Scholar 

  8. Russell JL, Block JE. Clinical utility of demineralized bone matrix for osseous defects, arthrodesis and reconstruction: impact of processing techniques and study methodology. Orthopedics 1999; 22(5):524–531; quiz 532-523.

    CAS  PubMed  Google Scholar 

  9. Schwartz Z, Mellonig JT, Carnes DL Jr et al. Ability of commercial demineralized freeze-dried bone allograft to induce new bone formation. J Periodontol 1996; 67(9):918–926.

    Article  CAS  PubMed  Google Scholar 

  10. Yaszemski M, Oldham J, Currier B. Bone Engineering. Toronto: EM Squared Incorporated 2000.

    Google Scholar 

  11. Kanczler JM, Oreffo RO. Osteogenesis and angiogenesis: the potential for engineering bone. Eur Cell Mater 2008; 15:100–114.

    Article  CAS  PubMed  Google Scholar 

  12. Kasper G, Dankert N, Tuischer J et al. Mesenchymal stem cells regulate angiogenesis according to their mechanical environment. Stem Cells 2007; 25(4):903–910.

    Article  CAS  PubMed  Google Scholar 

  13. Potier E, Ferreira E, Meunier A et al. Prolonged hypoxia concomitant with serum deprivation induces massive human mesenchymal stem cell death. Tissue Eng 2007; 13(6):1325–1331.

    Article  CAS  PubMed  Google Scholar 

  14. Gupta MK, Qin RY. Mechanism and its regulation of tumor-induced angiogenesis. World J Gastroenterol 2003; 9(6):1144–1155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sundelacruz S, Kaplan DL. Stem cell-and scaffold-based tissue engineering approaches to osteochondral regenerative medicine. Semin Cell Dev Biol 2009; 20(6):646–655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. El Tamer MK, Reis RL. Progenitor and stem cells for bone and cartilage regeneration. J Tissue Eng Regen Med 2009; 3(5):327–337.

    Article  CAS  PubMed  Google Scholar 

  17. Kwan MD, Slater BJ, Wan DC et al. Cell-based therapies for skeletal regenerative medicine. Hum Mol Genet 2008; 17(R1):R93–R98.

    Article  CAS  PubMed  Google Scholar 

  18. Rickard DJ, Sullivan TA, Shenker BJ et al. Induction of rapid osteoblast differentiation in rat bone marrow stromal cell cultures by dexamethasone and BMP-2. Dev Biol 1994; 161(1):218–228.

    Article  PubMed  Google Scholar 

  19. Jorgensen NR, Henriksen Z, Sorensen OH et al. Dexamethasone, BMP-2, and 1,25-dihydroxyvitamin D enhance a more differentiated osteoblast phenotype: validation of an in vitro model for human bone marrow-derived primary osteoblasts. Steroids 2004; 69(4):219–226.

    Article  CAS  PubMed  Google Scholar 

  20. Hanada K, Dennis JE, Caplan AI. Stimulatory effects of basic fibroblast growth factor and bone morphogenetic protein-2 on osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells. J Bone Miner Res 1997; 12(10):1606–1614.

    Article  CAS  PubMed  Google Scholar 

  21. Yeh LC, Tsai AD, Lee JC. Osteogenic protein-1 (OP-1, BMP-7) induces osteoblastic cell differentiation of the pluripotent mesenchymal cell line C2C12. J Cell Biochem 2002; 87(3):292–304.

    Article  CAS  PubMed  Google Scholar 

  22. Gregory CA, Gunn WG, Reyes E et al. How Wnt signaling affects bone repair by mesenchymal stem cells from the bone marrow. Ann N Y Acad Sci 2005; 1049:97–106.

    Article  CAS  PubMed  Google Scholar 

  23. Yang XB, Bhatnagar RS, Li S et al. Biomimetic collagen scaffolds for human bone cell growth and differentiation. Tissue Eng 2004; 10(7–8):1148–1159.

    Article  CAS  PubMed  Google Scholar 

  24. Salasznyk RM, Klees RF, Hughlock MK et al. ERK signaling pathways regulate the osteogenic differentiation of human mesenchymal stem cells on collagen I and vitronectin. Cell Commun Adhes 2004; 11(5–6):137–153.

    Article  CAS  PubMed  Google Scholar 

  25. Salasznyk RM, Williams WA, Boskey A et al. Adhesion to vitronectin and collagen I promotes osteogenic differentiation of human mesenchymal stem cells. J Biomed Biotechnol 2004; 2004(1):24–34.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Murphy WL, Hsiong S, Richardson TP et al. Effects of a bone-like mineral film on phenotype of adult human mesenchymal stem cells in vitro. Biomaterials 2005; 26(3):303–310.

    Article  CAS  PubMed  Google Scholar 

  27. Salgado AJ, Figueiredo JE, Coutinho OP et al. Biological response to premineralized starch based scaffolds for bone tissue engineering. J Mater Sci Mater Med 2005; 16(3):267–275.

    Article  CAS  PubMed  Google Scholar 

  28. Chamberlain G, Fox J, Ashton B et al. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 2007; 25(11):2739–2749.

    Article  CAS  PubMed  Google Scholar 

  29. Fox JM, Chamberlain G, Ashton BA et al. Recent advances into the understanding of mesenchymal stem cell trafficking. Br J Haematol 2007; 137(6):491–502.

    Article  CAS  PubMed  Google Scholar 

  30. Deschaseaux F, Sensebe L, Heymann D. Mechanisms of bone repair and regeneration. Trends Mol Med 2009; 15(9):417–429.

    Article  CAS  PubMed  Google Scholar 

  31. Gerstenfeld LC, Cullinane DM, Barnes GL et al. Fracture healing as a postnatal developmental process: molecular, spatial and temporal aspects of its regulation. J Cell Biochem 2003;88(5):873–884.

    Article  CAS  PubMed  Google Scholar 

  32. Dimitriou R, Tsiridis E, Giannoudis PV. Current concepts of molecular aspects of bone healing. Injury 2005; 36(12):1392–1404.

    Article  PubMed  Google Scholar 

  33. Einhorn TA, Majeska RJ, Rush EB et al. The expression of cytokine activity by fracture callus. J Bone Miner Res 1995; 10(8):1272–1281.

    Article  CAS  PubMed  Google Scholar 

  34. Kon T, Cho TJ, Aizawa T et al. Expression of osteoprotegerin, receptor activator of NF-kappaB ligand (osteoprotegerin ligand) and related proinflammatory cytokines during fracture healing. J Bone Miner Res 2001; 16(6):1004–1014.

    Article  CAS  PubMed  Google Scholar 

  35. Balga R, Wetterwald A, Portenier J et al. Tumor necrosis factor-alpha: alternative role as an inhibitor of osteoclast formation in vitro. Bone 2006; 39(2):325–335.

    Article  CAS  PubMed  Google Scholar 

  36. Li X, Wang H, Touma E et al. TP508 accelerates fracture repair by promoting cell growth over cell death. Biochem Biophys Res Commun 2007; 364(1):187–193.

    Article  CAS  PubMed  Google Scholar 

  37. Aspenberg P. Drugs and fracture repair. Acta Orthop 2005; 76(6):741–748.

    Article  PubMed  Google Scholar 

  38. Paralkar VM, Borovecki F, Ke HZ et al. An EP2 receptor-selective prostaglandin E2 agonist induces bone healing. Proc Natl Acad Sci U S A 2003; 100(11):6736–6740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen Y, Whetstone HC, Youn A et al. Beta-catenin signaling pathway is crucial for bone morphogenetic protein 2 to induce new bone formation. J Biol Chem 5 2007; 282(1):526–533.

    Article  CAS  Google Scholar 

  40. Ebisawa T, Tada K, Kitajima I et al. Characterization of bone morphogenetic protein-6 signaling pathways in osteoblast differentiation. J Cell Sci 1999; 112(Pt 20):3519–3527.

    CAS  PubMed  Google Scholar 

  41. Cheng H, Jiang W, Phillips FM et al. Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs). J Bone Joint Surg Am 2003; 85-A(8):1544–1552.

    Article  Google Scholar 

  42. Sakou T. Bone morphogenetic proteins: from basic studies to clinical approaches. Bone 1998; 22(6):591–603.

    Article  CAS  PubMed  Google Scholar 

  43. Cho TJ, Gerstenfeld LC, Einhorn TA. Differential temporal expression of members of the transforming growth factor beta superfamily during murine fracture healing. J Bone Miner Res 2002; 17(3):513–520.

    Article  CAS  PubMed  Google Scholar 

  44. Bostrom MP, Lane JM, Berberian WS et al. Immunolocalization and expression of bone morphogenetic proteins 2 and 4 in fracture healing. J Orthop Res 1995; 13(3):357–367.

    Article  CAS  PubMed  Google Scholar 

  45. Jane JA, Jr., Dunford BA et al. Ectopic osteogenesis using adenoviral bone morphogenetic protein (BMP)-4 and BMP-6 gene transfer. Mol Ther 2002; 6(4):464–470.

    Article  CAS  PubMed  Google Scholar 

  46. Kilian KA, Bugarija B, Lahn BT, et al. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc Natl Acad Sci U S A 2010; 107(11):4872–4877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hens JR, Wilson KM, Dann P et al. TOPGAL mice show that the canonical Wnt signaling pathway is active during bone development and growth and is activated by mechanical loading in vitro. J Bone Miner Res 2005; 20(7):1103–1113.

    Article  CAS  PubMed  Google Scholar 

  48. Robinson JA, Chatterjee-Kishore M, Yaworsky PJ et al. Wnt/beta-catenin signaling is a normal physiological response to mechanical loading in bone. J Biol Chem 2006; 281(42):31720–31728.

    Article  CAS  PubMed  Google Scholar 

  49. Lee JY, Marston DJ, Walston T et al. Wnt/Frizzled signaling controls C. elegans gastrulation by activating actomyosin contractility. Curr Biol 2006;16(20):1986–1997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wozniak MA, Chen CS. Mechanotransduction in development: a growing role for contractility. Nat Rev Mol Cell Biol 2009; 10(1):34–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hartmann C. A Wnt canon orchestrating osteoblastogenesis. Trends Cell Biol 2006; 16(3):151–158.

    Article  CAS  PubMed  Google Scholar 

  52. Day TF, Guo X, Garrett-Beal L et al. Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell. 2005; 8(5):739–750.

    Article  CAS  PubMed  Google Scholar 

  53. Hill TP, Spater D, Taketo MM et al. Canonical Wnt/beta-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev Cell 2005;8(5):727–738.

    Article  CAS  PubMed  Google Scholar 

  54. Bennett CN, Longo KA, Wright WS et al. Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc Natl Acad Sci USA. 2005; 102(9):3324–3329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Clement-Lacroix P, Ai M, Morvan F et al. Lrp5-independent activation of Wnt signaling by lithium chloride increases bone formation and bone mass in mice. Proc Natl Acad Sci U S A 2005; 102(48):17406–17411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Delecrin J, Takahashi S, Gouin F, et al. A synthetic porous ceramic as a bone graft substitute in the surgical management of scoliosis: a prospective, randomized study. Spine (Phila Pa 1976). 2000; 25(5):563–569.

    Article  CAS  Google Scholar 

  57. Evaluation criteria for musculoskeletal and craniofacial tissue engineering constructs: a conference report. Tissue Eng Part A 2008; 14(12):2089–2104.

    Google Scholar 

  58. Bessa PC, Casal M, Reis RL. Bone morphogenetic proteins in tissue engineering: the road from laboratory to clinic, part II (BMP delivery). J Tissue Eng Regen Med 2008; 2(2–3):81–96.

    Article  CAS  PubMed  Google Scholar 

  59. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005; 26(27):5474–5491.

    Article  CAS  PubMed  Google Scholar 

  60. Roy TD, Simon JL, Ricci JL et al. Performance of degradable composite bone repair products made via three-dimensional fabrication techniques. J Biomed Mater Res A 2003;66(2):283–291.

    Article  PubMed  CAS  Google Scholar 

  61. Richards M, Huibregtse BA, Caplan AI et al. Marrow-derived progenitor cell injections enhance new bone formation during distraction. J Orthop Res 1999; 17(6):900–908.

    Article  CAS  PubMed  Google Scholar 

  62. Cancedda R, Dozin B, Giannoni P et al. Tissue engineering and cell therapy of cartilage and bone. Matrix Biol 2003; 22(1):81–91.

    Article  CAS  PubMed  Google Scholar 

  63. Braunecker J, Baba M, Milroy GE et al. The effects of molecular weight and porosity on the degradation and drug release from polyglycolide. Int J Pharm 2004; 282(1–2):19–34.

    Article  CAS  PubMed  Google Scholar 

  64. Thomson RC, Yaszemski MJ, Powers JM et al. Fabrication of biodegradable polymer scaffolds to engineer trabecular bone. J Biomater Sci Polym Ed 1995; 7(1):23–38.

    Article  CAS  PubMed  Google Scholar 

  65. Oonishi H, Hench LL, Wilson J et al. Quantitative comparison of bone growth behavior in granules of Bioglass, A-W glass-ceramic and hydroxyapatite. J Biomed Mater Res 2000; 51(1):37–46.

    Article  CAS  PubMed  Google Scholar 

  66. Khan Y, Yaszemski MJ, Mikos AG et al. Tissue engineering of bone: material and matrix considerations. J Bone Joint Surg Am 2008; 90Suppl 1:36–42.

    Article  PubMed  Google Scholar 

  67. Temenoff JS, Lu, L., Mikos, A.G. Bone Engineering. Toronto: EM Squared Incorporated 2000.

    Google Scholar 

  68. Mikos AG, Sarakinos G, Lyman MD et al. Prevascularization of porous biodegradable polymers. Biotechnol Bioeng 1993; 42(6):716–723.

    Article  CAS  PubMed  Google Scholar 

  69. Peng H, Usas A, Olshanski A et al. VEGF improves, whereas sFlt1 inhibits, BMP2-induced bone formation and bone healing through modulation of angiogenesis. J Bone Miner Res 2005; 20(11):2017–2027.

    Article  CAS  PubMed  Google Scholar 

  70. Geiger F, Bertram H, Berger I et al. Vascular endothelial growth factor gene-activated matrix (VEGF165-GAM) enhances osteogenesis and angiogenesis in large segmental bone defects. J Bone Miner Res 2005; 20(11):2028–2035.

    Article  CAS  PubMed  Google Scholar 

  71. Ortega N, Behonick DJ, Werb Z. Matrix remodeling during endochondral ossification. Trends Cell Biol 2004; 14(2):86–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Park KH, Kim H, Moon S et al. Bone morphogenic protein-2 (BMP-2) loaded nanoparticles mixed with human mesenchymal stem cell in fibrin hydrogel for bone tissue engineering. J Biosci Bioeng 2009; 108(6):530–537.

    Article  CAS  PubMed  Google Scholar 

  73. Hernigou P, Poignard A, Manicom O, et al. The use of percutaneous autologous bone marrow transplantation in nonunion and avascular necrosis of bone. J Bone Joint Surg Br 2005; 87(7):896–902.

    Article  CAS  PubMed  Google Scholar 

  74. Pittenger MF, Mackay AM, Beck SC et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284(5411):143–147.

    Article  CAS  PubMed  Google Scholar 

  75. Quarto R, Mastrogiacomo M, Cancedda R et al. Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med 2001; 344(5):385–386.

    Article  CAS  PubMed  Google Scholar 

  76. Marcacci M, Kon E, Moukhachev V et al. Stem cells associated with macroporous bioceramics for long bone repair: 6-to 7-year outcome of a pilot clinical study. Tissue Eng 2007; 13(5):947–955.

    Article  CAS  PubMed  Google Scholar 

  77. Papachroni KK, Karatzas DN, Papavassiliou KA et al. Mechanotransduction in osteoblast regulation and bone disease. Trends Mol Med 2009; 15(5):208–216.

    Article  CAS  PubMed  Google Scholar 

  78. Warnke PH, Wiltfang J, Springer I et al. Man as living bioreactor: fate of an exogenously prepared customized tissue-engineered mandible. Biomaterials 2006; 27(17):3163–3167.

    Article  CAS  PubMed  Google Scholar 

  79. Vacanti CA, Bonassar LJ, Vacanti MP et al. Replacement of an avulsed phalanx with tissue-engineered bone. N Engl J Med 2001; 344(20):1511–1514.

    Article  CAS  PubMed  Google Scholar 

  80. Ueda M, Yamada Y, Kagami H et al. Injectable bone applied for ridge augmentation and dental implant placement: human progress study. Implant Dent 2008; 17(1):82–90.

    Article  PubMed  Google Scholar 

  81. Tolar J, Nauta AJ, Osborn MJ et al. Sarcoma derived from cultured mesenchymal stem cells. Stem Cells 2007; 25(2):371–379.

    Article  CAS  PubMed  Google Scholar 

  82. Tasso R, Augello A, Carida M et al. Development of sarcomas in mice implanted with mesenchymal stem cells seeded onto bioscaffolds. Carcinogenesis 2009; 30(1):150–157.

    Article  CAS  PubMed  Google Scholar 

  83. Betz VM, Betz OB, Harris MB et al. Bone tissue engineering and repair by gene therapy. Front Biosci 2008; 13:833–841.

    Article  CAS  PubMed  Google Scholar 

  84. Gersbach CA, Phillips JE, Garcia AJ. Genetic engineering for skeletal regenerative medicine. Annu Rev Biomed Eng 2007; 9:87–119.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Neman, J. et al. (2012). Clinical Efficacy of Stem Cell Mediated Osteogenesis and Bioceramics for Bone Tissue Engineering. In: Jandial, R., Chen, M.Y. (eds) Regenerative Biology of the Spine and Spinal Cord. Advances in Experimental Medicine and Biology, vol 760. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4090-1_11

Download citation

Publish with us

Policies and ethics