Skip to main content

Duality and Differential Operators for Harmonic Maass Forms

  • Chapter
  • First Online:

Part of the book series: Developments in Mathematics ((DEVM,volume 28))

Abstract

Due to the graded ring nature of classical modular forms, there are many interesting relations between the coefficients of different modular forms. We discuss additional relations arising from Duality, Borcherds products, theta lifts. Using the explicit description of a lift for weakly holomorphic forms, we realize the differential operator \({D}^{k-1} := {( \frac{1} {2\pi \mathrm{i}} \frac{\partial } {\partial z})}^{k-1}\) acting on a harmonic Maass form for integers k > 2 in terms of \({\xi }_{2-k} := 2\mathrm{i}{y}^{2-k}\overline{ \frac{\partial } {\partial \overline{z}}}\) acting on a different form. Using this interpretation, we compute the image of D k − 1. We also answer a question arising in recent work on the p-adic properties of mock modular forms. Additionally, since such lifts are defined up to a weakly holomorphic form, we demonstrate how to construct a canonical lift from holomorphic modular forms to harmonic Maass forms.

Mathematics Subject Classification (2000): 11F37, 11F25, 11F30

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. G. Andrews, On the theorems of Watson and Dragonette for Ramanujan’s Mock theta functions, Amer. J. Math. 88 (1966), 454–490.

    Article  MathSciNet  Google Scholar 

  2. G. Andrews, The fifth and seventh order mock theta functions, Trans. Amer. Math Soc. 293 (1986), 113–134.

    Article  MATH  MathSciNet  Google Scholar 

  3. G. Andrews and D. Hickerson, Ramanujan’s lost notebook VII. The sixth order mock theta functions, Adv. Math. 89, (1991), 60–105.

    Article  MATH  MathSciNet  Google Scholar 

  4. G. Bol, Invarianten linearer Differentialgleichungen, Abh. Mat. Sem. Univ. Hamburg 16 (1949), 1–28.

    Article  MATH  MathSciNet  Google Scholar 

  5. R. Borcherds, Automorphic forms with singularities on Grassmannians, Invent. Math. 132 (1998), 491–562.

    Article  MATH  MathSciNet  Google Scholar 

  6. K. Bringmann, A. Folsom, and K. Ono, q-series and weight 3/2 Maass forms, Compositio Math. 145 (2009), 541–552.

    Article  MATH  MathSciNet  Google Scholar 

  7. K. Bringmann, P. Guerzhoy, and B. Kane, Mock Modular Forms as p-adic Modular Forms, Trans. Amer. Math. Soc. 364 (2012), 2393–2410.

    Article  MATH  MathSciNet  Google Scholar 

  8. K. Bringmann and K. Ono, Arithmetic properties of coefficients of half-integral weight Maass-Poincaré series, Math. Ann. 337 (2007), 591–612.

    Article  MATH  MathSciNet  Google Scholar 

  9. K. Bringmann and K. Ono, Lifting cusp forms to Maass forms with an application to partitions, Proc. Nat. Acad. Sci., USA 104 (2007), 3725–3731.

    Google Scholar 

  10. K. Bringmann and O. Richter, Zagier-type dualities and lifting maps for harmonic Maass-Jacobi forms, Adv. Math. 225 (2010), 2298–2315.

    Article  MATH  MathSciNet  Google Scholar 

  11. J. Bruinier and J. Funke, On two geometric theta lifts, Duke Math. J. 125 (2004), 45–90.

    Article  MATH  MathSciNet  Google Scholar 

  12. J. Bruinier and K. Ono, Arithmetic of Borcherds’ exponents, Math. Ann. 327 (2003), 293–303.

    Article  MATH  MathSciNet  Google Scholar 

  13. J. Bruinier and K. Ono, Heegner divisors, L-functions, and harmonic weak Maass forms, Ann. of Math. 172 (2010), 2135–2181.

    Article  MATH  MathSciNet  Google Scholar 

  14. J. Bruinier, K. Ono, and R. Rhoades, Differential Operators and Vanishing of Hecke Eigenvalues, Math. Ann. 342 (2008), 673–693.

    Article  MATH  MathSciNet  Google Scholar 

  15. Y. Choie, M. Knopp, and W. Pribitkin, Niebur Integrals, Mock Automorphic Forms and Harmonic Maass Forms: A Retrospective on the Work of the Rademacher School, preprint.

    Google Scholar 

  16. W. Duke and P. Jenkins, On the zeros and coefficients of certain weakly holomorphic modular forms, Pure Appl. Math. Q. 4 (2008), 1327–1340.

    MATH  MathSciNet  Google Scholar 

  17. W. Duke, Ö. Imamoḡlu, and Á. Tóth, Cycle Integrals of the j-function and Mock Modular Forms, Ann. of Math. 173 (2011), 947–981.

    Article  MATH  MathSciNet  Google Scholar 

  18. M. Eichler, Eine Verallgemeinerung der abelschen Integrale, Math. Z. 67 (1957), 267–298.

    Article  MATH  MathSciNet  Google Scholar 

  19. J. Fay, Fourier coefficients of the resolvent for a Fuchsian group, J. reine und angew. Math. 293–294 (1977), 143–203.

    MathSciNet  Google Scholar 

  20. A. Folsom and K. Ono, Duality involving the mock theta function f(q), J. Lond. Math. Soc. 77 (2008), 320–334.

    Article  MATH  MathSciNet  Google Scholar 

  21. K. Fricke, Analytische und p-adische Aspekte von klassischen und Mock-Modulformen, Ph.D. thesis, Max-Planck Insitute of Mathematics - Bonn, Germany, in preparation.

    Google Scholar 

  22. P. Guerzhoy, Z. Kent, and K. Ono, p-adic coupling of mock modular forms and shadows, Proc. Nat. Acad. Sci. USA 107 (2010), 6169–6174.

    Article  MATH  MathSciNet  Google Scholar 

  23. H. Iwaniec, Topics in classical automorphic forms, Graduate studies in Mathematics 53, Amer. Math. Soc., Providence, RI, USA, 1997.

    Google Scholar 

  24. P. Jenkins, Kloosterman sums and traces of singular moduli, J. Number Theory 117 (2006), 301–314.

    Article  MATH  MathSciNet  Google Scholar 

  25. M. Knopp, Construction of automorphic forms on H-groups and supplementary Fourier series, Trans. Amer. Math. Soc. 103 (1962), 168–188.

    MathSciNet  Google Scholar 

  26. M. Knopp, Modular functions in analytic number theory, Amer. Math. Soc., Chelsea Publishing, Providence, RI, 1993.

    MATH  Google Scholar 

  27. M. Knopp, On the Fourier coefficients of cusp forms having small positive weight, Theta Functions-Bowdoin 1987, Part 2 (Brunswick, ME, 1987) eds. L. Ehrenpreis et al., Proc. Sympos. Pure Math. 49, Part 2, Amer. Math. Soc., Providence, RI, 1989, 111–127.

    Google Scholar 

  28. M. Knopp and J. Lehner, On complementary automorphic forms and supplementary Fourier series, Illinois J. Math. 6 (1962) 98–106.

    MathSciNet  Google Scholar 

  29. N. Kuznetsov, The Petersson conjecture for cusp forms of weight zero and the Linnik conjecture. Sums of Kloosterman sums, Mat. Sb. (N.S.) 111(153) (1980), 334–383, 479 (in Russian); English translation: Math. USSR Sbornik 39 (1981), 299–342.

    Google Scholar 

  30. H. Neunhöffer, Über die analytische Fortsetzung von Poincaréreihen, S.-B. Heidelberger Akad. Wiss. Math.-Natur Kl. 2 (1973), 33–90.

    Google Scholar 

  31. W. Pribitkin, The Fourier coefficients of modular forms and Neibur modular integrals having small positive weight, I, Acta Arith. 91 (1999), 291–309.

    MATH  MathSciNet  Google Scholar 

  32. W. Pribitkin, The Fourier Coefficients of Modular Forms and Neibur Modular Integrals Having Small Positive Weight, II, Acta Arith. 93 (2000), 343–358.

    MATH  MathSciNet  Google Scholar 

  33. H. Rademacher, On the expansion of the partition function in a series, Ann. of Math. (2) 44 (1943), 416–422.

    Google Scholar 

  34. S. Ramanujan, The lost notebook and other unpublished papers, Narosa, New Delhi, 1988.

    MATH  Google Scholar 

  35. J. Rouse, Zagier duality for the exponents of Borcherds products for Hilbert modular forms, J. Lond. Math. Soc. 73 (2006), 339–354.

    Article  MATH  MathSciNet  Google Scholar 

  36. G. Watson, The final problem: an account of the mock theta functions, J. London Math. Soc. 11 (1936), 55–80.

    Article  Google Scholar 

  37. G. Watson, The mock theta functions (2), Proc. London Math. Soc. 42 (1937), 274–304.

    Article  Google Scholar 

  38. E. Whittaker and G. Watson, A course in modern analysis, 4th ed., Cambridge University Press, Cambridge, England (1990), 620 pp.

    Google Scholar 

  39. D. Zagier, Traces of Singular Moduli, Motives, polylogarithms and Hodge theory, Part I (Irvine, CA, 1998), 211–244, Int. Press Lect. Ser., 3, I, Int. Press, Somerville, MA, 2002.

    Google Scholar 

  40. D. Zagier, Ramanujan’s mock theta functions and their applications [d’après Zwegers and Bringmann-Ono], Sém. Bourbaki, Astérisque 326 (2009), 143–164.

    MathSciNet  Google Scholar 

  41. S. Zwegers, Mock θ-functions and Real Analytic Modular Forms. Contemp. Math. 291 (2001), 269–277.

    Article  MathSciNet  Google Scholar 

  42. S. Zwegers, Mock theta functions, Ph.D. Thesis, Universiteit Utrecht, 2002.

    Google Scholar 

  43. S. Zwegers, The Folsom-Ono grid contains only integers, Proc. Amer. Math. Soc. 137 (2009), 1579–1584.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research of the first author was supported by the Alfried Krupp Prize for Young University Teachers of the Krupp Foundation and also by NSF grant DMS-0757907. The third author is supported by an NSF Postdoctoral Fellowship and was supported by the Chair in Analytic Number Theory at EPFL during part of the preparation of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathrin Bringmann .

Editor information

Editors and Affiliations

Additional information

In memory of Leon Ehrenpreis

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bringmann, K., Kane, B., Rhoades, R.C. (2013). Duality and Differential Operators for Harmonic Maass Forms. In: Farkas, H., Gunning, R., Knopp, M., Taylor, B. (eds) From Fourier Analysis and Number Theory to Radon Transforms and Geometry. Developments in Mathematics, vol 28. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4075-8_6

Download citation

Publish with us

Policies and ethics