Skip to main content

Part of the book series: Developments in Mathematics ((DEVM,volume 28))

Abstract

We provide necessary and sufficient conditions for existence of continuous solutions of a system of linear equations whose coefficients are continuous functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jacek Bochnak, Michel Coste, and Marie-Françoise Roy, Real algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 36, Springer-Verlag, Berlin, 1998, Translated from the 1987 French original, Revised by the authors. MR1659509 (2000a:14067)

    Google Scholar 

  2. Yoav Benyamini and Joram Lindenstrauss, Geometric nonlinear functional analysis. Vol. 1, American Mathematical Society Colloquium Publications, vol. 48, American Mathematical Society, Providence, RI, 2000. 1727673 (2001b:46001)

    Google Scholar 

  3. Edward Bierstone, Pierre D. Milman, and Wiesław Pawłucki, Differentiable functions defined in closed sets. A problem of Whitney, Invent. Math. 151 (2003), no. 2, 329–352. 1953261 (2004h:58009)

    Google Scholar 

  4. Holger Brenner, Continuous solutions to algebraic forcing equations, arXiv.org:0608611, 2006.

    Google Scholar 

  5. Leon Ehrenpreis, Fourier analysis in several complex variables, J. Wiley & Sons, New York-London-Sydney, 1970, reprinted by Dover, 2006

    Google Scholar 

  6. Charles Fefferman, Whitney’s extension problem for C m, Ann. of Math. (2) 164 (2006), no. 1, 313–359. 2233850 (2007g:58013)

    Google Scholar 

  7. Georges Glaeser, Étude de quelques algèbres tayloriennes, J. Analyse Math. 6 (1958), 1–124; erratum, insert to 6 (1958), no. 2. 0101294 (21 #107)

    Google Scholar 

  8. Melvin Hochster, (personal communication), 2010.

    Google Scholar 

  9. János Kollár, Lectures on resolution of singularities, Annals of Mathematics Studies, vol. 166, Princeton University Press, Princeton, NJ, 2007. MR2289519 (2008f:14026)

    Google Scholar 

  10. János Kollár, Continuous closure of sheaves, arXiv.org:1010.5480, 2010.

    Google Scholar 

  11. _________ , Continuous rational functions on real and p-adic varieties, arXiv.org:1101.3737, 2011.

    Google Scholar 

  12. B. Malgrange, Ideals of differentiable functions, Tata Institute of Fundamental Research Studies in Mathematics, No. 3, Tata Institute of Fundamental Research, Bombay, 1967. MR0212575 (35 #3446)

    Google Scholar 

  13. Ernest Michael, Continuous selections. I, Ann. of Math. (2) 63 (1956), 361–382. 0077107 (17,990e)

    Google Scholar 

  14. Raghavan Narasimhan, Analysis on real and complex manifolds, Advanced Studies in Pure Mathematics, Vol. 1, Masson & Cie, Éditeurs, Paris, 1968. 0251745 (40 #4972)

    Google Scholar 

  15. Elias. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, NJ, 1970.

    Google Scholar 

  16. Jean-Claude Tougeron, Idéaux de fonctions différentiables, Springer-Verlag, Berlin, 1972, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 71. MR0440598 (55 #13472)

    Google Scholar 

  17. Hassler Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36 (1934), no. 1, 63–89. MR1501735

    Google Scholar 

Download references

Acknowledgements

We thank M. Hochster for communicating his unpublished example (3.4). We are grateful to B. Klartag and A. Naor for bringing Michael’s theorem to our attention at a workshop organized by the American Institute of Mathematics (AIM), to which we are also grateful. Our earlier proof of (6) was unnecessarily complicated. We thank H. Brenner, A. Isarel, K. Luli, R. Narasimhan, A. Némethi, and T. Szamuely for helpful conversations and F. Wroblewski for TeXing several sections of this chapter.

Partial financial support for CF was provided by the NSF under grant number DMS-0901040 and by the ONR under grant number N00014-08-1-0678. Partial financial support for JK was provided by the NSF under grant number DMS-0758275.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Fefferman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fefferman, C., Kollár, J. (2013). Continuous Solutions of Linear Equations. In: Farkas, H., Gunning, R., Knopp, M., Taylor, B. (eds) From Fourier Analysis and Number Theory to Radon Transforms and Geometry. Developments in Mathematics, vol 28. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4075-8_10

Download citation

Publish with us

Policies and ethics