Functional Analysis of HMG-CoA Reductase and Oxidosqualene Cyclases in Arabidopsis



In plants, more than 200 triterpenes with various carbon skeletons have been found, of which some triterpenes are biologically active. Here we show recent detailed analyses on the biosynthetic genes and the mechanism of triterpene biosynthesis characteristic of higher plants. The studies presented here employed molecular genetic tools and organic chemistry methods to focus on the function of HMG-CoA reductase, the triterpene biosynthesis rate-limiting enzyme, and oxidosqualene cyclase, the enzyme catalyzing the formation of the cyclic triterpene skeletons.


Arabidopsis Lanosterol Mevalonate Mutant NMR Oxidosqualene cyclase Sterol Triterpenoid 



This work was supported in part by Grants-in-Aid for Scientific Research and Bilateral Program from JSPS, Japan, and Strategic International Cooperative Program from JST, Japan.


  1. Abe I, Rohmer M, Prestwich GD (1993) Enzymatic cyclization of squalene and oxidosqualene to sterols and triterpenes. Chem Rev 93:2189–2206CrossRefGoogle Scholar
  2. Aldo T, Pinarosa A (2006) Chemical and biological activity of triterpene saponins from Medicago species. Nat Prod Commun 1:1159–1180Google Scholar
  3. Aleth M, Dubois L (2005) Bioactive saponins with cancer related and immunomodulatory activity: recent developments. Stud Nat Prod Chem 32:209–246CrossRefGoogle Scholar
  4. Bach TJ (1987) Synthesis and metabolism of mevalonic acid in plants. Plant Physiol Biochem 25:163–178Google Scholar
  5. Baisted DJ, Gardner RL, McReynolds LA (1968) Phytosterol biosynthesis from lanosterol in Euphorbia peplus. Phytochemistry 7:945–949CrossRefGoogle Scholar
  6. Benveniste P, Hirth L, Ourisson G (1966) La biosynthèse des stérols dans les tissus de tabac cultivés in vitro—II. Particularités de la biosynthèse des phytostérols des tissus de tabac cultivés in vitro. Phytochemistry 5:45–58CrossRefGoogle Scholar
  7. Benveniste P, Hewlins MJE, Fritig B (1969) La biosynthèse des stérols dans les tissus de tabac cultivés in vitro. Cinétique de formation des stérols et de leurs précurseurs. Eur J Biochem 9:526–533PubMedCrossRefGoogle Scholar
  8. Baker CH, Matsuda SPT, Liu DR, Corey EJ (1995) Molecular-cloning of the human gene encoding lano­sterol synthase from a liver cDNA library. Biochem Biophys Res Commun 213:154–160PubMedCrossRefGoogle Scholar
  9. Choi D, Bostock RM (1994) Involvement of de novo protein synthesis, protein kinase, extracellular Ca2+, and lipoxygenase in arachidonic acid induction of 3-hydroxy-3-methylglutaryl coenzyme A reductase genes and isoprenoid accumulation in potato (Solanum tuberosum L.). Plant Physiol 104:1237–1244PubMedGoogle Scholar
  10. Connolly JD, Hill RA (2007) Triterpenoids. Nat Prod Rep 24:465–486PubMedCrossRefGoogle Scholar
  11. Connolly JD, Hill RA (2008) Triterpenoids. Nat Prod Rep 25:794–830PubMedCrossRefGoogle Scholar
  12. Connolly JD, Hill RA (2010) Triterpenoids. Nat Prod Rep 27:79–132PubMedCrossRefGoogle Scholar
  13. Corey EJ, Matsuda SPT, Baker CH, Ting AY, Cheng H (1996) Molecular cloning of a Schizosaccharomyces pombe cDNA encoding lanosterol synthase and investigation of conserved tryptophan residues. Biochem Biophys Res Commun 219:327–331Google Scholar
  14. Corey EJ, Matsuda SPT, Bartel B (1993) Isolation of an Arabidopsis thaliana gene encoding cycloartenol synthase by functional expression in a yeast mutant lacking lanosterol synthase by the use of a chromatographic screen. Proc Natl Acad Sci USA 90:11628–11632PubMedCrossRefGoogle Scholar
  15. Daraselia ND, Tarchevskaya S, Narita JO (1996) The promoter for tomato 3-hydroxy-3-methylglutaryl coenzyme A reductase gene 2 has unusual regulatory elements that direct high-level expression. Plant Physiol 112:727–733PubMedCrossRefGoogle Scholar
  16. Ehrhardt JD, Hirth L, Ourisson G (1967) Études sur les triterpènes précurseurs des phytostérols. Recherche du cycloarténol et du lanostérol dans diverses espèces végétales. Phytochemistry 6:815–821CrossRefGoogle Scholar
  17. Enjuto M, Balcells L, Campos N, Caelles C, Arró M, Boronat A (1994) Arabidopsis thaliana contains two differentially expressed 3-hydroxy-3-methylglutaryl-CoA reductase genes, which encode microsomal forms of the enzyme. Proc Natl Acad Sci USA 91:927–931PubMedCrossRefGoogle Scholar
  18. Enjuto M, Lumbreras V, Marín C, Boronat A (1995) Expression of the Arabidopsis HMG2 gene, encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase, is restricted to meristematic and floral tissues. Plant Cell 7:517–527PubMedGoogle Scholar
  19. Giner J-L, Berkowitz JD, Andersson T (2000) Nonpolar components of the latex of Euphorbia peplus. J Nat Prod 63:267–269PubMedCrossRefGoogle Scholar
  20. Giner JL, Djerassi C (1995) A reinvestigation of the biosynthesis of lanosterol in Euphorbia lathyris. Phytochemistry 39:333–335CrossRefGoogle Scholar
  21. Goldstein JL, Brown MS (1990) Regulation of the mevalonate pathway. Nature 343:425–430PubMedCrossRefGoogle Scholar
  22. Goodwin TW (1979) Biosynthesis of triterpenoids. Annu Rev Plant Physiol 30:369–404CrossRefGoogle Scholar
  23. Grunwald C (1975) Plant sterols. Annu Rev Plant Physiol 26:209–236CrossRefGoogle Scholar
  24. Hart EA, Hua L, Darr LB, Wilson WK, Pang J, Matsuda SPT (1999) Directed evolution to investigate steric control of enzymatic oxidosqualene cyclization. An isoleucine-to-valine mutation in cycloartenol synthase allows lanosterol and parkeol biosynthesis. J Am Chem Soc 121:9887–9888CrossRefGoogle Scholar
  25. Hayashi H, Hiraoka N, Ikeshiro Y et al (2000) Molecular cloning and characterization of a cDNA for Glycyrrhiza glabra cycloartenol synthase. Biol Pharm Bull 23:231–234PubMedCrossRefGoogle Scholar
  26. Heintz R, Benveniste P (1970) Cyclisation de l’époxyde-2,3 de squalène par des microsomes extraits de tissus de tabac cultivés in vitro. Phytochemistry 9:1499–1503CrossRefGoogle Scholar
  27. Hemmerlin A, Hoeffler JF, Meyer O et al (2003) Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells. J Biol Chem 278:26666–26676PubMedCrossRefGoogle Scholar
  28. Hewlins MJE, Ehrhardt JD, Hirth L, Ourisson G (1969) The conversion of [14C]cycloartenol and [14C]lanosterol into phytosterols by cultures of Nicotiana tabacum. Eur J Biochem 8:184–188PubMedCrossRefGoogle Scholar
  29. Hill RA, Connolly JD (2011) Triterpenoids. Nat Prod Rep 28:1087–1117CrossRefGoogle Scholar
  30. Hill RA, Connolly JD (2012) Triterpenoids. Nat Prod Rep 29:780–818CrossRefGoogle Scholar
  31. Husselstein-Muller T, Schaller H, Benveniste P (2001) Molecular cloning and expression in yeast of 2,3-oxidosqualene-triterpenoid cyclases from Arabidopsis thaliana. Plant Mol Biol 45:75–92PubMedCrossRefGoogle Scholar
  32. Kasahara H, Hanada A, Kuzuyama T, Takagi M, Kamiya Y, Yamaguchi S (2002) Contribution of the mevalonate and methylerythritol phosphate pathways to the biosynthesis of gibberellins in Arabidopsis. J Biol Chem 277:45188–45194PubMedCrossRefGoogle Scholar
  33. Kolesnikova MD, Xiong Q, Lodeiro S, Hua L, Matsuda SPT (2006) Lanosterol biosynthesis in plants. Arch Biochem Biophys 447:87–95PubMedCrossRefGoogle Scholar
  34. Korth KL, Stermer BA, Bhattacharyya MK, Dixon RA (1997) HMG-CoA reductase gene families that differentially accumulate transcripts in potato tubers are developmentally expressed in floral tissues. Plant Mol Biol 33:545–551PubMedCrossRefGoogle Scholar
  35. Lacaille-Dubois MA, Wagner H (2000) Bioactive saponins from plants: an update. Stud Nat Prod Chem 21: 633–687CrossRefGoogle Scholar
  36. Learned RM (1996) Light suppresses 3-hydroxy-3-methylglutaryl coenzyme A reductase gene expression in Arabidopsis thaliana. Plant Physiol 110:645–655PubMedCrossRefGoogle Scholar
  37. Learned RM, Connolly EL (1997) Light modulates the spatial patterns of 3-hydroxy-3-methylglutaryl coenzyme A reductase gene expression in Arabidopsis thaliana. Plant J 11:499–511PubMedCrossRefGoogle Scholar
  38. Lichtenthaler HK (1999) The 1-desoxy-d-xylulose-5-­phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 50:47–65PubMedCrossRefGoogle Scholar
  39. Lodeiro S, Schulz-Gasch T, Matsuda SPT (2005) Enzyme redesign: two mutations cooperate to convert cycloartenol synthase into an accurate lanosterol synthase. J Am Chem Soc 127:14132–14133PubMedCrossRefGoogle Scholar
  40. Mahato SB, Garai S (1998) Triterpenoid saponins. Indian Institute of Chemical Biology, Calcutta, India. Prog Chem Org Nat Prod 74:1–196Google Scholar
  41. Matsuda SPT, Darr LB, Hart EA et al (2000) Steric bulk at cycloartenol synthase position 481 influences cyclization and deprotonation. Org Lett 27:2261–2263CrossRefGoogle Scholar
  42. Nagata N, Suzuki M, Yoshida S, Muranaka T (2002) Mevalonic acid partially restores chloroplast and etioplast development in Arabidopsis lacking the non-mevalonate pathway. Planta 216:345–350PubMedCrossRefGoogle Scholar
  43. Ohyama K, Suzuki M, Kikuchi J, Saito K, Muranaka T (2009) Dual biosynthetic pathways to phytosterol via cycloartenol and lanosterol in Arabidopsis. Proc Natl Acad Sci USA 106:725–730PubMedCrossRefGoogle Scholar
  44. Ohyama K, Suzuki M, Masuda K, Yoshida S, Muranaka T (2007) Chemical phenotypes of the hmg1 and hmg2 mutants of Arabidopsis demonstrate the in-planta role of HMG-CoA reductase in triterpene biosynthesis. Chem Pharm Bull 55:1518–1521PubMedCrossRefGoogle Scholar
  45. Phillips DR, Rasbery JM, Bartel B, Matsuda SPT (2006) Biosynthetic diversity in plant triterpene cyclization. Curr Opin Plant Biol 9:305–314CrossRefGoogle Scholar
  46. Ponsinet G, Ourisson G (1967) Biosynthèse in vitro des triterpènes dans le latex d’Euphorbia. Phytochemistry 6:1235–1243CrossRefGoogle Scholar
  47. Ponsinet G, Ourisson G (1968a) Etudes chimiotaxo­nomiques dans la famille des Euphorbiacées 3. Répartition des triterpenes dans les latex d’Euphorbia. Phytochemistry 7:89–98CrossRefGoogle Scholar
  48. Ponsinet G, Ourisson G (1968b) Aspects particuliers de la biosynthèse des triterpènes dans le latex d’Euphorbia. Phytochemistry 7:757–764CrossRefGoogle Scholar
  49. Ramos-Valdivia AC, Van der Heijden R, Verpoorte R (1997) Isopentenyl diphosphate isomerase: a core enzyme in isoprenoid biosynthesis. A review of its biochemistry and function. Nat Prod Rep 14:591–603PubMedCrossRefGoogle Scholar
  50. Rees HH, Goad LJ, Goodwin TW (1968) Studies in phytosterol biosynthesis. Mechanism of biosynthesis of cycloartenol. Biochem J 107:417–426PubMedGoogle Scholar
  51. Sawai S, Akashi T, Sakurai N et al (2006a) Plant lano­sterol synthase: divergence of the sterol and triterpene biosynthetic pathways in eukaryotes. Plant Cell Physiol 47:673–677PubMedCrossRefGoogle Scholar
  52. Sawai S, Shindo T, Sato S et al (2006b) Functional and structural analysis of genes encoding oxidosqualene cyclases of Lotus japonicus. Plant Sci 170:247–257CrossRefGoogle Scholar
  53. Segura MJR, Lodeiro S, Meyer MM, Patel AJ, Matsuda SPT (2002) Directed evolution experiments reveal mutations at cycloartenol synthase residue His477 that dramatically alter catalysis. Org Lett 4:4459–4462PubMedCrossRefGoogle Scholar
  54. Sekula BC, Nes WR (1980) The identification of cholesterol and other steroids in Euphorbia pulcherrimma. Phytochemistry 19:1509–1512Google Scholar
  55. Seo S, Saito H, Uomori A, Yoshimura Y et al (1991) Biosynthesis of cholesterol and lanosterol in isolation dog hepatocytes: Incorporation of [1,2-13C2]- and [2-13C2H3]-acetate, and [1-13C]acetate and [1-2H2]ethanol. J Chem Soc Perkin I. 2065–2072Google Scholar
  56. Seo S, Uomori A, Yoshimura Y, Takeda K et al (1987) Stereospecificity in the side-chain formation of 24β-ethylsterols in tissue cultures of Trichosanthes kirilowii. J Chem Soc Chem Commun. 1876–1878Google Scholar
  57. Seo S, Uomori A, Yoshimura Y, Takeda K et al (1988) Biosynthesis of sitosterol, cycloartenol, and 24-methylenecycloartanol in tissue cultures of higher plants and of ergosterol in yeast from [1,2-13C2]- and [2-13C2H3]-acetate and [5-13C2H2]MVA. J Chem Soc Perkin I. 2407–2414Google Scholar
  58. Suzuki M, Kamide Y, Nagata N, Seki H et al (2004) Loss of function of 3-hydroxy-3-methylglutaryl coenzyme A reductase 1 (HMG1) in Arabidopsis leads to dwarfing, early senescence and male sterility, and reduced sterol levels. Plant J 37:750–761PubMedCrossRefGoogle Scholar
  59. Suzuki M, Xiang T, Ohyama K, Seki H et al (2006) Lanosterol synthase in dicotyledonous plants. Plant Cell Physiol 47:565–571PubMedCrossRefGoogle Scholar
  60. Sympson TJ (1987) Applicaton of multinuclear NMR to structural and biosynthetic studies of polyketide microbial metabolites. Chem Soc Rev 16:123–160CrossRefGoogle Scholar
  61. Xu R, Fazio GC, Matsuda SPT (2004) On the origins of triterpenoid skeletal diversity. Phytochemistry 65: 261–291PubMedCrossRefGoogle Scholar
  62. Zhang H, Shibuya M, Yokota S, Ebizuka Y (2003) Oxidosqualene cyclases from cell suspension cultures of Betula platyphylla var. japonica: molecular evolution of oxidosqualene cyclases in higher plants. Biol Pharm Bull 26:642–650PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Biotechnology, Graduate School of EngineeringOsaka UniversityOsakaJapan
  2. 2.Department of Chemistry and Materials ScienceTokyo Institute of TechnologyMeguroJapan

Personalised recommendations