Skip to main content

Regulation of 3-Hydroxy-3-Methylglutaryl-CoA Synthase and 3-Hydroxy-3-Methylglutaryl-CoA Reductase and Rubber Biosynthesis of Hevea brasiliensis (B.H.K.) Mull. Arg

  • Chapter
  • First Online:

Abstract

It is rather well established that rubber biosynthesis in rubber trees (Hevea brasiliensis) takes place in laticifers and is dependent on mevalonate (MVA). 3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGR, EC 1.1.1.34) has been shown to catalyze a rate-limiting step in this pathway. However, our studies demonstrated that both 3-hydroxy-3-methylglutaryl coenzyme A synthase (HMGS, EC 2.3.3.10) and HMGR are essential enzymes involved in rubber biosynthesis. In this chapter, we report on the current information as to the regulation of both HMGS and HMGR and their effect on rubber biosynthesis in H. brasiliensis. Hevea HMGS is encoded by a small gene family consisting of hmgs-1 and hmgs-2. The available information concerning the nature of the gene(s) encoding HMGS is also summarized. Enzyme activity and mRNA transcripts were mainly found in tissues with more laticifers, the sites of rubber biosynthesis. In latex of the high-yielding rubber clone, hmgs mRNA levels and enzyme activity were significantly higher than in the latex of the low-yield variety. Furthermore, the mRNA transcripts and enzyme activity in latex were higher at night than daytime, which is reflected by the dry rubber content. Ethephon treatment, which is known to increase the latex yield, had a direct effect on both hmgs mRNA transcripts and enzyme activity. The hmgs mRNA levels and dried rubber content per tapping from intra­clone rubber trees were also shown to be highly correlated. HMG-CoA acts as a substrate for HMGR to form mevalonate, which is further converted to isoprenoid compounds as well as natural rubber. Three genes are known to encode HMGR in H. brasiliensis, namely, hmgr-1, hmgr-2, and hmgr-3, and hmgr-1 is likely to be involved in rubber biosynthesis. The hmgr-1 mRNA level was well correlated with dried rubber content, similar to those observed in the case of hmgs gene expression.

These findings clearly indicated that both HMGS and HMGR enzyme activities are involved in early steps of rubber biosynthesis in H. brasiliensis at the level of their gene expression. The two enzymes possibly function in concert in response to the supply of substrate for rubber biosynthesis, similar to the synthesis of cholesterol in animals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alam A, Britton G, Powls R et al (1991) Aspects related to 3-hydroxy-3-methylglutaryl-CoA synthesis in higher plants. Biochem Soc Trans 19:164–168

    Google Scholar 

  • Alex D, Bach TJ, Chye ML (2000) Expression of Brassica juncea 3-hydroxy-3-methylglutaryl-CoA synthase is developmentally regulated and stress-repressive. Plant J 22:414–426

    Article  Google Scholar 

  • Ayté J, Gil-Gómez G, Haro D et al (1990a) Rat mitochondrial and cytosolic 3-hydroxy-3-methylglutaryl-CoA synthase are encoded by two different genes. Proc Natl Acad Sci USA 87:3874–3878

    Article  PubMed  Google Scholar 

  • Ayté J, Gil-Gómez G, Hegardt FG (1990b) Nucleotide sequence of a rat liver cDNA encoding the cytosolic 3-hydroxy-3-methylglutaryl coenzyme A synthase. Nucleic Acids Res 18:3642–3642

    Article  PubMed  Google Scholar 

  • Bach TJ, Rogers DH, Rudney H (1986) Detergent-solubilization, purification, and characterization of membrane-bound 3-hydroxy-3-methylglutaryl coenzyme A reductase from radish seedlings. Eur J Biochem 154:103–111

    Article  PubMed  CAS  Google Scholar 

  • Bach TJ, Raudot V, Vollack K-U et al (1994) Further studies on the enzymatic conversion of acetyl-coenzyme A into 3-hydroxy-3-methylglutaryl-coenzyme A in radish. Plant Physiol Biochem 32:775–783

    CAS  Google Scholar 

  • Balasubramaniam S, Goldstein JL, Brown MS (1977) Regulation of cholesterol synthesis in rat adrenal gland through coordinate control of 3-hydroxy-3-methylglutaryl-CoA synthase and reductase activity. Proc Natl Acad Sci USA 74:1421–1425

    Article  PubMed  CAS  Google Scholar 

  • Brown WE, Rodwell VW (1980) Hydroxymethylglutaryl CoA reductase. In: Jeffery J (ed) Dehydrogenases requiring nicotinamide coenzymes. Birkhäuser Verlag, Berlin

    Google Scholar 

  • Chow K-S, Wan K-L, Isa MNM, Bahari A, Tan S-H, Harikrishna K, Yeang H-Y (2007) Insights into rubber biosynthesis from transcriptome analysis of Hevea brasiliensis latex. J Exp Bot 58:2429–2440

    Article  PubMed  CAS  Google Scholar 

  • Chun KY, Vinarov DA, Zajicek J et al (2000) 3-Hydroxy-3-methylglutaryl-CoA synthase: a role for glutamate-95 in general acid/base catalysis of C–C bond formation. J Biol Chem 275:17946–17953

    Article  PubMed  CAS  Google Scholar 

  • Chye ML, Kush A, Tan CT et al (1991) Characterization of cDNA and genomic clones encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase from Hevea brasiliensis. Plant Mol Biol 19:562–577

    Google Scholar 

  • Chye ML, Tan CT, Chua NH (1992) Three genes encode 3-hydroxy-3-methylglutaryl coenzyme A reductase in Hevea brasiliensis: hmg1 and hmg2 are differentially expressed. Plant Mol Biol 19:473–484

    Article  PubMed  CAS  Google Scholar 

  • Clinkenbeard KD, Reed WD, Mooney RD et al (1975a) Intracellular localization of the 3-hydroxy-3-methylglutaryl coenzyme A cycle enzymes in liver. J Biol Chem 250:3108–3116

    PubMed  CAS  Google Scholar 

  • Clinkenbeard KD, Sugiyama T, Reed WD et al (1975b) Cytoplasmic 3-hydroxy-3-methylglutaryl coenzyme A synthase from liver: purification, properties and role in cholesterol synthesis. J Biol Chem 250:3124–3135

    CAS  Google Scholar 

  • Coupé M, Chrestin H (1989) Physiochemical and biochemical mechanisms of hormonal (ethylene) stimulation. In: Auzac JD, Jacob JL, Chrestin H (eds) Physiology of rubber tree latex. CRC Press, Boca Raton

    Google Scholar 

  • Goldstein JL, Brown MS (1990) Regulation of the mevalonate pathway. Nature 343:425–430

    Article  PubMed  CAS  Google Scholar 

  • Hemmerlin A, Hoeffler JF, Meyer O et al (2003) Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells. J Biol Chem 278:26666–26676

    Article  PubMed  CAS  Google Scholar 

  • Hepper CM, Audley BG (1969) The biosynthesis of rubber from β-Hydroxy-β- methylglutaryl coenzyme A in Hevea brasiliensis latex. Biochem J 114:379–386

    PubMed  CAS  Google Scholar 

  • Kasahara H, Hanada A, Kuzuyama T, Takagi M, Kamiya Y, Yamaguchi S (2002) Contribution of the mevalonate and methylerythritol phosphate pathways to the biosynthesis of gibberellins in Arabidopsis. J Biol Chem 277:45188–45194

    Article  PubMed  CAS  Google Scholar 

  • Lange BM, Rujan T, Martin W et al (2000) Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. Proc Natl Acad Sci USA 97:13172–13177

    Article  PubMed  CAS  Google Scholar 

  • Laule O, Fürholz A, Chang HS, Zhu T, Wang X, Heifetz PB, Gruissem W, Lange M (2003) Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 100:6866–6871

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler HK, Rohmer M, Schwender J (1997a) Two independent biochemical pathways for isopentenyl diphosphate and isoprenoid biosynthesis in higher plants. Physiol Plant 101:643–652

    Article  CAS  Google Scholar 

  • Lichtenthaler HK, Schwender J, Disch A et al (1997b) Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate-independent pathway. FEBS Lett 400:271–274

    Article  PubMed  CAS  Google Scholar 

  • Lynen F (1969) Biochemical problems of rubber synthesis. J Rubb Res Inst Malaya 21:389–406

    CAS  Google Scholar 

  • Mandel MA, Feldmann KA, Herrera-Estrella L et al (1996) A novel gene required for chloroplast development, is highly conserved in evolution. Plant J 9:649–658

    Article  PubMed  CAS  Google Scholar 

  • Misra I, Miziorko HM (1996) Evidence for the interaction of avian 3-hydroxy-3 methylglutaryl-CoA synthase histidine-246 with acetoacetyl-CoA. Biochemistry 35:9610–9616

    Article  PubMed  CAS  Google Scholar 

  • Misra I, Narasimhan C, Miziorko HM (1993) Avian 3-hydroxy-3-methylglutaryl-CoA synthase, characterization of a recombinant cholesterogenic isozymes and demonstration of the requirement for a sulfhydryl functionality in formation of the acetyl-S-enzyme reaction intermediate. J Biol Chem 268:12129–12135

    PubMed  CAS  Google Scholar 

  • Misra I, Wang CZ, Miziorko HM (2003) The influence of conserved aromatic residue in 3-hydroxy-3-methyl­glutaryl-CoA synthase. J Biol Chem 278:26443–26449

    Article  PubMed  CAS  Google Scholar 

  • Miziorko HM, Clinkenbeard KD, Reed WD et al (1975) 3-Hydroxy-3-methylglutaryl-CoA synthase. J Biol Chem 250:5768–5773

    PubMed  CAS  Google Scholar 

  • Miziorko HM, Kramer PR, Kulkoski JA (1982) S-(3-Oxobutyl)coenzymeA. Interaction with acetoacetyl coenzyme A utilizing enzymes. J Biol Chem 257: 2842–2847

    PubMed  CAS  Google Scholar 

  • Montamat F, Guilloton M, Karst F et al (1995) Isolation and characterization of a cDNA encoding Arabidopsis thaliana 3-hydroxy-3-methylglutaryl-CoA synthase. Gene 167:197–201

    Article  PubMed  CAS  Google Scholar 

  • Nagegowda DA, Bach TJ, Chye ML (2004) Brassica juncea 3-hydroxy-3-methylglutaryl (HMG)-CoA synthase 1: expression and characterization of recombinant wild-type and mutant enzymes. Biochem J 383: 517–527

    Article  PubMed  CAS  Google Scholar 

  • Pojer F, Ferrer JL, Richard SB, Nagegowda DA, Chye ML, Bach TJ, Noel JP (2006) Structural basis for the design of potent and species-specific inhibitors of 3-hydroxy-3-methylglutaryl CoA synthases. Proc Natl Acad Sci USA 103:11491–11496

    Article  PubMed  CAS  Google Scholar 

  • Price AC, Choi K-H, Health RJ et al (2001) Inhibition of β-ketoacyl-acyl carrier protein synthases by thiolactomycin and cerulenin. Structure and mechanism. J Biol Chem 276:6551–6559

    Article  PubMed  CAS  Google Scholar 

  • Priya P, Venkatachalam P, Thulaseedharam A (2007) Differential expression pattern of rubber elongation factor (REF) mRNA transcripts from high and low yielding clones of rubber tree (Hevea brasiliensis Muell. Arg.). Plant Cell Rep 26:1833–1838

    Article  PubMed  CAS  Google Scholar 

  • Pujade-Renaud V, Clement A, Perrot-Rechenmann C et al (1994) Ethylene-induced increase in glutamine synthetase activity and mRNA levels in Hevea brasiliensis latex cells. Plant Physiol 105:127–132

    Google Scholar 

  • Pujade-Renaud V, Clement A, Perrot-Rechenmann C et al (1997) Ethylene-induced increase in glutamine synthetase activity and mRNA levels in Hevea brasiliensis latex cells. Plant Physiol 105:127–132

    Google Scholar 

  • Qiu X, Janson CA, Konstantinidis AK et al (1999) Crystal structure of β-ketoacyl-acyl carrier protein synthase III: a key condensing enzyme in bacterial fatty acid biosynthesis. J Biol Chem 274:36465–36471

    Article  PubMed  CAS  Google Scholar 

  • Reddy AR, Das VSR (1986) Partial purification and characterization of 3-hydroxy-3-methylglutaryl coenzyme A reductase from the leaves of guayule (Parthenium argentatum). Phytochemistry 25:2471–2474

    Article  CAS  Google Scholar 

  • Rogers DH, Panini SR, Rudney H (1983) Properties of HMG CoA reductase and its mechanism of action. In: Sabine JR (ed) 3-Hydroxy-3-methylglutaryl coenzyme A reductase. CRC Press, Boca Raton

    Google Scholar 

  • Royo T, Ayté J, Albericio FE et al (1991) Diurnal rhythm of rat liver cytosolic 3-hydroxy-3-methylglutaryl-CoA synthase. Biochem J 280:61–64

    PubMed  CAS  Google Scholar 

  • Scarsdale JN, Kazanina G, He X et al (2001) Crystal structure of the Mycobacterium tuberculosis β-ketoacylacyl carrier protein synthase III. J Biol Chem 276:20516–20522

    Article  PubMed  CAS  Google Scholar 

  • Schaller H, Grausem B, Benveniste P et al (1995) Expression of the Hevea brasiliensis (H.B.K.) Muell. Arg. 3-methylglutaryl-CoA reductase1 in tobacco results in sterol overproduction. Plant Physiol 109:761–770

    PubMed  CAS  Google Scholar 

  • Seetang-Nun Y, Sharkey TD, Suvachittanont W (2008) Molecular cloning and characterization of two cDNAs encoding 1-deoxy-d-xylulose 5-phosphate reducto­isomerase from Hevea brasiliensis. Plant Physiol 165: 991–1002

    Article  CAS  Google Scholar 

  • Shah SN (1982) Cytosolic 3-hydroxy-3-methyglutaryl coenzyme A synthase in rat brain: properties and developmental change. Neurochem Res 7:1359–1366

    Article  PubMed  CAS  Google Scholar 

  • Sipat AB (1982) Hydroxymethylglutaryl CoA reductase NADPH (EC 1.1.1.34) in the latex of Hevea brasiliensis. Phytochemistry 21:2613–2618

    Article  CAS  Google Scholar 

  • Sirinupong N, Suwanmanee P, Doolittle RR et al (2005) Molecular cloning of a new cDNA and expression of 3-hydroxy-3-methylglutaryl-CoA synthase gene from Hevea brasiliensis. Planta 221:502–512

    Article  PubMed  CAS  Google Scholar 

  • Steinbüchel A (2003) Production of rubber-like polymers by microorganisms. Curr Opin Microbiol 6:261–270

    Article  PubMed  Google Scholar 

  • Sutherlin A, Hedl M, Sanchez-Neri B et al (2002) Enterococcus faecalis 3-hydroxy-3-methylglutaryl-CoA synthase, an enzyme of isopentenyl diphosphate biosynthesis. J Bacteriol 184:4065–4070

    Article  PubMed  CAS  Google Scholar 

  • Suvachittanont W, Wititsuwannakul R (1995) 3-Hydroxy-3-methylglutaryl coenzyme A synthase in Hevea brasiliensis. Phytochemistry 40:757–761

    Article  CAS  Google Scholar 

  • Suwanmanee P, Suvachittanon W, Fincher GB (2002) Molecular cloning and sequencing of a cDNA encoding 3-hydroxy-3-methylglutaryl-CoA synthase from Hevea brasiliensis (HBK) Muell Arg. Sci Asia 28:29–36

    Article  CAS  Google Scholar 

  • Van der Heijden R, de Boer-Hlupa V, Verpoorte R et al (1994a) Enzymes involved in the metabolism of 3-hydroxy-3-methylglutaryl-coenzyme A in Catharanthus roseus. Plant Cell Tiss Org Cult 38:345–349

    Article  Google Scholar 

  • Van der Heijden R, Verpoorte R, Duine JA (1994b) Biosynthesis of 3-hydroxy-3-methylglutaryl coenzyme A in Catharanthus roseus: acetoacetyl-Co A thiolase and HMG-Co A synthase show similar chromatographic behavior. Plant Physiol Biochem 32:807–812

    CAS  Google Scholar 

  • Vollmer SH, Mende-Mueller LM, Miziorko HM (1988) Identification of the site of the acetyl-S-enzyme formation on avian liver mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase. Biochemistry 27:4288–4292

    Article  PubMed  CAS  Google Scholar 

  • Wegener A, Gimbel W, Werner T et al (1997) Molecular cloning of ozone-inducible protein from Pinus sylvestris L. with high sequence similarity to vertebrate 3- hydroxy-3-methylglutaryl-CoA synthase. Biochem Biophys Acta 28:247–252

    Google Scholar 

  • Wititsuwannakul R (1986) Diurnal variation of HMG-CoA reductase in latex of Hevea brasiliensis. Experientia 42:45–46

    Article  Google Scholar 

  • Wititsuwannakul R, Wititsuwannakul D, Suwanmanee P (1990) 3-Hydroxy-3-methylglutaryl coenzyme A reductase from the latex of Hevea brasiliensis. Phytochemistry 29:1401–1403

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Thailand Research Fund (MRG4680164 and PHD/00124/2541) and the National Science and Technology and Development Agency, Thailand (GREC40-01-002), for their support, and the support from Biology Department, Taksin University, for the research facility, and also Professor Thomas J. Bach for arranging some financial support for Suwannmanee P. to participate in the 8th TERPNET 2007, April 30–May 4, 2007 Strasbourg, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pluang Suwanmanee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Suwanmanee, P., Sirinupong, N., Suvachittanont, W. (2012). Regulation of 3-Hydroxy-3-Methylglutaryl-CoA Synthase and 3-Hydroxy-3-Methylglutaryl-CoA Reductase and Rubber Biosynthesis of Hevea brasiliensis (B.H.K.) Mull. Arg. In: Bach, T., Rohmer, M. (eds) Isoprenoid Synthesis in Plants and Microorganisms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4063-5_22

Download citation

Publish with us

Policies and ethics