Skip to main content

Introduction

  • Chapter
  • First Online:
Serotonin and Anxiety

Part of the book series: SpringerBriefs in Neuroscience ((BRIEFSNEUROSCI))

  • 1686 Accesses

Abstract

Along with benzodiazepines, drugs targeting the serotonergic system represent the major class of anxiolytic drugs. Among available serotonergic drugs, selective serotonin reuptake inhibitors still represent the most prescribed treatment for anxiety disorders, even though they are associated with low efficacy in a considerable proportion of patients, a delayed onset of therapeutic action, and diverse collateral effects which reduce tolerance (e.g., sexual dysfunction, weight changes).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davis LL, Yonkers KA, Trivedi M, Kramer GL, Petty F (1999) The mechanism of action of SSRIs: a new hypothesis. In: Stanford SC (ed) Selective serotonin reuptake inhibitors (SSRIs): past, present and future. R. G. Landes Company, Austin, pp 171–185

    Google Scholar 

  2. Guimarães FS, Carobrez AP, Graeff FG (2008) Modulation of anxiety behaviors by 5-HT-interacting drugs. In: Blanchard RJ, Blanchard DC, Griebel G, Nutt D (eds) Handbook of anxiety and fear. Elsevier B. V., Amsterdam, pp 241–268

    Google Scholar 

  3. Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38:1083–1152

    PubMed  CAS  Google Scholar 

  4. Rickels K, Rynn M (2002) Pharmacotherapy of generalized anxiety disorder. J Clin Psychiatry 63:9–16

    PubMed  CAS  Google Scholar 

  5. McNaughton N, Panickar KS, Logan B (1996) The pituitary-adrenal axis and the different behavioral effects of buspirone and chlordiazepoxide. Pharmacol Biochem Behav 54:51–56

    PubMed  CAS  Google Scholar 

  6. Baldwin DS, Bridle D, Ekelung A (2003) Pharmacotherapy of anxiety disorders. In: Kasper S, den Boer JA, Ad Sitsen JM (eds) Handbook of depression and anxiety, 2nd edn. Revised and expanded. Marcel Dekker, Inc., New York, pp 732–756

    Google Scholar 

  7. Blanchard RJ, Yudko EB, Rodgers RJ, Blanchard DC (1993) Defense system psychopharmacology: an ethological approach to fear and anxiety. Behav Brain Res 58:155–165

    PubMed  CAS  Google Scholar 

  8. Gray JA, McNaughton N (2000) Neuropsychology of anxiety: an enquiry into the functions of the septo-hippocampal system, 2a edn. Oxford University Press, Oxford

    Google Scholar 

  9. Holmes A (2008) The pharmacology of anxiolysis. In: Blanchard RJ, Blanchard DC, Griebel G, Nutt D (eds) Handbook of anxiety and fear. Elsevier B. V., Amsterdam, pp 355–361

    Google Scholar 

  10. McNaughton N, Corr PJ (2004) A two-dimensional neuropsychology of defense: fear/anxiety and defensive distance. Neurosci Biobehav Rev 28:285–305

    PubMed  Google Scholar 

  11. Stein DJ, Hollander E, Mullen LS, DeCaria CM, Liebowitz MR (1992) Comparison of clomipramine, alprazolam and placebo in the treatment of obsessive-compulsive disorder. Hum Psychopharmacol 7:389–395

    Google Scholar 

  12. Westenberg HGM (1999) Facing the challenge of social anxiety disorder. Eur Neuropsychopharmacol 9:S93–S99

    PubMed  CAS  Google Scholar 

  13. Davis M, Shi C (1999) The extended amygdala: are the central nucleus of the amygdala and the bed nucleus of the stria terminalis differentially involved in fear versus anxiety? Ann N Y Acad Sci 877:281–291

    PubMed  CAS  Google Scholar 

  14. Maier SF, Lr Watkins (1998) Stressor controllability, anxiety, and serotonin. Cogn Ther Res 22:595–613

    Google Scholar 

  15. Mowrer OH, Viek P (1948) An experimental analogue of fear from a sense of helplessness. J Abnorm Soc Psychol 83:193–200

    Google Scholar 

  16. Mineka S, Kihlstrom JF (1978) Unpredictable and uncontrollable events: a new perspective on experimental neurosis. J Abnorm Psychol 87:256–271

    PubMed  CAS  Google Scholar 

  17. Seligman MEP, Maier SF, Solomon RL (1971) Unpredictable and uncontrollable aversive events. In: Brush FR (ed) Aversive conditioning and learning. Academic, New York

    Google Scholar 

  18. Clinchy M, Schulkin J, Zanette LY, Sheriff MJ, McGowan PO, Boonstra R (2011) The neurological ecology of fear: insights neuroscientists and ecologists have to offer one another. Front Behav Neurosci 5:Article 21

    Google Scholar 

  19. Rodgers RJ (1997) Animal models of ‘anxiety’: where next? Behav Pharmacol 8:477–496

    PubMed  CAS  Google Scholar 

  20. Steimer T (2002) The biology of fear- and anxiety-related behaviors. Dialogues Clin Neurosci 4:231–249

    PubMed  Google Scholar 

  21. Grillon C (2008) Models and mechanisms of anxiety: evidence from startle studies. Psychopharmacology 199:421–437

    PubMed  CAS  Google Scholar 

  22. Blanchard DC, Blanchard RJ (2008) Defensive behaviors, fear, and anxiety. In: Blanchard RJ, Blanchard DC, Griebel G, Nutt D (eds) Handbook of fear and anxiety. Elsevier B. V., Amsterdam, pp 63–79

    Google Scholar 

  23. Fanselow M, Lester L (1988) A functional behavioristic approach to aversively motivated behavior: predatory imminence as a determinant of the topography of defensive behavior. In: Bolles RC, Beecher MD (eds) Evolution and learning. Erlbaum, Hillsdalse, pp 185–211

    Google Scholar 

  24. Deakin JFW, Graeff FG (1991) 5-HT and mechanisms of defence. J Psychopharmacol 5:305–315

    PubMed  CAS  Google Scholar 

  25. Lowry CA, Hale MW (2010) Serotonin and the neurobiology of anxious states. In: Muller CP, Jacobs BL (eds) The behavioral neurobiology of serotonin. Academic, London, pp 379–397

    Google Scholar 

  26. Fridja NH (1986) The emotions. Cambride University Press, Cambridge

    Google Scholar 

  27. Fridja NH (2007) The laws of emotion. Erlbaum, Mahwah

    Google Scholar 

  28. Godsil BP, Tinsley MR, Fanselow MS (2003) Motivation. In: Healy AF, Proctor RW (eds) Experimental psychology. Handbook of psychology. Wiley, Hoboken, pp 33–60

    Google Scholar 

  29. Blanchard DC, Griebel G, Pobbe R, Blanchard RJ (2011) Risk assessment as an evolved threat detection and analysis process. Neurosci Biobehav Rev 35:991–998

    PubMed  Google Scholar 

  30. Maximino C, Brito TM, Gouveia A Jr (2010) Construct validity of behavioral models of anxiety: where experimental psychopathology meets ecology and evolution. Psychol Neurosci 3:117–123

    Google Scholar 

  31. Brown JS, Kotler BP, Bouskila A (2001) Ecology of fear: foraging games between predator and prey with pulsed resources. Ann Zool Fenn 38:71–87

    Google Scholar 

  32. Kavaliers M, Choleris E (2001) Antipredator responses and defensive behavior: ecological and ethological approaches for the neurosciences. Neurosci Biobehav Rev 25:577–586

    PubMed  CAS  Google Scholar 

  33. Brown JS, Landre JW, Gurung M (1999) The ecology of fear: optimal foraging, game theory and trophic interactions. J Mammal 80:385–399

    Google Scholar 

  34. Mendl M, Burman OHP, Parker RMA, Paul ES (2009) Cognitive bias as an indicator of animal emotion and welfare: emerging evidence and underlying mechanisms. Appl Anim Behav Sci 118:161–181

    Google Scholar 

  35. Blanchard RJ, Blanchard DC (1989) Antipredator defensive behaviors in a visible burrow system. J Comp Psychol 103:70–82

    PubMed  CAS  Google Scholar 

  36. Creed RP Jr, Miller JR (1990) Interpreting animal wall-following behaviour. Experientia 46:758–761

    Google Scholar 

  37. Bourin M, Hascöet M (2003) The mouse light/dark box test. Eur J Pharmacol 463:55–65

    PubMed  CAS  Google Scholar 

  38. Eilam D, Golani I (1989) Home base behavior of rats (Rattus norvegicus) exploring a novel environment. Behav Brain Res 34:199–211

    PubMed  CAS  Google Scholar 

  39. Montgomery KC (1955) The relation between fear induced by novel stimulation and exploratory behavior. J Comp Physiol Psychol 48:254–260

    PubMed  CAS  Google Scholar 

  40. Toth M, Zupan B (2007) Neurobiology of anxiety. In: Sibley DR, Hanin I, Kuhar M, Skolnick P (eds) Handbook of contemporary neuropharmacology, vol 2. Wiley, New York, pp 3–58

    Google Scholar 

  41. Hughes RN (1968) Behaviour of male and female rats with free choice of two environments differing in novelty. Anim Behav 13:30–32

    Google Scholar 

  42. Hughes RN (1972) Chlordiazepoxide modified exploration in rats. Psychopharmacologia 24:462–469

    PubMed  CAS  Google Scholar 

  43. Hughes RN (1981) Oxprenolol and diazepam effects on activity, novelty preference and timidity in rats. Life Sci 29:1089–1092

    PubMed  CAS  Google Scholar 

  44. Hughes RN, Greig AM (1975) Chlordiazepoxide effects on reactions to novelty and activity with and without prior drug experience. Psychopharmacology 42:289–292

    CAS  Google Scholar 

  45. File SE, Zangrossi H Jr, Viana M, Graeff FG (1993) Trial 2 in the elevated plus-maze: a different form of fear? Psychopharmacology 111:491–494

    PubMed  CAS  Google Scholar 

  46. Rodgers RJ, Harvest H, Hassall C, Kaddour LA (2011) D-cycloserine enhances memory consolidation in the plus-maze retest paradigm. Behav Neurosci 125:106–116

    PubMed  CAS  Google Scholar 

  47. Abrams JK, Johnson PL, Hay-Schmidt A, Mikkelsen J, Shekhar A, Lowry CA (2005) Serotonergic systems associated with arousal and vigilance behaviors following administration of anxiogenic drugs. Neuroscience 133:983–997

    PubMed  CAS  Google Scholar 

  48. Lowry CA, Hale MW, Plant A, Windle RJ, Shanks N, Wood SA, Ingram CD, Renner KJ, Lightman SL, Summers CH (2009) Fluoxetine inhibits corticotropin-releasing factor (CRF)-induced behavioural responses in rats. Stress 12:225–239

    PubMed  CAS  Google Scholar 

  49. Korte SM, De Boer SF (2003) A robust animal model of state anxiety: fear-potentiated behaviour in the elevated plus-maze. Eur J Pharmacol 463:163–175

    PubMed  Google Scholar 

  50. Adamec R, Holmes A, Blundell J (2008) Vulnerability to lasting anxiogenic effects of brief exposure to predator stimuli: sex, serotonin and other factors—relevance to PTSD. Neurosci Biobehav Rev 32:1287–1292

    PubMed  CAS  Google Scholar 

  51. Edwards E, Johnson J, Anderson D, Turano P, Henn FA (1986) Neurochemical and behavioral consequences of mild, uncontrollable shock: effects of PCPA. Pharmacol Biochem Behav 25:415–421

    PubMed  CAS  Google Scholar 

  52. Maier SF, Watkins LR (2005) Stressor controllability and learned helplessness: the roles of the dorsal raphe nucleus, serotonin, and corticotropin-releasing factor. Neurosci Biobehav Rev 29:829–841

    PubMed  CAS  Google Scholar 

  53. Zvolensky MJ, Lejuez CW, Eifert GH (2000) Prediction and control: operational definitions for the experimental analysis of anxiety. Behav Res Ther 38:653–663

    PubMed  CAS  Google Scholar 

  54. Seligman ME, Maier SF (1967) Failure to escape traumatic shock. J Exp Psychol 74:1–9

    PubMed  CAS  Google Scholar 

  55. Weiss JM (1968) Effects of coping responses on stress. J Comp Physiol Psychol 65:251–260

    PubMed  CAS  Google Scholar 

  56. Overmier JB, Seligman ME (1967) Effects of inescapable shock upon subsequent escape and avoidance responding. J Comp Physiol Psychol 63:28–33

    PubMed  CAS  Google Scholar 

  57. Korte SM, Bouws GA, Bohus B (1992) Adrenal hormones in rats before and after stress-experience: effects of ipsapirone. Physiol Behav 51:1129–1133

    PubMed  CAS  Google Scholar 

  58. Maier SF (1990) Role of fear in mediating shuttle escape learning deficit produced by inescapable shock. J Exp Psychol: Anim Behav Process 16:137–149

    CAS  Google Scholar 

  59. Barlow DH (2002) Anxiety and its disorders: the nature and treatment of anxiety and panic, 2nd edn. Guilford Press, New York

    Google Scholar 

  60. Seligman MEP (1975) Helplessness: on depression, development, and death. Freeman, San Francisco

    Google Scholar 

  61. Maier SF (1993) Learned helplessness, fear and anxiety. In: Stanford P, Solomon K (eds) Stress: from synapse to syndrome. Academic, London, pp 207–248

    Google Scholar 

  62. Bondi CO, Rodriguez G, Gould GG, Frazer A, Morilak DA (2008) Chronic unpredictable stress induces a cognitive deficit and anxiety-like behavior in rats that is prevented by chronic antidepressant drug treatment. Neuropsychopharmacology 33:320–331

    PubMed  CAS  Google Scholar 

  63. Piato ÂL, Capiotti KM, Tamborski AR, Oses JP, Barcellos LJG, Bogo MR, Lara DR, Vianna MR, Bonan CD (2011) Unpredictable chronic stress model in zebrafish (Danio rerio): behavioral and physiological responses. Prog Neuropsychopharmacol Biol Psychiatry 35:5610567

    Google Scholar 

  64. Vyas A, Chattarji S (2004) Modulation of different states of anxiety-like behavior by chronic stress. Behav Neurosci 118:1450–1454

    PubMed  Google Scholar 

  65. Matuszewich L, Karney JJ, Carter SR, Janasik SP, O’Brien JL, Friedman RD (2007) The delayed effects of chronic unpredictable stress on anxiety measures. Physiol Behav 90:674–681

    PubMed  CAS  Google Scholar 

  66. Panksepp J (1998) Affective neuroscience: the foundations of human and animal emotions. Oxford University Press, New York

    Google Scholar 

  67. Panksepp J (2004) Emerging neuroscience of fear and anxiety: therapeutic practice and clinical implications. In: Panksepp J (ed) Textbook of biological psychiatry. Wiley, New York, pp 489–519

    Google Scholar 

  68. Cannon WB (1915) Bodily changes in pain, hunger, fear and rage. Appleton, New York

    Google Scholar 

  69. Bolles RC, Riley AL (1972) Freezing as an avoidance response: another look at the operant-respondent distinction. Learn Motiv 4:268–275

    Google Scholar 

  70. Eilam D (2005) Die hard: a blend of freezing and fleeing as a dynamic defense—implications for the control of defensive behavior. Neurosci Biobehav Rev 29:1181–1191

    PubMed  Google Scholar 

  71. Bolles RC, Fanselow M (1980) A perceptual-defensive-recuperative model of fear and pain. Behav Brain Sci 3:291–323

    Google Scholar 

  72. Barros M, Silva MAD, Huston JP, Tomaz C (2004) Multibehavioral analysis of fear and anxiety before, during, and after experimentally induced predatory stress in Callithrix penicillata. Pharmacol Biochem Behav 78:357–367

    PubMed  CAS  Google Scholar 

  73. Blanchard DC, Blanchard RJ (1988) Ethoexperimental approaches to the biology of emotion. Annu Rev Psychol 39:43–68

    PubMed  CAS  Google Scholar 

  74. Fanselow MS, Sigmundi RA (1982) The enhancement and reduction of defensive fighting by naloxone pretreatment. Physiol Psychol 10:313–316

    CAS  Google Scholar 

  75. Brown JS, Kalish HI, Farber IE (1961) Conditioned fear as revealed by magnitude of startle response to an auditory stimulus. J Exp Psychol 41:317–328

    Google Scholar 

  76. Koch M, Schnitzler H-U (1997) The acoustic startle response in rats—circuits mediating evocation, inhibition and potentiation. Behav Brain Res 89:35–49

    PubMed  CAS  Google Scholar 

  77. Campeau S, Davis M (1995) Involvement of the central nucleus and basolateral complex of the amygdala in fear conditioning measured with fear-potentiated startle in rats trained concurrently with auditory and visual conditioned stimuli. J Neurosci 15:2301–2311

    PubMed  CAS  Google Scholar 

  78. Miserendino MJ, Sananes CB, Melia KR, Davis M (1990) Blocking of acquisition but not expression of conditioned fear-potentiated startle by NMDA antagonists in the amygdala. Nature 345:716–718

    PubMed  CAS  Google Scholar 

  79. Walker DL, Davis M (1997) Double dissociation between the involvement of the bed nucleus of the stria terminalis and the central nucleus of the amygdala in light-enhanced versus fear-potentiated startle. J Neurosci 17:9375–9383

    PubMed  CAS  Google Scholar 

  80. Walker DL, Toufexis DJ, Davis M (2003) Role of the bed nucleus of the stria terminalis versus the amygdala in fear, stress, and anxiety. Eur J Pharmacol 463:199–216

    PubMed  CAS  Google Scholar 

  81. Gewirtz JC, McNIsh KA, Davis M (1998) Lesions of the bed nucleus of the stria terminalis block sensitization of the acoustic startle reflex produced by repeated stress, but not fear-potentiated startle. Prog Neuropsychopharmacol Biol Psychiatry 22:625–648

    PubMed  CAS  Google Scholar 

  82. Hitchcock JM, Davis M (1986) Lesions of the amygdala, but not of the cerebellum or red nucleus, block conditioned fear as measured with the potentiated startle paradigm. Behav Neurosci 100:11–22

    PubMed  CAS  Google Scholar 

  83. Fanselow MS, Ponnusamy R (2008) The use of conditioning tasks to model fear and anxiety. In: Blanchard RJ, Blanchard DC, Griebel G, Nutt D (eds) Handbook of anxiety and fear. Elsevier B. V., Amsterdam, pp 29–48

    Google Scholar 

  84. Landeira-Fernandez J (1996) Context and pavlovian fear conditioning. Braz J Medial Biol Res 29:149–173

    CAS  Google Scholar 

  85. Bolles RC, Collier AC (1976) The effect of predictive cues on freezing in rats. Anim Learn Behav 4:6–8

    Google Scholar 

  86. Fanselow MS (1980) Conditioned and unconditioned components of post-shock freezing. Pavlovian J Biol Sci 15:177–182

    CAS  Google Scholar 

  87. Blanchard RJ, Fukunaga KK, Blanchard DC (1976) Environmental control of defensive reactions to footshock. Bull Psychon Soc 8:129–130

    Google Scholar 

  88. Rescorla RA (1968) Probability of shock in the presence and absence of CS in fear conditioning. J Comp Physiol Psychol 66:1–5

    PubMed  CAS  Google Scholar 

  89. Young SL, Fanselow MS (1992) Associative regulation of pavlovian fear conditioning: unconditional stimulus intensity, incentive shifts, and latent inhibition. J Exp Psychol: Anim Behav Process 18:400–413

    CAS  Google Scholar 

  90. Fanselow MS, Tighe TJ (1988) Contextual conditioning with massed versus distributed unconditional stimuli in the absence of explicit conditional stimuli. J Exp Psychol: Anim Behav Process 14:187–199

    CAS  Google Scholar 

  91. Fanselow MS, Bolles RC (1979) Naloxone and shock-elicited freezing in the rat. J Comp Physiol Psychol 93:736–744

    PubMed  CAS  Google Scholar 

  92. Lang PJ, Davis M, Öhman A (2000) Fear and anxiety: animal models and human cognitive psychophysiology. J Affect Disord 61:137–159

    PubMed  CAS  Google Scholar 

  93. Magierek V, Ramos PL, Silveira-Filho NG, Nogueira RL, Landeira-Fernandez J (2003) Context fear conditioning inhibits panic-like behavior elicited by electrical stimulation of dorsal periaqueductal gray. NeuroReport 14:1641–1644

    PubMed  Google Scholar 

  94. Guscott MR, Cook GP, Bristow LJ (2000) Contextual fear conditioning and baseline startle responses in the rat fear-potentiated startle test: a comparison of benzodiazepine/γ-aminobutyric acid-a receptor agonists. Behav Pharmacol 11:495–504

    PubMed  CAS  Google Scholar 

  95. Hashimoto S, Inoue T, Koyama T (1996) Serotonin reuptake inhibitors reduce conditioned fear stress-induced freezing behavior in rats. Psychopharmacology 123:182–186

    PubMed  CAS  Google Scholar 

  96. Maki Y, Inoue T, Izumi T, Muraki I, Ito K, Kitaichi Y, Li X, Koyama T (2000) Monoamine oxidase inhibitors reduce conditioned fear stress-induced freezing behavior in rats. Eur J Pharmacol 406:411–418

    PubMed  CAS  Google Scholar 

  97. Koolhaas JM, De Boer SF, Coppens CM, Buwalda B (2010) Neuroendocrinology of coping styles: towards understanding the biology of individual variation. Front Neuroendocrinol 31:307–321

    PubMed  CAS  Google Scholar 

  98. Koolhaas JM, Korte SM, De Boer SF, van der Vegt BJ, van Reenen CG, Hopster H, de Jong IC, Ruis MAW, Blokhuis HJ (1999) Coping styles in animals: current status in behavior and stress-physiology. Neurosci Biobehav Rev 23:925–935

    PubMed  CAS  Google Scholar 

  99. Steimer T, La Fleur FS, Schulz PE (1997) Neuroendocrine correlates of emotional reactivity and coping in male rats from the Roman high (RHA/Verh)- and low (RLA/Verh)-avoidance lines. Behav Genet 27:503–512

    PubMed  CAS  Google Scholar 

  100. Sluyter F, Korte SM, Bohus B, van Oortmerssen GA (1996) Behavioral stress response of genetically selected aggressive and nonaggressive wild house mice in the shock-probe/defensive burying test. Pharmacol Biochem Behav 54:113–116

    PubMed  CAS  Google Scholar 

  101. Boersma GJ, Scheurink AJ, Wielinga PY, Steimer T, Benthem L (2009) The passive coping Roman low avoidance rat, a non-obese rat model for insulin resistance. Physiol Behav 97:353–358

    PubMed  CAS  Google Scholar 

  102. Veenema AH, Cremers TI, Jongsma ME, Steenbergen PJ, De Boer SF, Koolhaas JM (2005) Differences in the effects of 5-HT(1A) receptor agonists on forced swimming behavior and brain 5-HT metabolism between low and high aggressive mice. Psychopharmacology 178:151–160

    PubMed  CAS  Google Scholar 

  103. De Boer SF, Koolhaas JM (2003) Defensive burying in rodents: ethology, neurobiology and psychopharmacology. Eur J Pharmacol 463:145–161

    PubMed  Google Scholar 

  104. Henry JP, Stephens PM (1977) Stress, health and the social environment: a sociobiological approach to medicine. Springer, Berlin

    Google Scholar 

  105. Haller J, Toth M, De Boer SF (2006) Patterns of violent aggression-induced brain c-fos expression in male mice selected for aggressiveness. Physiol Behav 88:173–182

    PubMed  CAS  Google Scholar 

  106. Van der Vegt BJ, Lieuwes N, van de Wall EH, Kato K, Moya-Allbiol L, Martinez-Sanchis S, De Boer SF, Koolhaas JM (2003) Activation of serotonergic neurotransmission during the performance of aggressive behavior in rats. Behav Neurosci 117:667–674

    PubMed  Google Scholar 

  107. Veenema AH, Neumann ID (2007) Neurobiological mechanisms of aggression and stress coping: a comparative study in mouse and rat selection lines. Brain Behav Evol 70:274–285

    PubMed  Google Scholar 

  108. Mongeau R, Miller GA, Chiang E, Anderson DJ (2003) Neural correlates of competing fear behaviors evoked by an innately aversive stimulus. J Neurosci 23:3855–3868

    PubMed  CAS  Google Scholar 

  109. Gozzi A, Jain A, Giovanelli A, Bertollini C, Crestan V, Schwarz AJ, Tsetsenis T, Ragozzino D, Gross CT, Bifone A (2010) A neural switch for active and passive fear. Neuron 67:656–666

    PubMed  CAS  Google Scholar 

  110. De Boer SF, Koolhaas JM (2005) 5-HT1A and 5-HT1B receptor agonists and aggression: a pharmacological challenge of the serotonin deficiency hypothesis. Eur J Pharmacol 526:125–139

    PubMed  Google Scholar 

  111. Valentino RJ, Lucki I, Van Bockstaele EJ (2010) Corticotropin-releasing factor in the dorsal raphe nucleus: linking stress coping and addiction. Brain Res 1314:29–37

    PubMed  CAS  Google Scholar 

  112. Waselus M, Valentino RJ, Van Bockastaele EJ (2011) Collateralized dorsal raphe nucleus projections: a mechanism for the integration of diverse functions during stress. J Chem Neuroanat 41:266–280

    PubMed  Google Scholar 

  113. Hammack SE, Richey KJ, Schmid MJ, LoPresti ML, Watkins LR, Maier SF (2002) The role of corticotropin-releasing hormone in the dorsal raphe nucleus in mediating the behavioral consequences of uncontrollable stress. J Neurosci 22:1020–1026

    PubMed  CAS  Google Scholar 

  114. Hammack SE, Schmid MJ, LoPresti ML, Der-Avakian A, Pellymounter MA, Foster AC, Watkins LR, Maier SF (2003) Corticotropin releasing hormone type 2 receptors in the dorsal raphe nucleus mediate the behavioral consequences of uncontrollable stress. J Neurosci 23:1019–1025

    PubMed  CAS  Google Scholar 

  115. Kirby LG, Rice KC, Valentino RJ (2000) Effects of corticotropin-releasing factor on neuronal activity in the serotonergic dorsal raphe nucleus. Neuropsychopharmacology 22:148–162

    PubMed  CAS  Google Scholar 

  116. Pernar L, Curtis AL, Vale WW, Rivier JE, Valentino RJ (2004) Selective activation of corticotropin-releasing factor-2 receptors on neurochemically identified neurons in the rat dorsal raphe nucleus reveals dual actions. J Neurosci 24:1305–1311

    PubMed  CAS  Google Scholar 

  117. Amat J, Tamblyn JP, Paul ED, Bland ST, Amat P, Foster AC, Watkins LR, Maier SF (2004) Microinjection of urocortin 2 into the dorsal raphe nucleus activates serotonergic neurons and increases extracellular serotonin in the basolateral amygdala. Neuroscience 129:509–519

    PubMed  CAS  Google Scholar 

  118. Lowry CA, Rodda JE, Lightman SL, Ingram CD (2000) Corticotropin-releasing factor increases in vitro firing rates of serotonergic neurons in the rat dorsal raphe nucleus: evidence for activation of a topographically organized mesolimbocortical serotonergic system. J Neurosci 20:7728–7736

    PubMed  CAS  Google Scholar 

  119. Lukkes JL, Forster GL, Renner KJ, Summers CH (2008) Corticotropin-releasing factor 1 and 2 receptors in the dorsal raphé differentially affect serotonin release in the nucleus accumbens. Eur J Pharmacol 578:185–193

    PubMed  CAS  Google Scholar 

  120. Staub DR, Evans AK, Lowry CA (2006) Evidence supporting a role for corticotropin-releasing factor type 2 (CRF2) receptors in the regulation of subpopulations of serotonergic neurons. Brain Res 1070:77–89

    PubMed  CAS  Google Scholar 

  121. Valentino RJ, Liouterman L, van Bockastaele EJ (2001) Evidence for regional heterogeneity in corticotropin-releasing factor interactions in the dorsal raphe nucleus. J Comp Neurol 435:450–463

    PubMed  CAS  Google Scholar 

  122. Waselus M, Nazzaro C, Valentino RJ, Van Bockastaele EJ (2009) Stress-induced redistribution of corticotropin-releasing factor receptor subtypes in the dorsal raphe nucleus. Biol Psychiatry 66:76–83

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 The Author(s)

About this chapter

Cite this chapter

Maximino, C. (2012). Introduction. In: Serotonin and Anxiety. SpringerBriefs in Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4048-2_1

Download citation

Publish with us

Policies and ethics