Advertisement

Response of a Magnetized Electron Gas

  • Donald Melrose
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 854)

Abstract

Dispersion in a magnetized, quantum electron gas was first discussed in the nonrelativistic case in the 1960s and 1970s [24, 15, 7, 6, 2]. Extension to the relativistic case, with one early exception [20], was carried out mainly in the 1980s [3, 5, 13, 8] and continues to the present [14, 22, 11]. An exact expression for the linear response tensor includes the following quantum effects: degeneracy, the quantization of the Landau states, the spin, the quantum recoil and dispersion associated with one-photon pair creation. It involves sums over two sets of quantum numbers, denoted q=ε,n, p z , s and q′, n′, p′ z , s′ here. This leads to a cumbersome form, and only a few special cases, notably parallel propagation, have been explored in any detail.

Keywords

Occupation Number Logarithmic Singularity Pair Creation Degenerate Distribution Landau State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    N.N. Bogoliubov, D.V. Shirkov, The Theory of Quantized Fields (Interscience, New York, 1959)Google Scholar
  2. 2.
    V. Canuto, J. Ventura, Astrophys. Space Sci. 18, 104 (1972)ADSCrossRefGoogle Scholar
  3. 3.
    R.A. Cover, G. Kalman, P. Bakshi, Phys. Rev. D 20 3015 (1979)ADSCrossRefGoogle Scholar
  4. 4.
    R.E. Cutkovsky, J. Math. Phys. 1, 429 (1960)ADSCrossRefGoogle Scholar
  5. 5.
    A.E. Delsant, N.E. Frankel, Ann. Phys. 125, 135 (1980)ADSCrossRefGoogle Scholar
  6. 6.
    M.P. Greene, H.J. Lee, J.J. Quinn, S. Rodriguez, Phys. Rev. 177, 1019 (1969)ADSCrossRefGoogle Scholar
  7. 7.
    D.C. Kelly, Phys. Rev. 134, A641 (1964)ADSCrossRefGoogle Scholar
  8. 8.
    V. Kowalenko, N.E. Frankel, K.C. Hines, Phys. Rep. 126, 109 (1985)ADSCrossRefGoogle Scholar
  9. 9.
    D.B. Melrose, A. Mushtaq, Phys. Plasmas 17, 122103 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    D.B. Melrose, A. Mushtaq, Phys. Rev. E 83, 056404 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    D.B. Melrose, J.I. Weise, J. Phys. A 42, 345502 (2009)MathSciNetCrossRefGoogle Scholar
  12. 12.
    M. Mentzel, D. Berg, G. Wunner, Phys. Rev. D 50, 1125 (1964)ADSCrossRefGoogle Scholar
  13. 13.
    H. Pérez Rojas, A.E. Shabad, Ann. Phys. 138, 1 (1982)ADSCrossRefGoogle Scholar
  14. 14.
    P. Pulsifer, G. Kalman, Phys. Rev. A 45, 5820 (1992)ADSCrossRefGoogle Scholar
  15. 15.
    J.J. Quinn, S. Rodriguez, Phys. Rev. 128, 2487 (1962)ADSzbMATHCrossRefGoogle Scholar
  16. 16.
    A.E. Shabad, V.V. Usov, Phys. Rev. Lett. 98, 180403 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    V.P. Silin, Sov. Phys. JETP 11, 1136 (1960)MathSciNetGoogle Scholar
  18. 18.
    A.A. Sokolov, I.M. Ternov, Synchrotron Radiation (Pergamon Press, Oxford, 1968)Google Scholar
  19. 19.
    R.J. Stoneham, J. Phys. A 12, 2187 (1979)ADSCrossRefGoogle Scholar
  20. 20.
    G.N. Svetozarova, V.N. Tsytovich, Izv. Vuzov. Radiofiz. 5, 658 (1962)Google Scholar
  21. 21.
    J.S. Toll, Ph.D. thesis Princeton University, 1952Google Scholar
  22. 22.
    J.I. Weise, Phys. Rev. E 78, 046408 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    J.I. Weise, M.G. Baring, D.B. Melrose, Phys. Rev. D 57, 5526 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    P.S. Zyryanov, V.P. Kalashnikov, Sov. Phys. JETP 14, 799 (1962)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Donald Melrose
    • 1
  1. 1.School of PhysicsUniversity of SydneySydneyAustralia

Personalised recommendations