Advertisement

Magnetized Vacuum

  • Donald Melrose
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 854)

Abstract

The magnetized vacuum has dispersive properties similar to a material medium. Its response may be described by a hierarchy of response tensors, which are functions of BB c . The linear response tensor, referred to as the vacuum polarization tensor, has a relatively simple form, first derived in the 1930s, that applies at frequencies, ω≪2m, well below the pair-creation threshold. In this limit the linear and nonlinear response tensors may be derived from the Heisenberg-Euler Lagrangian, which includes a static electric field as well as a static magnetic field. When the low-frequency approximation is not made, the linear response tensor may be calculated from the Feynman amplitude for the bubble diagram. As in the unmagnetized case, this amplitude diverges, and it needs to be regularized. The magnetic field introduces no new divergences, so that the difference between the tensors for BB c ≠0 and their limits for BB c →0 are necessarily divergence-free. The quadratic nonlinear response tensor of the magnetized vacuum is nonzero for BB c ≠0, and it allows a three-wave interaction, referred to as photon splitting.

Keywords

Convolution Toll Suffix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S.L. Adler, Ann. Phys. 67, 599 (1971)ADSCrossRefGoogle Scholar
  2. 2.
    C. Alcock, E. Farhi, A. Olinto, Astrophys. J. 310, 261 (1986)ADSCrossRefGoogle Scholar
  3. 3.
    M. Altarelli, D.L. Dexter, H.M. Nussenzveig, D.Y. Smith, Phys. Rev. B 6, 4502 (1972)ADSCrossRefGoogle Scholar
  4. 4.
    P. Bakshi, R.A Cover, G., Kalman, Phys. Rev. D 14, 2532 (1976)Google Scholar
  5. 5.
    I.A. Batalin, A.E. Shabad, Sov. Phys. JETP 33, 483 (1971)MathSciNetADSGoogle Scholar
  6. 6.
    Z. Bialynicka-Birula, I. Bialynicki-Birula, Phys. Rev. D 2, 2341 (1970)ADSCrossRefGoogle Scholar
  7. 7.
    T. Bulik, Acta Astron. 48, 695 (1998)ADSGoogle Scholar
  8. 8.
    J.K Daugherty, I. Lerche, Phys. Rev. D 14, 340 (1976)Google Scholar
  9. 9.
    Yu.N. Gnedin, G.G. Pavlov, Yu.A. Shibanov, JETP Lett. 27, 305 (1978)ADSGoogle Scholar
  10. 10.
    T. Erber, Rev. Mod. Phys. 38, 626 (1966)MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    A.K. Harding, D. Lai, Rep. Prog. Phys. 69, 2631 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    W. Heisenberg, H. Euler, Z. Phys. 98, 714 (1936)ADSCrossRefGoogle Scholar
  13. 13.
    H. Herold, H. Ruder, G. Wunner, Plasma Phys. 23, 755 (1981)ADSCrossRefGoogle Scholar
  14. 14.
    J.S. Heyl, L. Hernquist, J. Phys. A 30, 6485 (1997)MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. 15.
    J.G. Kirk, Plasma Phys. 22, 639 (1980)ADSCrossRefGoogle Scholar
  16. 16.
    J.G. Kirk, N.F. Cramer, Aust J. Phys. 38, 715 (1985)ADSGoogle Scholar
  17. 17.
    D.B. Melrose, R.J. Stoneham, Nuovo Cim. 32A, 435 (1976)ADSCrossRefGoogle Scholar
  18. 18.
    D.B. Melrose, R.J. Stoneham, J. Phys. A 10, 1211 (1977)ADSCrossRefGoogle Scholar
  19. 19.
    M. Mentzel, D. Berg, G. Wunner, Phys. Rev. D 50, 1125 (1994)ADSCrossRefGoogle Scholar
  20. 20.
    P. Mészáros, J. Ventura, Phys. Rev. Lett. 41, 1544 (1978)ADSCrossRefGoogle Scholar
  21. 21.
    P. Mészáros, J. Ventura, Phys. Rev. D 19, 3565 (1979)ADSCrossRefGoogle Scholar
  22. 22.
    F. Özel, Astrophys. J. 563, 276 (2001)ADSCrossRefGoogle Scholar
  23. 23.
    J. Schwinger, Phys. Rev. 82, 664 (1951)MathSciNetADSzbMATHCrossRefGoogle Scholar
  24. 24.
    A.E. Shabad, Ann. Phys. 90, 166 (1975)ADSCrossRefGoogle Scholar
  25. 25.
    A.E. Shabad, Polarization of the Vacuum and a Quantum Relativistic Gas in an External Field (Nova Science, New York, 1991)Google Scholar
  26. 26.
    R.J. Stoneham, J. Phys. A 12, 2187 (1979)ADSCrossRefGoogle Scholar
  27. 27.
    J.S. Toll, PhD Thesis, Princeton University, 1952Google Scholar
  28. 28.
    W.-Y. Tsai, Phys. Rev. D 10, 2699 (1974)ADSCrossRefGoogle Scholar
  29. 29.
    W.-Y. Tsai, T. Erber, Phys. Rev. D 12, 1132 (1975)ADSCrossRefGoogle Scholar
  30. 30.
    V.V. Usov, Phys. Rev. D 70, 067301 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    C. Wang, D. Lai, Mon. Not. Roy. Astron. Soc. 377, 1095 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    J.I. Weise, Phys. Rev. D 69, 105017 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    J.I. Weise, M.G. Baring, D.B. Melrose, Phys. Rev. D 57, 5526 (1998)ADSCrossRefGoogle Scholar
  34. 34.
    V. Weisskopf, Mat. Fys. Medd. Dan. Vid. Selsk. 14, Nr.6 (1936)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Donald Melrose
    • 1
  1. 1.School of PhysicsUniversity of SydneySydneyAustralia

Personalised recommendations