Skip to main content

Magnetized Vacuum

  • Chapter
  • First Online:
Quantum Plasmadynamics

Part of the book series: Lecture Notes in Physics ((LNP,volume 854))

  • 1614 Accesses

Abstract

The magnetized vacuum has dispersive properties similar to a material medium. Its response may be described by a hierarchy of response tensors, which are functions of BB c . The linear response tensor, referred to as the vacuum polarization tensor, has a relatively simple form, first derived in the 1930s, that applies at frequencies, ω≪2m, well below the pair-creation threshold. In this limit the linear and nonlinear response tensors may be derived from the Heisenberg-Euler Lagrangian, which includes a static electric field as well as a static magnetic field. When the low-frequency approximation is not made, the linear response tensor may be calculated from the Feynman amplitude for the bubble diagram. As in the unmagnetized case, this amplitude diverges, and it needs to be regularized. The magnetic field introduces no new divergences, so that the difference between the tensors for BB c ≠0 and their limits for BB c →0 are necessarily divergence-free. The quadratic nonlinear response tensor of the magnetized vacuum is nonzero for BB c ≠0, and it allows a three-wave interaction, referred to as photon splitting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.L. Adler, Ann. Phys. 67, 599 (1971)

    Article  ADS  Google Scholar 

  2. C. Alcock, E. Farhi, A. Olinto, Astrophys. J. 310, 261 (1986)

    Article  ADS  Google Scholar 

  3. M. Altarelli, D.L. Dexter, H.M. Nussenzveig, D.Y. Smith, Phys. Rev. B 6, 4502 (1972)

    Article  ADS  Google Scholar 

  4. P. Bakshi, R.A Cover, G., Kalman, Phys. Rev. D 14, 2532 (1976)

    Google Scholar 

  5. I.A. Batalin, A.E. Shabad, Sov. Phys. JETP 33, 483 (1971)

    MathSciNet  ADS  Google Scholar 

  6. Z. Bialynicka-Birula, I. Bialynicki-Birula, Phys. Rev. D 2, 2341 (1970)

    Article  ADS  Google Scholar 

  7. T. Bulik, Acta Astron. 48, 695 (1998)

    ADS  Google Scholar 

  8. J.K Daugherty, I. Lerche, Phys. Rev. D 14, 340 (1976)

    Google Scholar 

  9. Yu.N. Gnedin, G.G. Pavlov, Yu.A. Shibanov, JETP Lett. 27, 305 (1978)

    ADS  Google Scholar 

  10. T. Erber, Rev. Mod. Phys. 38, 626 (1966)

    Article  MathSciNet  ADS  Google Scholar 

  11. A.K. Harding, D. Lai, Rep. Prog. Phys. 69, 2631 (2006)

    Article  ADS  Google Scholar 

  12. W. Heisenberg, H. Euler, Z. Phys. 98, 714 (1936)

    Article  ADS  Google Scholar 

  13. H. Herold, H. Ruder, G. Wunner, Plasma Phys. 23, 755 (1981)

    Article  ADS  Google Scholar 

  14. J.S. Heyl, L. Hernquist, J. Phys. A 30, 6485 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. J.G. Kirk, Plasma Phys. 22, 639 (1980)

    Article  ADS  Google Scholar 

  16. J.G. Kirk, N.F. Cramer, Aust J. Phys. 38, 715 (1985)

    ADS  Google Scholar 

  17. D.B. Melrose, R.J. Stoneham, Nuovo Cim. 32A, 435 (1976)

    Article  ADS  Google Scholar 

  18. D.B. Melrose, R.J. Stoneham, J. Phys. A 10, 1211 (1977)

    Article  ADS  Google Scholar 

  19. M. Mentzel, D. Berg, G. Wunner, Phys. Rev. D 50, 1125 (1994)

    Article  ADS  Google Scholar 

  20. P. Mészáros, J. Ventura, Phys. Rev. Lett. 41, 1544 (1978)

    Article  ADS  Google Scholar 

  21. P. Mészáros, J. Ventura, Phys. Rev. D 19, 3565 (1979)

    Article  ADS  Google Scholar 

  22. F. Özel, Astrophys. J. 563, 276 (2001)

    Article  ADS  Google Scholar 

  23. J. Schwinger, Phys. Rev. 82, 664 (1951)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. A.E. Shabad, Ann. Phys. 90, 166 (1975)

    Article  ADS  Google Scholar 

  25. A.E. Shabad, Polarization of the Vacuum and a Quantum Relativistic Gas in an External Field (Nova Science, New York, 1991)

    Google Scholar 

  26. R.J. Stoneham, J. Phys. A 12, 2187 (1979)

    Article  ADS  Google Scholar 

  27. J.S. Toll, PhD Thesis, Princeton University, 1952

    Google Scholar 

  28. W.-Y. Tsai, Phys. Rev. D 10, 2699 (1974)

    Article  ADS  Google Scholar 

  29. W.-Y. Tsai, T. Erber, Phys. Rev. D 12, 1132 (1975)

    Article  ADS  Google Scholar 

  30. V.V. Usov, Phys. Rev. D 70, 067301 (2004)

    Article  ADS  Google Scholar 

  31. C. Wang, D. Lai, Mon. Not. Roy. Astron. Soc. 377, 1095 (2007)

    Article  ADS  Google Scholar 

  32. J.I. Weise, Phys. Rev. D 69, 105017 (2004)

    Article  ADS  Google Scholar 

  33. J.I. Weise, M.G. Baring, D.B. Melrose, Phys. Rev. D 57, 5526 (1998)

    Article  ADS  Google Scholar 

  34. V. Weisskopf, Mat. Fys. Medd. Dan. Vid. Selsk. 14, Nr.6 (1936)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Melrose, D. (2013). Magnetized Vacuum. In: Quantum Plasmadynamics. Lecture Notes in Physics, vol 854. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4045-1_8

Download citation

Publish with us

Policies and ethics