Advertisement

Waves in Magnetized Plasmas

  • Donald Melrose
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 854)

Abstract

The linear response tensor contains all information on the linear response of a medium. In particular, it determines the properties of the natural wave modes of the medium. Magnetized plasmas can support a large variety of different wave modes. There is no systematic classification of wave modes, leading to a confusing variety of names. Some modes are given historical names (e.g., Alfvén, Bernstein and Langmuir waves), some are given names associated with the theory used to derive them (e.g., cold-plasma, magnetoionic and MHD waves), and many are given names descriptive of the wave itself (e.g., longitudinal, lower-hybrid and electron-cyclotron waves). Moreover, there is arbitrariness in the definition of a wave mode: a single dispersion curve can be interpreted as one mode in one limit and as another mode in another limit. Even the concept of a wave mode is ill-defined in the presence of damping (or growth); for example, there are many natural peaks in the spectrum of fluctuations in a thermal plasma and when a particular peak is to be interpreted as a natural wave mode is ill-defined. Let the properties of an arbitrary wave mode, labeled as mode M, be regarded as a function of the independent variable

Keywords

Dispersion Relation Dispersion Curve Wave Mode Dispersion Equation Polarization Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    T.H. Stix, The Theory of Plasma Waves (McGraw-Hill, New York, 1962)MATHGoogle Scholar
  2. 2.
    D.B. Melrose, R.C. McPhedran, Electromagnetic Processes in Dispersive Media (Cambridge University Press, Cambridge, 1991)CrossRefGoogle Scholar
  3. 3.
    A.L. Verdon, I.H. Cairns, D.B. Melrose, P.A. Robinson, Phys. Plasma 16, 052105 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    A. Hasegawa, J. Geophys. Res. 81, 5083 (1976)ADSCrossRefGoogle Scholar
  5. 5.
    G.A. Stewart, E.W. Liang, J. Plasma Phys. 47, 295 (1992)ADSCrossRefGoogle Scholar
  6. 6.
    G.P. Zank, R.G. Greaves, Phys. Rev. E 51, 6079 (1995)ADSCrossRefGoogle Scholar
  7. 7.
    D.B. Melrose, Plasma Phys. Cont. Fusion 39, A93 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    E.P. Gross, Phys. Rev. 82, 232 (1951)ADSMATHCrossRefGoogle Scholar
  9. 9.
    B. Bernstein, Phys. Rev. 109, 10 (1958)MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    V.N. Dnestrovskii, D.P. Kostomorov, Sov. Phys. JETP 13, 98 (1961)Google Scholar
  11. 11.
    V.N. Dnestrovskii, D.P. Kostomorov, Sov. Phys. JETP 14, 1089 (1962)Google Scholar
  12. 12.
    S. Puri, F. Leuterer, M. Tutter, J. Plasma Phys. 9, 89 (1973)ADSCrossRefGoogle Scholar
  13. 13.
    S. Puri, F. Leuterer, M. Tutter, J. Plasma Phys. 14, 169 (1975)ADSCrossRefGoogle Scholar
  14. 14.
    P.A. Robinson, J. Math. Phys. 28, 1203 (1987)MathSciNetADSMATHCrossRefGoogle Scholar
  15. 15.
    P.A. Robinson, J. Plasma Phys. 37, 435 (1987)ADSCrossRefGoogle Scholar
  16. 16.
    P.A. Robinson, J. Plasma Phys. 37, 449 (1987)ADSCrossRefGoogle Scholar
  17. 17.
    P.A. Robinson, Phys. Fluid 31, 107 (1988)ADSCrossRefGoogle Scholar
  18. 18.
    J.J. Barnard, J. Arons, Astrophys. J. 302, 138 (1986)ADSCrossRefGoogle Scholar
  19. 19.
    C. Wang, D. Lai, J. Han, Mon. Not. Roy. Astron. Soc. 403, 569 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    D.B. Melrose, M.E. Gedalin, Astrophys. J. 521, 351 (1999)ADSCrossRefGoogle Scholar
  21. 21.
    M.W. Verdon, D.B. Melrose, Phys. Rev. E 77, 046403 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    D.B. Melrose, A.C. Judge, Phys. Rev. E 70, 056408 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    D.B. Melrose, Q. Luo, Mon. Not. Roy. Astron. Soc. 352, 519 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Donald Melrose
    • 1
  1. 1.School of PhysicsUniversity of SydneySydneyAustralia

Personalised recommendations