Advertisement

Covariant Fluid Models for Magnetized Plasmas

  • Donald Melrose
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 854)

Abstract

Three applications of covariant fluid theory are discussed in this chapter: a covariant form of cold-plasma theory, covariant MHD theory, and a covariant form of quantum fluid theory.

Keywords

Rest Frame Wigner Function Cold Plasma Covariant Form Dielectric Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A. Achterberg, Phys. Rev. A 28, 2449 (1983)Google Scholar
  2. 2.
    D. Anderson, B. Hall, M. Lisak, M. Marklund, Phys. Rev. E 65, 046417 (2002)Google Scholar
  3. 3.
    A.M. Anile, Relativistic Fluids and Magneto-Fluids: With Applications in Astrophysics and Plasma Physics (Cambridge University Press, Cambridge, 1989)Google Scholar
  4. 4.
    E.V. Appleton, J. Inst. Electr. Eng. 71, 642 (1932)Google Scholar
  5. 5.
    V. Bargmann, L. Michel, V.L. Telegdi, Phys. Rev. Lett. 2, 435 (1959)Google Scholar
  6. 6.
    D. Bohm, Phys. Rev. 85, 166 (1952)Google Scholar
  7. 7.
    G. Brodin, M. Marklund, New J. Phys. 9, 277 (2008)Google Scholar
  8. 8.
    G. Brodin, M. Marklund, G. Manfredi, Phys. Rev. Lett. 100, 175001 (2008)Google Scholar
  9. 9.
    G. Brodin, M. Marklund, J. Zamanian, A. Ericsson, P.L. Mana, Phys. Rev. Lett. 101, 245002 (2008)Google Scholar
  10. 10.
    S.C. Cowley, R.M. Kulsrud, E. Valeo, Phys. Fluid 29, 430 (1986)Google Scholar
  11. 11.
    R.L. Dewar, Aust. J. Phys. 30, 533 (1977)Google Scholar
  12. 12.
    F. Haas, G. Manfredi, M.R. Feix, Phys. Rev. E 62, 2763 (2000)Google Scholar
  13. 13.
    D.R. Hartree, Proc. Camb. Philos. Soc. 27, 143 (1931)Google Scholar
  14. 14.
    R.M. Kulsrud, E.J. Valeo, S.C. Cowley, Nucl. Fusion 26, 1443 (1986)Google Scholar
  15. 15.
    A. Levinson, D. Melrose, A. Judge, Q. Luo, Astrophys. J. 31, 456 (2005)Google Scholar
  16. 16.
    A. Lichnerowicz, Relativistic Magnetohydrodynamics (Benjamin, New York, 1967)Google Scholar
  17. 17.
    E. Madelung, Z. Phys. 40, 32 (1926)Google Scholar
  18. 18.
    M. Marklund, P.K. Shukla, Rev. Mod. Phys. 78, 591 (2006)Google Scholar
  19. 19.
    A. Melatos, D.B. Melrose, Mon. Not. R. Astron. Soc. 279, 1168 (1996)Google Scholar
  20. 20.
    D.B. Melrose, A. Mushtaq, Phys. Plasmas 16, 094508 (2009)Google Scholar
  21. 21.
    D.B. Melrose, A. Mushtaq, Phys. Rev. E 83, 056404 (2011)Google Scholar
  22. 22.
    A.P. Misra, G. Brodin, M. Marklund, P.K. Shukla, J. Plasma Phys. 76, 875 (2010)Google Scholar
  23. 23.
    V.N. Oraevsky, V.B. Semikoz, Phys. At. Nucl. 66, 466 (2003)Google Scholar
  24. 24.
    A.E. Shabad, Ann. Phys. 90, 166 (1975)Google Scholar
  25. 25.
    P.K. Shukla, B. Eliasson, Physica (Utrecht) 53, 51 (2010)Google Scholar
  26. 26.
    T.H. Stix, The Theory of Plasma Waves (McGraw-Hill, New York, 1962)Google Scholar
  27. 27.
    T.H. Stix, Waves in Plasmas (Springer, New York, 1992)Google Scholar
  28. 28.
    T. Takabayasi, Prog. Theor. Phys. Suppl. 4, 1 (1957)Google Scholar
  29. 29.
    T. Uchida, Phys. Rev. E 56, 2181 (1997)Google Scholar
  30. 30.
    M.W. Verdon, D.B. Melrose, Phys. Rev. E 77, 046403 (2008)Google Scholar
  31. 31.
    T.C. Wallstrom, Phys. Rev. A 49, 1613 (1994)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Donald Melrose
    • 1
  1. 1.School of PhysicsUniversity of SydneySydneyAustralia

Personalised recommendations