Skip to main content

Part of the book series: Fields Institute Communications ((FIC,volume 62))

Abstract

This paper consists of lecture notes on some fundamental results about the asymptotic analysis of unary functions definable in o-minimal expansions of the field of real numbers.

Mathematics Subject Classification (2010): Primary 03C64, Secondary 26A12

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Often called “0-definable” in the model-theoretic literature.

  2. 2.

    In many older papers in model theory, the default is that “definable” means “-definable”.

  3. 3.

    In other words, the only definable subsets of \(\mathbb{R}\) are those that must be there by virtue of the usual ordering of the real line. Hence, the structure is “order-minimal”, thus accounting for the abbreviation “o-minimal” and the use of a plain text font for the “o”.

  4. 4.

    A proper expansion of \(\overline{\mathbb{R}}\) is one that defines a non-semialgebraic set.

  5. 5.

    That is, its theory is axiomatizable by universal sentences.

  6. 6.

    Exercise. Prove it.

  7. 7.

    The argument is essentially from van den Dries et al. [38].

  8. 8.

    That is, if \(g: {\mathbb{R}}^{n} \rightarrow \mathbb{R}\) is definable, then there is a finite \(\mathcal{F}\subseteq {\mathcal{T}}_{n}\) such that the graph g is contained in the union of the graphs of the \(f \in \mathcal{F}\).

References

  1. R. Bianconi, Nondefinability results for expansions of the field of real numbers by the exponential function and by the restricted sine function. J. Symb. Log. 62, 1173–1178 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Denef, L. van den Dries, p-adic and real subanalytic sets. Ann. Math. (2) 128, 79–138 (1988)

    Google Scholar 

  3. A. Dolich, C. Miller, C. Steinhorn, Structures having o-minimal open core. Trans. Am. Math. Soc. 362, 1371–1411 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Hovanskiĭ, A class of systems of transcendental equations (in Russian). Dokl. Akad. Nauk SSSR 255, 804–807 (1980)

    MathSciNet  Google Scholar 

  5. J. Knight, A. Pillay, C. Steinhorn, Definable sets in ordered structures. II. Trans. Am. Math. Soc. 295, 593–605 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. J.-M. Lion, C. Miller, P. Spesissegger, Differential equations over polynomially bounded o-minimal structures. Proc. Am. Math. Soc. 131, 175–183 (2003)

    Article  MATH  Google Scholar 

  7. D. Marker, Model Theory. Graduate Texts in Mathematics, vol. 217 (Springer, New York, 2002)

    Google Scholar 

  8. C. Miller, Exponentiation is hard to avoid. Proc. Am. Math. Soc. 122, 257–259 (1994)

    Article  MATH  Google Scholar 

  9. C. Miller, Expansions of the real field with power functions. Ann. Pure Appl. Log. 68, 79–94 (1994)

    Article  MATH  Google Scholar 

  10. C. Miller, Infinite differentiability in polynomially bounded o-minimal structures. Proc. Am. Math. Soc. 123, 2551–2555 (1995)

    Article  MATH  Google Scholar 

  11. C. Miller, A growth dichotomy for o-minimal expansions of ordered fields, in Logic: From Foundations to Applications. Oxford Science Publications (Oxford University Press, New York, 1996), pp. 385–399

    Google Scholar 

  12. C. Miller, Expansions of o-minimal structures on the real field by trajectories of linear vector fields. Proc. Am. Math. Soc. 139, 319–330 (2011)

    Article  MATH  Google Scholar 

  13. C. Miller, P. Speissegger, Expansions of the real line by open sets: o-minimality and open cores. Fund. Math. 162, 193–208 (1999)

    MathSciNet  MATH  Google Scholar 

  14. C. Miller, P. Speissegger, Pfaffian differential equations over exponential o-minimal structures. J. Symb. Log. 67, 438–448 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. C. Miller, S. Starchenko, A growth dichotomy for o-minimal expansions of ordered groups. Trans. Am. Math. Soc. 350, 3505–3521 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Pillay, C. Steinhorn, Definable sets in ordered structures. I. Trans. Am. Math. Soc. 295, 565–592 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. J.-P. Rolin, Construction of o-minimal structures from quasianalytic Classes, in Lecture Notes on O-minimal Structures and Real Analytic Geometry. Fields Institute Communications, Springer Verlag, 62, 70–109 (2012)

    Google Scholar 

  18. J.-P. Rolin, P. Speissegger, A. Wilkie, Quasianalytic Denjoy-Carleman classes and o-minimality. J. Am. Math. Soc. 16, 751–777 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Rosenlicht, Hardy fields. J. Math. Anal. Appl. 93, 297–311 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Rosenlicht, The rank of a Hardy field. Trans. Am. Math. Soc. 280, 659–671 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Rosenlicht, Rank change on adjoining real powers to Hardy fields. Trans. Am. Math. Soc. 284, 829–836 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Rosenlicht, Growth properties of functions in Hardy fields. Trans. Am. Math. Soc. 299, 261–272 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  23. P. Speissegger, The Pfaffian closure of an o-minimal structure. J. Rein. Angew. Math. 508, 189–211 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. P. Speissegger, Lectures on o-minimality, in Lectures on Algebraic Model Theory. Fields Institute Monographs, vol. 15 (American Mathematical Society, Providence, 2002), pp. 47–65

    Google Scholar 

  25. P. Speissegger, Pfaffian sets and o-minimality, in Lecture Notes on O-minimal Structures and Real Analytic Geometry. Fields Institute Communications, Springer Verlag, 62, 178–218 (2012)

    Google Scholar 

  26. L. van den Dries, Remarks on Tarski’s problem concerning (R,  + ,  ⋅, exp), in Logic Colloquium ’82. Studies in Logic and the Foundations of Mathematics, vol. 112 (North-Holland, Amsterdam, 1984), pp. 97–121

    Google Scholar 

  27. L. van den Dries, A generalization of the Tarski-Seidenberg theorem, and some nondefinability results. Bull. Am. Math. Soc. (N.S.) 15, 189–193 (1986)

    Google Scholar 

  28. L. van den Dries, On the elementary theory of restricted elementary functions. J. Symb. Log. 53, 796–808 (1988)

    Article  MATH  Google Scholar 

  29. L. van den Dries, O-minimal structures, in Logic: From Foundations to Applications. Oxford Science Publications (Oxford University Press, New York, 1996), pp. 137–185

    Google Scholar 

  30. L. van den Dries, T-convexity and tame extensions. II. J. Symb. Log. 62, 14–34 (1997)

    MATH  Google Scholar 

  31. L. van den Dries, Tame Topology and O-minimal Structures. London Mathematical Society Lecture Note Series, vol. 248 (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  32. L. van den Dries, A. Lewenberg, T-convexity and tame extensions. J. Symb. Log. 60, 74–102 (1995)

    Article  MATH  Google Scholar 

  33. L. van den Dries, C. Miller, On the real exponential field with restricted analytic functions. Isr. J. Math. 85, 19–56 (1994)

    Article  MATH  Google Scholar 

  34. L. van den Dries, C. Miller, Geometric categories and o-minimal structures. Duke Math. J. 84, 497–540 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  35. L. van den Dries, P. Speissegger, The real field with convergent generalized power series. Trans. Am. Math. Soc. 350, 4377–4421 (1998)

    Article  MATH  Google Scholar 

  36. L. van den Dries, P. Speissegger, The field of reals with multisummable series and the exponential function. Proc. Lond. Math. Soc. (3) 81, 513–565 (2000)

    Google Scholar 

  37. L. van den Dries, P. Speissegger, O-minimal preparation theorems, in Model Theory and Applications. Quaderni di Matematica, vol. 11 (Aracne, Rome, 2002), pp. 87–116

    Google Scholar 

  38. L. van den Dries, A. Macintyre, D. Marker, The elementary theory of restricted analytic fields with exponentiation. Ann. Math. (2) 140, 183–205 (1994)

    Google Scholar 

  39. A. Wilkie, Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function. J. Am. Math. Soc. 9, 1051–1094 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Miller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Miller, C. (2012). Basics of O-minimality and Hardy Fields. In: Miller, C., Rolin, JP., Speissegger, P. (eds) Lecture Notes on O-Minimal Structures and Real Analytic Geometry. Fields Institute Communications, vol 62. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4042-0_2

Download citation

Publish with us

Policies and ethics