• Vibhu Sharma
  • Francky Catthoor
  • Wim Dehaene
Part of the Analog Circuits and Signal Processing book series (ACSP)


This chapter describes two prototypes of Static Random Access Memory (SRAM) macro. The test chips (IM_90 and IM_65) have been successfully developed, fabricated, and tested in order to validate the proposed low energy and variability resilient circuit techniques discussed in the previous chapters. First a design overview of IM_90 (first prototype) is provided followed by IM_65 (second prototype). This chapter concludes with the performance comparison of IM_90 and IM_65 with the current state-of-the-art for the wireless sensor node applications.


  1. K. Kushida et al., A 0.7V single-supply SRAM with 0.495 um2 cell in 65nm technology utilizing self-write-back sense amplifier and cascaded bit line scheme. IEEE J. Solid-State Circuits 44(4), 1192–1198 (2009)Google Scholar
  2. J. Kwong et al., A 65 nm sub-vt microcontroller with integrated SRAM and switched capacitor DC–DC Converter. IEEE J Solid-State Circuits 44(1) 115–126 (2009)Google Scholar
  3. M.D. Nil et al., Ultra low power ASIP design for wireless sensor nodes. IEEE Conference on Electronics, Circuits and Systems (ICECS), pp. 1352–1355 (2007)Google Scholar
  4. V. Sharma et al., A 4.4pJ/Access 80 MHz, 2 K word X 64b memory with write masking feature and variability resilient multi-sized sense amplifier redundancy for W.S.Nodes, in Proceedings of IEEE European Solid State Conference (ESSCIRC), pp. 358–361 (2010)Google Scholar
  5. V. Sharma et al., 8T SRAM with mimicked negative bit-lines and charge limited sequential sense amplifier for wireless sensor nodes. in Proceedings of IEEE European Solid State Circuits Conference (ESSCIRC), pp. 531–534, Sept 2011Google Scholar
  6. M.E. Sinangil, N. Verma, A.P. Chandrakasan, A reconfigurable 8T Ultra-Dynamic Voltage Scalable (U-DVS) SRAM in 65nm CMOS. IEEE J Solid-State Circuits 44(11), 3163–3173 (2009)Google Scholar
  7. M. Sinangil, H. Mair, A. Chandrakasan, A 28 nm high-density 6T SRAM wth optimized peripheral-assst circuits for operation down to 0.6V. IEEE International Solid-State Circuits Conference (ISSCC), pp. 260–261, Feb 2011Google Scholar
  8. K. Takeda et al., A read-static-noise-margin-free SRAM cell for low-VDD and high-speed applications. IEEE J Solid-State Circuits 41(1), 113–121 (2006)Google Scholar
  9. K. Takeda et al., Multi-step word-line control technology in hierarchical cell architecture for scaled-down high-density SRAMs. IEEE J Solid-State Circuits 46(4), 806–814 (2011)Google Scholar
  10. M. Verma, P. Marwedel, Advance memory optimization techniques for low-power embedded processors. ISBN 978-1-4020-5896-7, (Springer, Netherlands, 2007)Google Scholar
  11. N. Verma, A.P. Chandrakasan, A 256 kb 65 nm 8T subthreshold SRAM employing sense-amplifier redundancy. IEEE J. Solid-State Circuits, 141–149 (2008)Google Scholar
  12. M. Yoshimoto et al., A 64 Kb full CMOS RAM with divided word line structure. Proceedings of IEEE International Solid State Circuits Conference (ISSCC) pp. 58–59 (1983)Google Scholar
  13. S. Yoshimoto et al. A 40-nm 0.5V 20.1 uW/MHz 8T SRAM with low-energy disturb mitigation scheme. 2011 Symposium on VLSI Circuits, pp. 72–73, June 2011Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Vibhu Sharma
    • 1
  • Francky Catthoor
    • 2
  • Wim Dehaene
    • 1
  1. 1.ESAT-MICASK.U. LeuvenHeverleeBelgium
  2. 2.Departement ESATIMECHeverleeBelgium

Personalised recommendations