Skip to main content

Musculoskeletal Models of Tremor

  • Chapter
  • First Online:
Mechanisms and Emerging Therapies in Tremor Disorders

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

Abstract

Notwithstanding the contribution of many prior works in tremor (Elble and Koller 1990; Findley and Koller 1994), a clear consensus of its origin and pathogenesis among the scientific community is still lacking. The prevalent opinion supports the idea that the main source of tremor is from central neural oscillators located in brain (central tremor), but the peripheral nervous system may also have a significant contribution in some cases (peripheral tremor) (see also the Chap. 6; Stein and Oguztoreli 1976; Wenderoth and Bock 1999).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bay JS, Hemami H. Modeling of a neural pattern generator with coupled nonlinear oscillators. IEEE Biomed Eng. 1987;34:297–306.

    Article  CAS  Google Scholar 

  • Beuter A, Edwards R, Titcombe MS. Data analysis and mathematical model of human tremor. In: Beuter A, Glass L, Mackey MC, Titcombe MS, editors. Nonlinear dynamics in physiology and medicine. New York: Springer; 2003. p. 303–50.

    Google Scholar 

  • Bock O, Wenderoth N. Dependence of peripheral tremor on mechanical perturbations: A modeling study. Biol Cybern. 1999;80:103–8.

    Article  PubMed  CAS  Google Scholar 

  • Dideriksen JL, Enoka RM, Farina D. A model of the surface electromyogram in pathological tremor. IEEE Trans Biomed Eng. 2011;58:2178–85.

    Article  Google Scholar 

  • Ekeberg O. A combined neuronal and mechanical model of fish swimming. Biol Cybern. 1993;69:363–74.

    Google Scholar 

  • Elble RJ, Koller WC. Tremor. Baltimore, MD: The Johns Hopkins University Press; 1990.

    Google Scholar 

  • Ferrarin M, Palazzo F, Riener R, Quintern J. Model-based control of FES-induced single joint movements. IEEE Trans Neural Syst Rehab Eng. 2001;9:245–57.

    Article  CAS  Google Scholar 

  • Findley LJ, Koller WC. Handbook of tremor disorders. London: Informa Health Care; 1994.

    Google Scholar 

  • Fukumoto I. Computer simulation of Parkinsonian tremor. J Biomed Eng. 1986;8:49–55.

    Article  PubMed  CAS  Google Scholar 

  • Happee R. Inverse dynamic optimization including muscular dynamics, a new simulation method applied to goal directed movements. J Biomech. 1994;27:953–60.

    Article  PubMed  CAS  Google Scholar 

  • He J, Maltenfort MG, Wang Q, Hamm TM. Learning from biological system: Modeling neural control. IEEE Control Syst Mag. 2001;21(4):55–69.

    Article  Google Scholar 

  • Heckman CJ, Binder MD. Computer simulation of the steady state input–output function of the cat medial gastrocnemius motoneuron pool. J Neurophysiol. 1991;65:952–67.

    PubMed  CAS  Google Scholar 

  • Hidler JM, Ryme WZ. Limit cycle behavior in spasticity: Analysis and evaluation. IEEE Trans Biomed Eng. 2000;47(12):1565–75.

    Article  PubMed  CAS  Google Scholar 

  • Hidler JM, Ryme WZ. A simulation study of reflex instability: Origins of clonus. IEEE Trans Rehabil Eng. 1999;7(3):327–40.

    Article  PubMed  CAS  Google Scholar 

  • Hill AV. The heat of shortening and dynamic constants of muscle. Proc R Soc Lond Biol. 1938;159:136–95.

    Article  Google Scholar 

  • Houk JC, Rymer WZ, Crago PE. Dependence of dynamic response of spindle receptors on muscle length and velocity. J Neurophysiol. 1981;46:143–66.

    PubMed  CAS  Google Scholar 

  • Hulliger M. The mammalian muscle spindle and its central control. Rev Physiol Biochem Pharmacol. 1984;101:1–110.

    Article  PubMed  CAS  Google Scholar 

  • Huxley AF. Muscle structure and theories of contraction. Prog Biophys Biophys Chem. 1957;7:257–318.

    Google Scholar 

  • Ijspeert A. Central pattern generators for locomotion control in animals and robots: A review. Neural Netw. 2008;21:642–53.

    Article  PubMed  Google Scholar 

  • Jobges EM, Elek J, Rollnik JD, Dengler R, Wolf W. Vibratory proprioceptive stimulation affects Parkinsonian tremor. Parkinsonism Related Disord. 2002;8:171–6.

    Article  CAS  Google Scholar 

  • Lemay MA, Crago PE. A dynamic model for simulating movements of the elbow, forearm, and wrist. J Biomech. 1996;29:1319–30.

    Article  PubMed  CAS  Google Scholar 

  • Lin CK, Crago PE. Structural model of the muscle spindle. Ann Biomed Eng. 2002a;30:68–83.

    Article  PubMed  CAS  Google Scholar 

  • Lin CK, Crago PE. Neural and mechanical contributions to the stretch reflex: A model synthesis. Ann Biomed Eng. 2002b;30:56–67.

    Google Scholar 

  • Matsuoka K. Sustained oscillations generated by mutually inhibiting neurons with adaption. Biol Cybern. 1985;52:367–76.

    Article  PubMed  CAS  Google Scholar 

  • Mones R, Weiss A. The response of tremor patients with parkinsonism to peripheral stimulation. J Neurol Neurosurg Psychiatr. 1969;32:512–8.

    Article  PubMed  CAS  Google Scholar 

  • Ogihara N, Yamazaki N. Generation of human bipedal locomotion by a bio-mimetic neuro-musculo-skeletal model. Biol Cybern. 2001;84:1–11.

    Article  PubMed  CAS  Google Scholar 

  • Oguztoreli MN, Stein RB. The effects of multiple reflex pathways on the oscillations in neuro-muscular systems. J Math Biol. 1976;3:87–101.

    Article  PubMed  CAS  Google Scholar 

  • Pandy MG. Computer modelling and simulation of human movement. Annu Rev Biomed Eng. 2000;3:245–73.

    Article  Google Scholar 

  • Powers RK, Binder MD. Summation of effective synaptic currents and firing rate modulation in cat spinal motoneurons. J Neurophysiol. 2000;83:483–500.

    PubMed  CAS  Google Scholar 

  • Prochazka A, Gorassini M. Ensemble firing of muscle spindle afferents recorded during normal locomotion in cats. J Physiol. 1998;507:293–304.

    Article  PubMed  CAS  Google Scholar 

  • Prochazka A, Gillard D, Bennett DJ. Positive force feedback control of muscles. J Neurophysiol. 1997a;77:3226–36.

    PubMed  CAS  Google Scholar 

  • Prochazka A, Gillard D, Bennett DJ. Implications of positive feedback in the control of movement. J Neurophysiol. 1997b;77:3237–51.

    PubMed  CAS  Google Scholar 

  • Riener R, Fuhr T. Patient-driven control of FES-supported standing up: A simulation study. IEEE Trans Rehab Eng. 1998;6(2):113–24.

    Article  CAS  Google Scholar 

  • Santillan M, Pereza RH, Lezama RD. A numeric study of the noise-induced tremor in a mathematical model of the stretch reflex. J Theoret Biol. 2003;222:99–115.

    Article  Google Scholar 

  • Smirnov DA, Barnikol UB, Barnikol TT, Bezruchko BP, Hauptmann C, Buhrle C, Maarouf M, Sturm V, Freund HJ, Tass PA. The generation of Parkinsonian tremor as revealed by directional coupling analysis. Europhys Lett. 2008;83:20003.

    Article  Google Scholar 

  • Song D, Lan N, Loeb GE, Gordon J. Model-based sensorimotor integration for multi-joint control: Development of a virtual arm model. Ann Biomed Eng. 2008;36:1033–48.

    Article  PubMed  CAS  Google Scholar 

  • Stein RB, Oguztoreli MN. Tremor and other oscillations in neuromuscular systems. Biol Cybern. 1976;22:147–57.

    Article  PubMed  CAS  Google Scholar 

  • Strogatz SH. Nonlinear dynamics and chaos. 1st ed. Boulder: Westview; 2001.

    Google Scholar 

  • Wenderoth N, Bock O. Load dependence of simulated central tremor. Biol Cybern. 1999;80:285–90.

    Article  PubMed  CAS  Google Scholar 

  • Windhorst U. Activation of Renshaw cells. Prog Neurobiol. 1990;35:135–79.

    Article  PubMed  CAS  Google Scholar 

  • Zajac FE. Muscle and tendon: Properties, model, scaling, and application to biomechanics and motor control. CRC Crit Rev Biomed Eng. 1989;17:359–411.

    CAS  Google Scholar 

  • Zhang DG, Poignet P, Bo A, Ang WT. Exploring peripheral mechanism of tremor on neuromusculoskeletal model: A general simulation study. IEEE Trans Biomed Eng. 2009;56:2359–69.

    Article  PubMed  Google Scholar 

  • Zhang DG, Poignet P, Widjaja F, Ang WT. Neural oscillator based control for pathological tremor suppression via functional electrical stimulation. Control Eng Practice. 2011;19:74–88.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dingguo Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zhang, D., Ang, W.T. (2013). Musculoskeletal Models of Tremor. In: Grimaldi, G., Manto, M. (eds) Mechanisms and Emerging Therapies in Tremor Disorders. Contemporary Clinical Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4027-7_5

Download citation

Publish with us

Policies and ethics